首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When [3H]inositol-prelabelled rat parotid-gland slices were stimulated with carbachol, noradrenaline or Substance P, the major inositol trisphosphate produced with prolonged exposure to agonists was, in each case, inositol 1,3,4-trisphosphate. Much lower amounts of radioactivity were present in the inositol 1,4,5-trisphosphate fraction separated by anion-exchange h.p.l.c. Analysis of the inositol trisphosphate head group of phosphatidylinositol bisphosphate in [32P]Pi-labelled parotid glands showed the presence of phosphatidylinositol 4,5-bisphosphate, but no detectable phosphatidylinositol 3,4-bisphosphate. Carbachol-stimulated [3H]inositol-labelled parotid glands contained an inositol polyphosphate with the chromatographic properties and electrophoretic mobility of an inositol tetrakisphosphate, the probable structure of which was determined to be inositol 1,3,4,5-tetrakisphosphate. Since an enzyme in erythrocyte membranes is capable of degrading this tetrakisphosphate to inositol 1,3,4-trisphosphate, it is suggested to be the precursor of inositol 1,3,4-trisphosphate in parotid glands.  相似文献   

2.
1. The effect of Li+ on the agonist-dependent metabolism of [3H]inositol has been studied in rat brain, rat parotid and the insect salivary gland. 2. When brain or parotid slices were incubated in the presence of [3H]inositol, Li+ was found to amplify the ability of agonists such as carbachol, phenylephrine, histamine, 5-hydroxytryptamine and Substance P to elevate the amount of label appearing in the inositol phosphates. 3. A different approach was used with the insect salivary gland, which was prelabelled with [3H]inositol. After washing out the label, the subsequent release of [3H]inositol induced by 5-hydroxytryptamine was greatly decreased by Li+. During Li+ treatment there was a large accumulation of [3H]inositol 1-phosphate. 4. This ability of Li+ to greatly amplify the agonist-dependent accumulation of myo-inositol 1-phosphate offers a novel technique for identifying those receptors that function by hydrolysing phosphatidylinositol. 5. The therapeutic action of Li+ may be explained by this inhibition of myo-inositol 1-phosphatase, which lowers the level of myo-inositol and could lead to a decrease in the concentration of phosphatidylinositol, especially in those neurons that are being stimulated excessively. This alteration in phosphatidylinositol metabolism may serve to reset the sensitivity of those multifunctional receptors that generate second messengers such as Ca2+, cyclic GMP and the prostaglandins.  相似文献   

3.
Incubation of rat hippocampal formation slices under steady-state conditions with [3H]inositol leads to only three phospholipids becoming labelled: phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. All three lipids incorporate [32P]Pi into their phosphodiester phosphate group with the polyphosphoinositides also incorporating this tracer into their monoester phosphate groups. As the concentrations of these lipids remain constant during these labelling processes we conclude that the phosphodiester phosphate, the inositol moiety, and the monoester phosphate groups undergo metabolic turnover in hippocampal formation slices incubated in vitro. The rate of incorporation of [3H]inositol into all three inositol phospholipids was stimulated by the addition of methacholine to the medium. Moreover, following steady-state labelling of the inositol lipids with [3H]inositol, methacholine in the presence of 10 mM LiCl caused a transient fall of 13% in the radiochemical concentration of phosphatidylinositol 4,5-bisphosphate after only 30 s stimulation and a fall of 15% in the radiochemical concentration of phosphatidylinositol after 30 min. Concomitantly, there was an approximately stoichiometric rise in the radiochemical concentration of inositol phosphates. Thus, we suggest that methacholine stimulates an inositol phospholipid phosphoinositidase C in rat hippocampal formation slices.  相似文献   

