首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence of Tomato yellow leaf curl virus (TYLCV; genus Begomovirus, family Geminiviridae) in the major tomato‐growing areas of Iran was determined using TAS‐ELISA and PCR. The nucleotide sequences of the coat protein (CP) gene and intergenic region (IR) of eight Iranian isolates were determined. CP nucleotide identities among the Iranian isolates were 96–98%, and showed 94–96% identity with TYLCV‐IR [IR:Ira:98] and TYLCV‐IL [IL:Reo:86]. However, they showed low identity (68–69%) with ToLCIRV‐[IR:Ira]. Sequence analyses of IR indicated that seven Iranian isolates had sequence identity of 93–100% with each other, and 76% identity with the Jiroft isolate; identities of 75–79% with TYLCV‐IR[IR:Ira:98] were observed in every case, and 59–62% identity with ToLCIRV‐[IR:Ira]. The IR nucleotide sequences of Iranian isolates showed 92–93% identity with TYLCV‐IL[IL:Reo:86], except the Jiroft isolate (75%). The CP and IR sequence analyses suggested that eight Iranian TYLCV isolates probably differ from ToLCIRV‐[IR:Ira]. Based on IR sequence comparisons and phylogenetic analyses, the Iranian isolates were divided into two groups. The first major group (A), consists of seven virus isolates, was most closely related to TYLCV‐IL[IL:Reo:86], and relatively divergent from TYLCV‐IR [IR:Ira:98] and ToLCIRV‐[IR:Ira]. However, the Jiroft isolate from group B did not show high similarity with TYLCV‐IR[IR:Ira:98], ToLCIRV‐[IR:Ira], and TYLCV‐IL[IL:Reo:86], suggesting that the isolate may be a divergent variant. The differences are in a range that suggests different strains or species from TYLCV‐IR[IR:Ira:98] and ToLCIRV‐[IR:Ira] are probably associated with tomato yellow leaf curl disease in Iran.  相似文献   

2.
The leaf disc agroinoculation system was applied to study tomato yellow leaf curl virus (TYLCV) replication in explants from susceptible and resistant tomato genotypes. This system was also evaluated as a potential selection tool in breeding programmes for TYLCV resistance. Leaf discs were incubated with a head-to-tail dimer of the TYLCV genome cloned into the Ti plasmid ofAgrobacterium tumefaciens. In leaf discs from susceptible cultivars (Lycopersicon esculentum) TYLCV single-stranded genomic DNA and its double-stranded DNA forms appeared within 2–5 days after inoculation. Whiteflies (Bemisia tabaci) efficiently transmitted the TYLCV disease to tomato test plants following acquisition feeding on agroinoculated tomato leaf discs. This indicates that infective viral particles have been produced and have reached the phloem cells of the explant where they can be acquired by the insects. Plants regenerated from agroinfected leaf discs of sensitive tomato cultivars exhibited disease symptoms and contained TYLCV DNA concentrations similar to those present in field-infected tomato plants, indicating that TYLCV can move out from the leaf disc into the regenerating plant. Leaf discs from accessions of the wild tomato species immune to whitefly-mediated inoculation,L. chilense LA1969 andL. hirsutum LA1777, did not support TYLCV DNA replication. Leaf discs from plants tolerant to TYLCV issued from breeding programmes behaved like leaf discs from susceptible cultivars.The Hebrew University of Jerusalem, Faculty of Agriculture, Department of Field and Vegetable Crops  相似文献   

3.
Tomato is known as a highly valuable crop and grown worldwide for various uses. The cultivation and tomato production severely affected globally by several diseases caused by various pathogens. Begomoviruses causes yellow mosaic and leaf curl disease of tomato in the tropical, subtropical, temperate, and semi-arid regions. In Saudi Arabia, the tomato production adversely affected by disease caused by begomoviruses known as TYLCV and ToLCSDV. In this study, the pathogen was identified by Polymerase Chain Reaction using virus-specific primers and transmitted by whiteflies to healthy tomato seedlings. In a field survey, the tomato plants were exhibiting symptoms like viral infection. The infected leaf was randomly collected from various fields of tomato growing areas like Jeddah, Makkah, Tabuk, and Hail. The full-length viral genome was amplified by Rolling Circle Amplification technology (RCA) while betasatellites were amplified by PCR using universal betasatellites primers. The full-length viral genome (∼2.7 kb) and betasatellites (∼1.4 kb) were cloned and sequenced bi-directionally. The generated sequences were assembled and analyzed to find out the genetic variability by using bioinformatics tools and the genetic variability and phylogenetic relationships with selected begomoviruses were analyzed. The sequences showed the highest identity with an isolate of ToLCSDV and TYLCV. The nucleotide similarity and phylogenetic relationship showed the closest cluster with ToLCSDV and TYLCV. The data generated in this study elucidate that the causal organism is a variant of either TYLCV or ToLCSDV. The provided information from this study will be highly valuable for researchers and vegetable growers not only in Saudi Arabia but also in Arabian Peninsula.  相似文献   

