首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tetrasaccharide corresponding to a sequence of the rhamnogalacturonan I backbone has been synthesized. This synthesis relies on only two protected monosaccharides and proceeds through a common disaccharide intermediate. Synthesis of this tetrasaccharide has been designed to allow for the addition of branching elements at the 4-positions of the rhamnosyl units, or further chain elongation at the 2-position.  相似文献   

2.
Rhamnogalacturonan II (RG-II) is a structurally complex cell wall pectic polysaccharide. Despite its complexity, both the structure of RG-II and its ability to dimerise via a borate diester are conserved in vascular plants suggesting that RG-II has a fundamental role in primary cell wall organisation and function. The selection and analysis of new mutants affected in RG-II formation represents a promising strategy to unravel these functions and to identify genes encoding enzymes involved in RG-II biosynthesis. In this paper, a novel fingerprinting strategy is described for the screening of RG-II mutants based on the mild acid hydrolysis of RG-II coupled to the analysis of the resulting fragments by mass spectrometry. This methodology was developed using RG-II fractions isolated from citrus pectins and then validated for RG-II isolated from the Arabidopsis mur1 mutant and irx10 irx10-like double mutant.  相似文献   

3.
Rhamnogalacturonan II (RG II) can play an important role during processing of berries due to its enzyme resistance and its possible role as a pectic cross-linker. This article describes the presence of RG II in cell walls, in juice and in press cake of bilberries and black currants. RG II was identified and quantified via its diagnostic sugar residues. RG II, which was released from homogalacturonan, was probably present in its dimeric form in muro. Juice contained the free RG II dimer, while from press cake dimeric RG II was released by enzymatic degradation of homogalacturonan. A higher amount of RG II was present in juice than in press cake. During juice processing a cross-linker RG II might improve gel formation, which hinders the processability of berries. In addition, enzymes used during juice processing release dimeric RG II from pectin molecules and accumulate RG II in the juice.  相似文献   

4.
《Carbohydrate research》1986,146(2):279-305
Rhamnogalacturonan II (RG-II) is a structurally complex pectic (d-galactosyl-uronic acid-rich) polysaccharide that is present in the primary (growing) cell-walls of higher plants. RG-II is composed of ∼60 glycosyl residues. The isolation and structural characterization of 23 oligosaccharide fragments of the residue of RG-II that remained after removal of hepta- and di-saccharides by partial hydrolysis with acid are reported. In order to obtain the oligosaccharide fragments characterized herein, the carboxyl groups of RG-II were dideuterio-reduced, and the carboxyl-reduced polysaccharide was per-O-methylated. The per-O-methylated polysaccharide was fragmented by partial hydrolysis with acid, producing partially O-methylated oligosaccharides. These derivatized oligosaccharides were reduced, to afford a mixture of partially O-methylated oligoglycosyl-alditols, which was then per-O-methylated. The structures of the resulting per-O-methylated oligoglycosylalditols were determined by chemical-ionization mass spectrometry, electron-impact mass spectrometry, fast-atom-bombardment mass spectrometry, 1H-n.m.r. spectroscopy, and analysis of corresponding, partially O-acetylated, partially O-methylated alditols. Seventeen of the oligosaccharides isolated from RG-II were parts of a single heptasaccharide, namely.  相似文献   