4.
Addition of 1 mM-carbachol to [3H]inositol-labelled rat parotid slices stimulated rapid formation of [3H]inositol 1,3,4,5-tetrakisphosphate, the accumulation of which reached a peak 20 s after stimulation, and then declined rapidly towards a new steady state. The initial rate of formation of inositol 1,3,4,5-tetrakisphosphate was slower than that for inositol 1,4,5-trisphosphate. The radioactivity in [3H]inositol 1,3,4,5-tetrakisphosphate fell quickly in carbachol-stimulated and then atropine-blocked parotid slices, suggesting that it is rapidly metabolized during stimulation. Parotid homogenates rapidly dephosphorylated inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate and, less rapidly, inositol 1,3,4-trisphosphate. Inositol 1,3,4,5-tetrakisphosphate was specifically hydrolysed to a compound with the chromatographic properties of inositol 1,3,4-trisphosphate. The only 3H-labelled phospholipids that we could detect in parotid slices labelled with [3H]inositol for 90 min were phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Parotid homogenates synthesized inositol tetrakisphosphate from inositol 1,4,5-trisphosphate. This activity was dependent on the presence of ATP. We suggest that, during carbachol stimulation of parotid slices, the key event in inositol lipid metabolism is the activation of phosphatidylinositol 4,5-bisphosphate-specific phospholipase C. The inositol 1,4,5-trisphosphate thus liberated is metabolized in two distinct ways; by direct hydrolysis of the 5-phosphate to form inositol 1,4-bisphosphate and by phosphorylation to form inositol 1,3,4,5-tetrakisphosphate and hence, by hydrolysis of this tetrakisphosphate, to form inositol 1,3,4-trisphosphate.  相似文献   

5.
The molecular mechanisms underlying the ability of muscarinic agonists to enhance the metabolism of inositol phospholipids were studied using rat parotid gland slices prelabelled with tracer quantities of [3H]inositol and then washed with 10 mM unlabelled inositol. Carbachol treatment caused rapid and marked increases in the levels of radioactive inositol 1-phosphate, inositol 1,4-bisphosphate, inositol 1,4,5-trisphosphate and an accumulation of label in the free inositol pool. There were much less marked changes in the levels of [3H]phosphatidylinositol, [3H]phosphatidylinositol 4-phosphate and [3H]phosphatidylinositol 4,5-bisphosphate. At 5 s after stimulation with carbachol there were large increases in [3H]inositol 1,4-bisphosphate and [3H]inositol 1,4,5-trisphosphate, but not in [3H]inositol 1-phosphate. After stimulation with carbachol for 10 min the levels of radioactive inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate greatly exceeded the starting level of radioactivity in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate respectively. When carbachol treatment was followed by addition of sufficient atropine to block all the muscarinic receptors the radioactive inositol phosphates rapidly returned towards control levels. The carbachol-evoked changes in radioactive inositol phosphate and phospholipid levels were blocked in the presence of 2,4-dinitrophenol (an uncoupler of oxidative phosphorylation). The results suggest that muscarinic agonists stimulate a polyphosphoinositide-specific phospholipase C and that these lipids are continuously replenished from the labelled phosphatidylinositol pool. [3H]Inositol 1-phosphate in the stimulated glands probably arises via hydrolysis of inositol 1,4-bisphosphate and not directly from phosphatidylinositol.  相似文献   

6.
The early actions of thyrotropin-releasing hormone (TRH) have been studied in hormone-responsive clonal GH3 rat pituitary cells. Previous studies had demonstrated that TRH promotes a "phosphatidylinositol response" in which increased incorporation of [32P]orthophosphate into phosphatidylinositol and phosphatidic acid was observed within minutes of hormone addition. The studies described here were designed to establish whether increased labeling of phosphatidylinositol and phosphatidic acid resulted from prior hormone-induced breakdown of an inositol phosphatide. GH3 cells were prelabeled with [32P]orthophosphate or myo-[3H]inositol. Addition of TRH resulted in the rapid disappearance of labeled polyphosphoinositides, whereas levels of phosphatidylinositol and other phospholipids remained unchanged. TRH-promoted polyphosphoinositide breakdown was evident by 5 S and maximal by 15 s of hormone treatment. Concomitant appearance of inositol polyphosphates in [3H]inositol-labeled cells was observed. In addition, TRH rapidly stimulated diacylglycerol accumulation in either [3H]arachidonic- or [3H]oleic acid-labeled cultures. These results indicate that TRH rapidly causes activation of a polyphosphoinositide-hydrolyzing phospholipase C-type enzyme. The short latency of this hormone effect suggests a proximal role for polyphosphoinositide breakdown in the sequence of events by which TRH alters pituitary cell function.  相似文献   