4.

A survey was initiated to detect tomato yellow leaf curl virus (TYLCV) and identify its reservoir weed hosts in six regions (Arusha, Morogoro, Dodoma, Iringa, Kilimanjaro and Dar es Salaam) in Tanzania. Three farms were randomly selected in each region. Assessment of TYLCV incidence was done by relating the number of infected tomato plants to the total number of plants assessed along a diagonal in five quadrants measuring 4m ‐ 4m in size (one at each corner of the farm and one at the centre). Disease severity was scored on a scale of 0 to 4 (where 0 = no symptoms and 4 = very severe symptoms). Within and outside each farm, weeds showing TYLCV-like symptoms were collected and either squash-blotted, dot-blotted or both on nylon membranes. The membranes were hybridized with DIG-labelled probe synthesized for the detection of TYLCV from Sardinia (TYLCV-Sar) following standard protocols. Selected plant species were experimentally inoculated with screenhouse cultures of TYLCV representative isolates from the six regions using Bemisia tabaci to determine their host status. Results indicated that TYLCV incidence and severity were significantly higher (P = 0.05) in Dodoma region than the rest of the regions. In Iringa region, the incidence and severity of TYLCV were the lowest of all regions. TYLCV was detected in 12 of the 17 dot-blotted samples and in all the 21 squashed samples using the non-radioactively labelled riboprobes. Similarly, five plant species (Capsicum annuum, Datura stramonium, Lycopersicon esculentum, Nicotiana glutionsa and N. tabacum) tested in the screenhouse were infected by the six TYLCV isolates used. It is recommended that weeds within and outside tomato farms be removed to eliminate or reduce sources of virus inoculum. The dot and squash blot techniques are convenient for field detection of the virus, and are especially useful for the detection of early and latent infections so that management strategies can be initiated and implemented.  相似文献   

5.
During the period from August 2004 to June 2006 a serious tomato yellow leaf curl epidemic caused by both Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow leaf curl virus (TYLCS) was observed in protected tomato crops in Castrovillari, Calabria Region, in a group of greenhouses where tomato is grown hydroponically. A three years survey for reservoir weed hosts of these viruses was performed during summer period in order to identify where the viruses persist during the host-free period, interesting an area covering a ray of 500 m around the group of greenhouses. About 350 samples were collected from symptomless and symptomatic plants of the following botanic families: Graminaceae, Compositeae, Solanaceae, Portulacaceae, Malvaceae, Chenopodiaceae, Amaranthaceae, Convolvulaceae, Brassicaceae, Labiatae, Plantaginaceae, Asteraceae. Any virus presence was evaluated by DAS ELISA, using a "broad-spectrum" reagent combination detecting different Begomoviruses including TYLCSV and TYLCV. A couple of synthetic oligonucleotides allowing the amplification of the whole coat protein (CP) gene was used for PCR of ELISA positive samples in order to perform the molecular characterisation of the viral isolate responsible of the disease. RFLP analysis performed on the PCR product, 1008 bp long, showed the presence of only TYLCSV in the weeds found infected and belonging to Sonchus asper, Solanum nigrum, Datura stramonium and Cardaria draba species. Similarity analysis performed between the CP of each isolate and the TYLCSV isolate recovered within the greenhouse and responsible of the epidemic in mixed infection with a TYLCV isolate resulted in a value of 100% of identity, thus indicating that there was no variability in TYLCSV population in the surveyed area. S. asper, S. nigrum, D. stramonium and C. draba, as alternative hosts of TYLCSV and nutrient plants of the virus vector, Bemisia tabaci, were found to play an important role in virus ecology and epidemiology in the studied tomato ecosystem. No weed between those investigated has been found to be infected by TYLCV so far. To our knowledge this is the first report of S. asper and C. draba as TYLCSV hosts in natural infection.  相似文献   