7.
Abstract: Exposure of rat brain or parotid gland slices to muscarinic receptor agonists stimulates a phospholipase C that degrades inositol phospholipids. When tissue slices were labelled in vitro with [3H]inositol, this response could be monitored by measuring the formation of [3H]inositol phosphates. Accumulation of inositol 1,4-biphosphate in stimulated brain slices suggests that polyphosphonositides are the primary targets for phospholipase C activity. Li+ (10 m M ) in the medium completely blocked the hydrolysis of inositol 1-phosphate, partially inhibited inositol 1,4bisphosphate hydrolysis, but had no effect on the hydrolysis of inositol 1,4,5-trisphosphate by endogenous phosphatases. Muscarinic receptor pharmacology was studied by measuring the accumulation of [3H]inositol 1-phosphate in the presence of 10 m M Li+. In experiments on brain slices, the response to carbachol was antagonised by atropine with an affinity constant of approximately 8.79 ± 0.12. Dose-response curves to several muscarinic agonists were constructed using brain and parotid gland slices. The results are consistent with relatively direct coupling of low-affinity muscarinic receptors to inositol phospholipid breakdown in brain slices; full agonists were relatively more potent in the parotid gland compared with the brain. Explanations for these differences are suggested.  相似文献   

8.
Cortical slices from rat brain were used to study carbachol-stimulated inositol phospholipid hydrolysis. Omission of calcium during incubation of slices with [3H]inositol increased its incorporation into receptor-coupled phospholipids. Carbachol-stimulated hydrolysis of [3H]inositol phospholipids in slices was dose-dependent, was affected by the concentrations of calcium and lithium present and resulted in the accumulation of mostly [3H]inositol-l-phosphate. Incubation of slices withN-ethylmaleimide or a phorbol ester reduced the response to carbachol. Membranes prepared from cortical slices labeled with [3H]inositol retained the receptor-stimulated inositol phospholipid hydrolysis reaction. The basal rate of inositol phospholipid hydrolysis was higher than in slices and addition of carbachol further stimulated the process. Addition of GTP stimulated inositol phospholipid hydrolysis, suggesting the presence of a guanine nucleotide-binding protein coupled to phospholipase C. Carbachol and GTP-stimulated inositol phospholipid hydrolysis in membranes was detectable following a 3 min assay period. In contrast to slices, increased levels of inositol bisphosphate and inositol trisphosphate were detected following incubation of membranes with carbachol. These results demonstrate that agonist-responsive receptors are present in cortical membranes, that the receptors may be coupled to phosphatidylinositol 4,5-bisphosphate, rather than phosphatidylinositol, hydrolysis and that a guanine nucleotide-binding protein may mediate the coupling of receptor activation to inositol phospholipid hydrolysis in brain.  相似文献   

9.
D L Aub  J W Putney 《Life sciences》1984,34(14):1347-1355
Rat parotid acinar cells were used to investigate the time course of formation and breakdown of inositol phosphates in response to receptor-active agents. In cells preincubated with [3H]inositol and in the presence of 10 mM LiCl (which blocks hydrolysis of inositol phosphate), methacholine (10(-4)M) caused a substantial increase in cellular content of [3H]inositol phosphate, [3H]inositol bisphosphate and [3H]inositol trisphosphate. Subsequent addition of atropine (10(-4) M) caused breakdown of [3H]inositol trisphosphate and [3H]inositol bisphosphate and little change in accumulated [3H]inositol phosphate. The data could be fit to a model whereby inositol trisphosphate and inositol bisphosphate are formed from phosphodiesteratic breakdown of phosphatidylinositol bisphosphate and phosphatidylinositol phosphate respectively, and inositol phosphate is formed from hydrolysis of inositol bisphosphate rather than from phosphatidyl-inositol. Consistent with this model was the finding that [3H]inositol trisphosphate and [3H]inositol bisphosphate levels were substantially increased in 5 sec while an increase in [3H]inositol phosphate was barely detectable at 60 sec. These results indicate that in the parotid gland the phosphoinositide cycle is activated primarily by phosphodiesteratic breakdown of the polyphosphoinositides rather than phosphatidyl-inositol. Also, the results show that formation of inositol trisphosphate is probably sufficiently rapid for it to act as a second messenger signalling internal Ca2+ release in this tissue.  相似文献   

10.
The kinetics of [3H]inositol phosphate metabolism in agonist-activated rat parotid acinar cells were characterized in order to determine the sources of [3H]inositol monophosphates and [3H]inositol bisphosphates. The turnover rates of D-myo-inositol 1,4,5-trisphosphate and its metabolites, D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate, were examined following the addition of the muscarinic receptor antagonist, atropine, to cholinergically stimulated parotid cells. D-myo-Inositol 1,4,5-trisphosphate declined with a t1/2 of 7.6 +/- 0.7 s, D-myo-inositol 1,3,4-trisphosphate declined with a t1/2 of 8.6 +/- 1.2 min, and D-myo-inositol 1,4-bisphosphate was metabolized with a t1/2 of 6.0 +/- 0.7 min. The sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate (2.54% phosphatidylinositol/min) did not exceed the calculated rate of breakdown of D-myo-inositol 1,4,5-trisphosphate (2.76% phosphatidylinositol/min). Thus, there is no evidence for the direct hydrolysis of phosphatidylinositol 4-phosphate in intact cells since D-myo-inositol 1,4-bisphosphate formation can be attributed to the dephosphorylation of D-myo-inositol 1,4,5-trisphosphate. The source of the [3H]inositol monophosphates also was examined in cholinergically stimulated parotid cells. When parotid cells were stimulated with methacholine, D-myo-inositol 1,4,5-trisphosphate, D-myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 4-monophosphate levels increased within 2 s, whereas D-myo-inositol 1-monophosphate accumulation was delayed by several seconds. Rates of [3H]inositol monophosphate accumulation also were examined by the addition of LiCl to cells stimulated to steady state levels of [3H]inositol phosphates. The sum of the rates of accumulation of D-myo-inositol 1-monophosphate and D-myo-inositol 4-monophosphate did not exceed the rate of breakdown of D-myo-inositol 1,4,5-trisphosphate or the sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate. These kinetic analyses suggest that agonist-stimulated [3H]inositol bis- and monophosphate formation in intact rat parotid acinar cells can be accounted for by the metabolism of D-myo-[3H]inositol 1,4,5-trisphosphate rather than by phospholipase C-catalyzed hydrolysis of phosphatidylinositol or phosphatidylinositol 4-phosphate.  相似文献   