6.
In transmitting plant viruses, insect vectors undergo physiological and behavioral alterations. The whitefly Bemisia tabaci is a vector of tomato yellow leaf curl virus (TYLCV), causing severe damages to various horticultural crop plants. To determine whether whitefly alteration is specific to vector species, the responses to TYLCV ingestion were compared between B. tabaci and Trialeurodes vaporariorum, a nonvector for TYLCV. The two species were reared on TYLCV‐infected and noninfected tomato, a host of TYLCV, and their longevity and fecundity were determined while rearing in either tomato or eggplant, a nonhost of TYLCV. TYLCV‐ingested B. tabaci increased their developmental rates but reduced fecundity when they were reared in either tomato or eggplant compared with those of TYLCV‐free ones. In contrast, TYLCV‐ingested T. vaporariorum did not show any of the aforementioned changes when reared on both plant species. In addition, TYLCV‐ingested B. tabaci increased their levels of three heat shock protein genes ( hsp20, hsp70, and hsp90) against thermal stress, whereas TYLCV‐ingested T. vaporariorum did not. The presence of TYLCV virions was identified in two colonies of both species via polymerase chain reaction analysis. TYLCV was detected in the whole body, saliva, and eggs of B. tabaci, while TYLCV was detected only in the whole body but not in the saliva and eggs of T. vaporariorum. The present results strongly indicated that TYLCV specifically manipulate physiological processes of the vector species, B. tabaci.  相似文献   

7.
Begomoviruses (Geminiviridae family) are characterized by their high recombination rate and a wide range of hosts, making their control difficult. In Costa Rica, various species of bipartite begomoviruses have been reported, which are Pepper golden mosaic virus (PepGMV), Tomato yellow mottle virus (ToYMoV), Tomato leaf curl Sinaloa virus (ToLCSiV) and the monopartite begomovirus Tomato yellow leaf curl virus (TYLCV). Since the TYLCV first report in Costa Rica, neither additional knowledge has been produced on how this begomovirus has spread in the country's territory nor on the distribution of the other bipartite species. A total of 429 tomato samples collected during the years 2015–2016 were used to study these aspects. Each sample was georeferenced and analysed with various techniques such as nucleic acid hybridization, polymerase chain reaction (PCR) and sequencing for the begomoviruses previously reported in Costa Rica. It was found that the presence/absence of the different species can vary, depending on the province. TYLCV is present in the six provinces analysed in this work, with a proportion from 3.7 to 86.6 per cent. Alajuela, Cartago, and Heredia are the provinces most affected by tomato-infecting begomoviruses. Fourteen different haplotypes of TYLCV were detected, but all were identified as TYLCV-IL. The distribution of TYLCV was related to the presence of the whitefly Bemisia tabaci MED, especially in the country's main tomato production areas. This information allows the phytosanitary surveillance services to develop strategies for the integrated management of the disease and to contribute data to the genetic improvement programmes of the crop.  相似文献   

8.
9.
10.
We reported the isolation and identification of 10828 putative full-length cDNAs (FL-cDNA) from an indica rice cultivar, Minghui 63, with the long-term goal to isolate all full-length cDNAs from indica genome. Comparison with the databases showed that 780 of them are new rice cDNAs with no match in japonica cDNA database. Totally, 9078 of the FL-cDNAs contained predicted ORFs matching with japonica FL-cDNAs and 6543 could find homologous proteins with complete ORFs. 53% of the matched FL-cDNAs isolated in this study had longer 5′UTR than japonica FL-cDNAs. In silico mapping showed that 9776 (90.28%) of the FL-cDNAs had matched genomic sequences in the japonica genome and 10046 (92.78%) had matched genomic sequences in the indica genome. The average nucleotide sequence identity between the two subspecies is 99.2%. A majority of FL-cDNAs (90%) could be classified with GO (gene ontology) terms based on homology proteins. More than 60% of the new cDNAs isolated in this study had no homology to the known proteins. This set of FL-cDNAs should be useful for functional genomics and proteomics studies.  相似文献   