11.
The addition of 5-hydroxytryptamine to the isolated blowfly salivary gland stimulates fluid secretion, transepithelial calcium transport and the breakdown of 32P- or 3H-labelled phosphatidylinositol The breakdown of [32P]phosphatidylcholine and [32P]-phosphatidylethanolamine was not stimulated by 5-hydroxytryptamine. In salivary glands incubated with myo-[2-3H]inositol for 1--3 h, more than 95% of the label retained by the tissue was in the form of phosphatidylinositol. The addition of 5-hydroxytryptamine resulted in an increase in the accumulation of label in intracellular inositol 1:2-cyclic phosphate, inositol 1-phosphate and free inositol along with an increase in the release of [3H]inositol to the medium and saliva. The release of [3H]inositol to the medium served as a sensitive indicator of phosphatidylinositol breakdown. The release of [3H]inositol was not increased by cyclic AMP or the bivalent-cation ionophore A23187 under conditions in which salivary secretion was accelerated. The stimulation of fluid secretion by low concentrations of 5-hydroxytryptamine was potentiated by 3-isobutyl-1-methylxanthine, which had no effect on inositol release. The stimulation of fluid secretion by 5-hydroxytryptamine was greatly reduced in calcium-free buffer, but the breakdown of phosphatidylinositol continued at the same rate in the absence of calcium. These results support the hypothesis that breakdown of phosphatidylinositol by 5-hydroxytryptamine is involved in the gating of calcium.  相似文献   

12.
Carbamylcholine enhances the labeling of phosphatidate and phosphatidylinositol from 32Pi in nerve endings. Approximately 74% of labeled phosphatidate and 85% of labeled phosphatidylinositol produced on muscarinic stimulation are accounted for by tetraenoic species, as detected by argentation TLC. Incubation of membranes derived from nerve endings with [gamma-32P]ATP under conditions of phosphodiesteratic degradation of endogenous polyphosphoinositides resulted in increased labeling of phosphatidate. Approximately 78% of the newly formed phosphatidate was in a tetraenoic fraction. It is concluded that in muscarinically stimulated nerve endings, the diacylglycerol moiety is conserved following diacylglycerol release from polyphosphoinositides through its resynthesis to inositol lipid via phosphatidate.  相似文献   

13.
The rectal gland of the dogfish is rich in inositol lipids. Total phospholipids from the gland contained 9.1 mol% of phosphatidylinositol (PtdIns), 1.0 mol% of phosphatidylinositol 4-phosphate (PtdIns4P) and 0.9 mol% of phosphatidylinositol 4,5-biphosphate (PtdIns4,5P2). [32P]Orthophosphate was readily incorporated into PtdIns, phosphatidic acid (PtdA) and especially into PtdIns4P and PtdIns4,5P2 in salt gland slices incubated in elasmobranch Ringer with glucose and no other additions over a 2 hr period. The calcium ionophore A23187 stimulated incorporation into PtdIns and PtdA, but not into PtdIns4P or PtdIns4,5P2. Oxygen uptake by rectal gland slices was maximally stimulated by 0.08mM forskolin, 2.5mM 8-chlorophenylthio cyclic AMP, 2.0mM dibutyryl cyclic AMP and 0.25mM theophylline. Stimulated oxygen uptake was inhibited by 0.1mM ouabain in all cases. Incorporation of [32P]orthophosphate into PtdIns, PtdA, PtdIns4P and PtdIns4,5P2 was inhibited by 0.08mM forskolin and 2.0mM dibutyryl cyclic AMP over a 2 hr period. The results are discussed in relation to the control of salt secretion by the rectal gland.  相似文献   

14.
Murine neuroblastoma cells (clone N1E-115) possess neurotensin receptors that mediate cyclic GMP synthesis. Because of the hypothesized relationship between phospholipid metabolism, intracellular Ca2+, and cyclic GMP synthesis, we determined with these cells the effects of neurotensin on 32P labeling of phospholipids, release of inositol phosphates, and intracellular Ca2+ (as determined with the use of Quin-2, a fluorescent probe sensitive to free Ca2+ levels). Neurotensin stimulated incorporation of 32P into phospholipids, especially phosphatidylinositol and phosphatidate. Neurotensin also stimulated the release of [3H]inositol phosphates with an EC50 of about 1 nM. Mean basal Ca2+ concentration in these cells was 134 nM and this level was increased in a rapid and dose-dependent manner by neurotensin, with an EC50 of 4 nM. Since the EC50 for neurotensin in stimulating cyclic GMP synthesis is 1.5 nM and the KD for binding of [3H]neurotensin at 0 degrees C is 11 nM, all these different effects appear to be shared proximal consequences of neurotensin receptor activation.  相似文献   

15.
1. Addition of the bivalent ionophore A23187 to synaptosomes isolated from guinea-pig brain cortex and labelled with [(32)P]phosphate in vitro or in vivo caused a marked loss of radioactivity from phosphatidyl-myo-inositol 4-phosphate (diphosphoinositide) and phosphatidyl-myo-inositol 4,5-bisphosphate (triphosphoinositide) and stimulated labelling of phosphatidate. No change occurred in the labelling of other phospholipids. 2. In conditions that minimized changes in internal Mg(2+) concentrations, the effect of ionophore A23187 on labelling of synaptosomal di- and tri-phosphoinositide was dependent on Ca(2+) and was apparent at Ca(2+) concentrations in the medium as low as 10(-5)m. 3. An increase in internal Mg(2+) concentration stimulated incorporation of [(32)P]phosphate into di- and tri-phosphoinositide, whereas lowering internal Mg(2+) decreased labelling. 4. Increased labelling of phosphatidate was independent of medium Mg(2+) concentration and apparently only partly dependent on medium Ca(2+) concentration. 5. The loss of label from di- and tri-phosphoinositide caused by ionophore A23187 was accompanied by losses in the amounts of both lipids. 6. Addition of excess of EGTA to synaptosomes treated with ionophore A23187 in the presence of Ca(2+) caused a rapid resynthesis of di- and tri-phosphoinositide and a further stimulation of phosphatidate labelling. 7. Addition of ionophore A23187 to synaptosomes labelled in vivo with [(3)H]inositol caused a significant loss of label from di- and tri-phosphoinositide, but not from phosphatidylinositol. There was a considerable rise in labelling of inositol diphosphate, a small increase in that of inositol phosphate, but no significant production of inositol triphosphate. 8. (32)P-labelled di- and tri-phosphoinositides appeared to be located in the synaptosomal plasma membrane. 9. The results indicate that increased Ca(2+) influx into synaptosomes markedly activates triphosphoinositide phosphatase and diphosphoinositide phosphodiesterase, but has little or no effect on phosphatidylinositol phosphodiesterase.  相似文献   

16.
The 'phospholipid effect' involves agonist induced breakdown of phosphatidyl inositol (PI) or its phosphorylated derivates with increased incorporation of 32P or [myo-2-3H] inositol during resynthesis. In rat pancreas pancreozymin and bethanecol resulted in the standard dose dependent increased incorporation of 32P into PI which was paralleled by increased amylase secretion. By contrast the incorporation of [myo-2-3H] inositol into PI was significantly decreased by pancreozymin whereas bethanecol had no effect. However, pancreozymin caused a 30% decrease in labelled PI irrespective of whether it was prelabelled with 32P or [myo-2-3H] inositol. Thus in rat pancreas, pancreozymin resulted in the standard agonist induced breakdown of pre-labelled PI but inhibited the incorporation [2-3H-myo] inositol during the resynthetic phase.  相似文献   

17.
M Lupu  Y Oron 《FEBS letters》1983,162(1):133-136
[3H]inositol and 32Pi were simultaneously incorporated into rat parotid phosphatidylinositol. The ratio of [3H]/32Pi incorporation dropped dramatically following stimulation with muscarinic or alpha-adrenergic agonists and returned to control values following the addition of appropriate antagonists. The drop in [3H]/32Pi ratio can be explained by a rapid increase in de- novo synthesis of phosphatidylinositol following its receptor-mediated breakdown. The change in this ratio also provided evidence for the existence of CDP-DG + inositol in equilibrium phosphatidylinositol exchange reaction in the intact tissue.  相似文献   