11.
Pseudomonas syringae pv. syringae (Pss) strains were isolated from almond, apricot, peach, pear, sweet cheery and wheat in Kohgiluye and Boyer-Ahmad, Kordestan, Fras and Chaharmahal and Bakhtiari provinces of Iran. The strains were examined for host specificity, the presence of virulence genes and pathogenicity on different hosts. After inoculation of isolates, in compatible reactions bacterial populations increased within six days of inoculation and final cell numbers increased several-fold over initial inoculum levels, but in incompatible reactions, bacterial populations declined within four days of inoculation. Almond, sweet cherry and wheat isolates induced progressive necrotic symptoms on almond leaves and stems. Apricot, peach and sweet cherry isolates induced necrotic lesions when inoculated on apricot leaves. On pear leaves and stems, only the pear isolate incited pathogenic reaction and isolates from other hosts did not. The syrB gene was detected in all of the tested isolates. Almond and pear isolates did not have the syrD gene. The sypA gene was detected in the almond, peach, pear and sweet cherry isolates while the sypB gene was detected in the apricot, peach, sweet cherry and wheat isolates. Almond, apricot, pear and wheat isolates gave negative results for the detection of nit gene. The gene Ach, was detected only in the peach isolate and gene hrmA, was detected only in the wheat isolate. This study indicates that host specificity exists among different Pss strains, and genes responsible for syringomycin and syringopeptin production contribute to the virulence of Pss strains.  相似文献   

12.
The elm mosaic and golden elderberry strains of cherry leaf roll virus (CLRV) and a strain from cherry and from rhubarb were very similar in their host range, symptomatology and properties in vitro. However, only the rhubarb isolate infected rhubarb systemically and only the golden elderberry isolate infected Sambucus nigra systemically. Purified preparations of all strains contained isometric particles which sedimented as two nucleoprotein components with sedimentation coefficients of about 115 S and 128 S. The elm mosaic strain was the least stable in vitro and was the most difficult to purify. In plant-protection tests, one-way protection occurred between tomato ringspot virus and each of the four CLRV strains. However, whereas the elm mosaic, golden elderberry and the cherry strains protected against one another, they did not protect against infection with the rhubarb strain.  相似文献   

13.
During the winter 2003--2004 a serious disease was observed in protected tomato crops in Castrovillari, Reggio Calabria province, Southern Italy. Symptoms consisted in marginal leaf yellowing, leaf curling, plant stunting, flower abortion. The disease was detected in a group of greenhouses (about 10ha) where several tomato cultivars were grown hydroponically. The highest incidence of infection (60-100%) was observed in tomatoes grafted on Beaufort DRS tomato rootstock. Since the symptoms were similar to those described for Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow leaf curl virus (TYLCV), detection assays for these viruses were used. In DAS-ELISA positive results were obtained with a abroad-spectrums reagent combination (distributed by Bioreba AG) detecting TYLCV, TYLCSV, and other begomoviruses. When DNA probes were used in tissue print assays, positive reactions were obtained for TYLCSV, but not for TYLCV. The two probes consisted of digoxigenin-labelled DNAs representing the coat protein gene of either TYLCSV or TYLCV. Attempts to isolate the viral agent by mechanical inoculation failed, except in few cases where Potato virus Y and Tobacco mosaic virus were identified following transmission from symptomatic plants to herbaceous indicatorpplants. By contrast, grafting onto tomato seedlings always successfully transmitted the disease. In the Castrovillari area TYLCSV was not reported before. The rootstocks that nurseries used for grafting were obtained from Sicily, where the disease is endemic and both TYLCSV and TYLCV are widespread. Probably the grafted plantlets represented the primary source of infection from which subsequent diffusion by way of the vector Bemisia tabaci followed. In fact the vector had previously been detected in both the glasshouse-grown and open field tomato crops in Calabria region. TYLCV was previously reported in a different area of Calabria in 1991, but apparently it was an occasional outbreak, and B. tabaci was not detected. Since in the Castrovillari area surveyed in the present study tomato is grown throughtout the year in protected crops, the whitefly vector of the virus is present, and some natural hosts of the virus are found, it is feared that TYLCSV may become endemic, as already happened in Sicily, Sardinia, and Spain several years ago. In Spain and Sicily TYLCV, together with TYLCSV, was reported as the causal agent of very severe tomato crop losses. Therefore the danger exists that also TYLCV will reach this area, furthermore complicating the management of tomato crops.  相似文献   