18.
To supplement current thin-layer chromatographic methods for separation and quantitation of plant phospholipids, an alternative method, high-performance liquid chromatography was developed. The major inositol-containing lipids from the pulvini of Samanea saman Merr. were identified as phosphatidylinositol, phosphatidylinositol phosphate, and phosphatidylinositol bisphosphate based on comigration with authentic standards on high-performance liquid chromatography and on thin-layer chromatography. The patterns of incorporation of radioactivity into the putative phosphatidylinositol and phosphatidylinositol phosphate were consistent with these identifications when pulvini were labeled with [3H]glycerol, [3H]inositol, or [32P]orthophosphate. Analysis of the products of enzymic hydrolysis, of chemical deacylation, and of `fingerprint' methanolysis of these phospholipids confirmed the identifications.  相似文献   

19.
R H Michell 《Life sciences》1983,32(18):2083-2085
All cell-surface receptors that bring about a rise in cytosol Ca2+ concentration upon stimulation appear also to provoke enhanced metabolism of inositol phospholipids. For many years, it has been thought that the initiating reaction in this response is phosphodiesterase-catalysed breakdown of phosphatidylinositol (PtdIns). However, recent experiments with hepatocytes, parotid gland and blowfly salivary gland have demonstrated very rapid breakdown of phosphatidylinositol-4, 5-bisphosphate (PtdIns4,5P2), and maybe also of PtdIns4P, in cells stimulated by Ca2+-mobilizing stimuli (V1-vasopressin, angiotensin, alpha 1-adrenergic, muscarinic cholinergic, substance P and 5-hydroxytryptamine). As with the disappearance of PtdIns that had been studied previously, this response is not Ca2+-mediated and shows a receptor occupation dose-response curve. The PtdIns 'breakdown' studied previously was probably utilization of PtdIns for resynthesis of polyphosphoinositides to replace the degraded PtdIns4,5P2. We suggest that the primary event in receptor-stimulated inositol phospholipid metabolism is phosphodiesterase attack upon PtdIns4,5P2 to yield 1,2-diacylglycerol and inositol-1,4, 5-trisphosphate, and that this is an essential coupling event in a general mechanism by which receptors mobilize Ca2+ in the cytosol of stimulated cells.  相似文献   

20.
The calcium requirement for agonist-dependent breakdown of phosphatidylinositol and polyphosphoinositides has been examined in rat cerebral cortex. The omission of added Ca2+ from the incubation medium abolished [3H]inositol phosphate accumulation from prelabelled phospholipid induced by histamine, reduced that due to noradrenaline and 5-hydroxytryptamine, but did not affect carbachol-stimulated breakdown. EC50 values for agonists were unaltered in the absence of Ca2+. Removal of Ca2+ by preincubation with EGTA (0.5 mM) abolished all responses, but complete restoration was achieved by replacement of Ca2+. The EC50 for Ca2+ for histamine-stimulated [3H]inositol phosphate accumulation was 80 microM. Noradrenaline-stimulated breakdown was antagonised by manganese (IC50 1.7 mM), but not by the calcium channel blockers nitrendipine or nimodipine (30 microM). The calcium ionophore A23187 stimulated phosphatidylinositol/polyphosphoinositide hydrolysis with an EC50 of 2 microM, and this response was blocked by EGTA. Omission of Ca2+ or preincubation with EGTA or Mn2+ (EC50 = 230 microM) greatly enhanced the incorporation of [3H]inositol into phospholipids. The IC50 for Ca2+ in inhibiting incorporation was 25 microM. The results show that different receptors mediating phosphatidylinositol/polyphosphoinositide breakdown in rat cortex have quantitatively different Ca2+ requirements, and it is suggested that rigid opinions regarding phosphatidylinositol/polyphosphoinositide breakdown as either cause or effect of calcium mobilisation in rat cortex are inappropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号