14.
The incidence of curly top disease on cultivated plants and weeds was investigated in Kerman Province (southeastern Iran) from October 2003 to November 2004. A total of 1186 samples were collected in fields of sugar beet and other crops as well as within commercial plastic houses. Curtovirus infection of four field crops, three vegetables and 11 weeds was verified by indirect enzyme‐linked immunosorbent assay (ELISA) using a polyclonal antibody. An undescribed curtovirus, tentatively designated Iranian beet curly top virus (IBCTV), was isolated from three symptomatic beet samples collected randomly in widely separated regions of south‐eastern, southern and central Iran and used for molecular studies. A 672 bp segment of the coat protein (CP) gene of each isolate was amplified by PCR and sequenced. The results showed that the three isolates shared 98.5–98.7% nucleotide homology with each other but only 72.1–76.5% with other members of the genus Curtovirus. IBCTV was also detected by PCR using specific primers in other samples of sugar beet, tomato, spinach, turnip and several weed species collected in different parts of Iran. These results indicated that IBCTV is the dominant curtovirus in Iran.  相似文献   

15.
Tomato yellow leaf curl virus (TYLCV) is devastating to tomato (Solanum lycopersicum) crops and resistant cultivars are highly effective in controlling the disease. The breeding line TY172, originating from Solanum peruvianum, is highly resistant to TYLCV. To map quantitative trait loci (QTLs) controlling TYLCV resistance in TY172, appropriate segregating populations were analyzed using 69 polymorphic DNA markers spanning the entire tomato genome. Results show that TYLCV resistance in TY172 is controlled by a previously unknown major QTL, originating from the resistant line, and four additional minor QTLs. The major QTL, we term Ty-5, maps to chromosome 4 and accounts for 39.7–46.6% of the variation in symptom severity among segregating plants (LOD score 33–35). The minor QTLs, originated either from the resistant or susceptible parents, were mapped to chromosomes 1, 7, 9 and 11, and contributed 12% to the variation in symptom severity in addition to Ty-5.  相似文献   

16.
A rifampicin-nalidixic acid mutant of Pseudomonas viridiflava (PV) was studied in the field and greenhouse with respect to its epiphytic survival on the roots and foliage of a susceptible (FM 6203) and resistant (Ontario 7710) tomato cultivar and 16 weed species. In the field, populations varied between years, which was attributed to differences in environmental conditions. Hot, dry conditions caused rapid decline or elimination of populations. Some hosts were more conducive than others in promoting epiphytic growth, and generally, roots were better survival sites than foliage. Some hosts such as johnsongrass, lambsquarters, pigweed, prickly sida, and red sorrel had no detectable populations of PV on foliage 2 weeks after inoculation. (Plants had been misted with a 108 cfu/ml suspension until run off occurred.) PV was recovered at week 4 on the foliage of the two tomato cultivars, beggarweed, jimsonweed, morning glory, smooth vetch, and wild mustard, and was recovered until week 16 on roots of buckhorn plantain in the field and for the same period on the ground cherry in the field and greenhouse. In scanning electron microscopy studies, PV was observed to survive as microcolonies in depressions between epidermal cells, around trichomes, along veins, and sometimes around stomates of tomato and beggarweed. Bacterial cells sometimes were held together and to the leaf surface by fibril-like strands. These studies show that PV does have an epiphytic stage on both tomato and certain weed species. However, the epidemiological significance of the epiphytic stage is probably dependent on environmental conditions.  相似文献   

17.
Fusarium oxysporum, the causal agent of vascular wilt disease, affects a wide range of plant species and can produce disseminated infections in humans. F. oxysporum f. sp. lycopersici isolate FGSC 9935 causes disease both on tomato plants and immunodepressed mice, making it an ideal model for the comparative analysis of fungal virulence on plant and animal hosts. Here we tested the ability of FGSC 9935 to cause disease in the greater wax moth Galleria mellonella, an invertebrate model host that is widely used for the study of microbial human pathogens. Injection of living but not of heat-killed microconidia into the hemocoel of G. mellonella larvae resulted in dose-dependent killing both at 30 °C and at 37 °C. Fluorescence microscopy of larvae inoculated with a F. oxysporum transformant expressing GFP revealed hyphal proliferation within the hemocoel, interaction with G. mellonella hemocytes, and colonization of the killed insects by the fungus. Fungal gene knockout mutants previously tested in the tomato and immunodepressed mouse systems displayed a good correlation in virulence between the Galleria and the mouse model. Thus, Galleria represents a useful non-vertebrate infection model for studying virulence mechanisms of F. oxysporum on animal hosts.  相似文献   

18.
Elevation in atmospheric CO2 concentration broadly affects plant phenology and physiology, and these effects may alter the performance of plant viruses. The effects of elevated CO2 on the susceptibility of tomato plants to Tomato yellow leaf curl virus (TYLCV) were examined for two successive years in open top chambers (OTC) in the field. We experimentally tested the hypothesis that elevated CO2 would reduce the incidence and severity of TYLCV on tomato by altering plant defence strategies. Our results showed that elevated CO2 decreased TYLCV disease incidence (by 14.6% in 2009 and 11.8% in 2010) and decreased disease severity (by 20.0% in 2009 and 10.4% in 2010). Elevated CO2 also decreased the level of TYLCV coat protein in tomato leaves. Regardless of virus infection, elevated CO2 increased plant height and aboveground biomass. Additionally, elevated CO2 increased the leaf C:N ratio of tomato, but decreased soluble protein content in leaves. Notably, elevated CO2 increased the salicylic acid (SA) level in uninfected and infected plants. In contrast, elevated CO2 reduced jasmonic acid (JA) in uninfected plants while it increased JA and abscisic acid (ABA) in virus‐infected plants. Furthermore, combined exogenous SA and JA application enhanced resistance to TYLCV more than application of either SA or JA alone. Our results suggest that the modulated antagonistic relationship between SA and JA under elevated CO2 makes a great contribution to increased tomato resistance to TYLCV, and the predicted increases in tomato productivity may be enhanced by reduced plant virus susceptibility under projected rising CO2 conditions.  相似文献   

19.
Macroautophagy/autophagy plays an important role against pathogen infection in mammals and plants. However, little has been known about the role of autophagy in the interactions of insect vectors with the plant viruses, which they transmit. Begomoviruses are a group of single-stranded DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci in a circulative manner. In this study, we found that the infection of a begomovirus, tomato yellow leaf curl virus (TYLCV) could activate the autophagy pathway in the Middle East Asia Minor 1 (MEAM1) species of the B. tabaci complex as evidenced by the formation of autophagosomes and ATG8-II. Interestingly, the activation of autophagy led to the subsequent degradation of TYLCV coat protein (CP) and genomic DNA. While feeding the whitefly with 2 autophagy inhibitors (3-methyladenine and bafilomycin A1) and silencing the expression of Atg3 and Atg9 increased the viral load; autophagy activation via feeding of rapamycin notably decreased the amount of viral CP and DNA in the whitefly. Furthermore, we found that activation of whitefly autophagy could inhibit the efficiency of virus transmission; whereas inhibiting autophagy facilitated virus transmission. Taken together, these results indicate that TYLCV infection can activate the whitefly autophagy pathway, which leads to the subsequent degradation of virus. Furthermore, our report proves that an insect vector uses autophagy as an intrinsic antiviral program to repress the infection of a circulative-transmitted plant virus. Our data also demonstrate that TYLCV may replicate and trigger complex interactions with the insect vector.  相似文献   

20.
Encarsia formosa Gahan is a solitary endoparasitoid that is commercially reared and released for augmentative biological control of whiteflies including Bemisia tabaci (Gennadius). Bemisia tabaci biotypes B and Q are two most invasive species that greatly reduce crop yields in China by feeding on plant sap and by transmitting Tomato Yellow Leaf Curl Virus (TYLCV). The effects of TYLCV infection of tomato on E. formosa foraging on B. tabaci B and Q are unknown. In Y-tube olfactometer assays in the present study, E. formosa significantly preferred TYLCV-infected tomato plants over TYLCV-free plants. The wasp females also significantly preferred TYLCV-infected tomato plants infested with 3rd-instar nymphs of B. tabaci biotype Q over TYLCV-free plants with biotype Q nymphs. However, no significant differences were observed when B. tabaci biotype B was infested on tomato plants. The oviposition bioassays confirmed that TYLCV infection on tomato plants resulted in the recruitment of parasitoids. These results indicate that TYLCV-infection of tomato increase the foraging of E. formosa on B. tabaci, as differs on the B and Q biotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号