5.
Monomeric rhamnogalacturonan II (mRG-II) was isolated from red wine and the reducing-end galacturonic acid of the backbone converted to L-galactonic acid by treatment with NaBH4. The resulting product (mRG-II'ol) was treated with a cell-free extract from Penicillium daleae, a fungus that has been shown to produce RG-II-fragmenting glycanases. The enzymatically generated products were fractionated by size-exclusion and anion-exchange chromatographies and the quantitatively major oligosaccharide fraction isolated. This fraction contained structurally related oligosaccharides that differed only in the presence or absence of a single Kdo residue. The Kdo residue was removed by acid hydrolysis and the resulting oligosaccharide then characterized by 1- and 2D 1H NMR spectroscopy, ESMS, and by glycosyl-residue and glycosyl-linkage composition analyses. The results of these analyses provide evidence for the presence of at least two structurally related oligosaccharides in the ratio approximately 6:1. The backbone of these oligosaccharides is composed of five (1-->4)-linked alpha-D-GalpA residues and a (1-->3)-linked L-galactonate. The (1-->4)-linked GalpA residue adjacent to the terminal non-reducing GalpA residue of the backbone is substituted at O-2 with an apiosyl-containing side chain. Beta3-L-Araf-(1-->5)-beta-D-DhapA is likely to be linked to O-3 of the GalpA residue at the non-reducing end of the backbone in the quantitatively major oligosaccharide and to O-3 of a (1-->4)-linked GalpA residue in the backbone of the minor oligosaccharide. Furthermore, the results of our studies have shown that the enzymically generated aceryl acid-containing oligosaccharide contains an alpha-linked aceryl acid residue and a beta-linked galactosyl residue. Thus, the anomeric linkages of these residues in RG-II should be revised.  相似文献   

6.
Monoclonal antibodies were raised against rhamnogalacturonan I backbone, a pectin domain, using Arabidopsis thaliana seed mucilage-derived rhamnogalacturonan I oligosaccharides—BSA conjugates. Two monoclonal antibodies, designated INRA-RU1 and INRA-RU2, selected for further characterization, were specific for the backbone of rhamnogalacturonan I, displaying no binding activity against the other pectin domains i.e. homogalacturonans, galactans or arabinans. A range of oligosaccharides was prepared by enzymatic digestion of rhamnogalacturonan I isolated from Arabidopsis thaliana seed mucilage and from sugar beet pectin, purified by low-pressure chromatography and characterized by high-performance anion-exchange chromatography and mass spectrometry. These rhamnogalacturonan I oligomers were used to characterize the binding site of the two monoclonal antibodies by competitive inhibition. Both INRA-RU1 and INRA-RU2 showed maximal binding to the [→2)-α-l-rhamnosep-(1→4)-α-d-galacturonic acid p-(1→]7 structural motif but differed in their minimum binding requirement. INRA-RU2 required at least two disaccharide (rhamnose–galacturonic acid) repeats for the antibody to bind, while INRA-RU1 required a minimum of six disaccharide repeats. Furthermore, the binding capacity of INRA-RU1 decreased steeply as the number of disaccharide repeats go beyond seven. Each of these antibodies reacted with hairy regions isolated from sugar beet pectin. Immunofluorescence microscopy indicated that both antibodies can be readily used to detect rhamnogalacturonan I epitopes in various cell wall samples.  相似文献   

7.
A heptasaccharide was released from the plant cell-wall, pectic polysaccharide rhamnogalacturonan II by selective acid hydrolysis of the glycosidic linkages of apiosyl residues. The heptasaccharide was purified to homogeneity by gel filtration and anion-exchange chromatography. Some of the heptasaccharide molecules were found to be mono- and some di-O-acetylated, but the location of the acetic ester groups was not determined. The heptasaccharide was found to have the following structure, where AceA = an aceryl (3-C-carboxy-5-deoxy-l-xylosyl) residue, and Api = an apiose residue.
  相似文献   

8.
Arabidopsis thaliana mur1 is a dwarf mutant with altered cell-wall properties, in which l-fucose is partially replaced by l-galactose in the xyloglucan and glycoproteins. We found that the mur1 mutation also affects the primary structure of the pectic polysaccharide rhamnogalacturonan II (RG-II). In mur1 RG-II a non-reducing terminal 2-O-methyl l-galactosyl residue and a 3,4-linked l-galactosyl residue replace the non-reducing terminal 2-O-methyl l-fucosyl residue and the 3,4-linked l-fucosyl residue, respectively, that are present in wild-type RG-II. Furthermore, we found that a terminal non-reducing l-galactosyl residue, rather than the previously reported d-galactosyl residue, is present on the 2-O-methyl xylose-containing side chain of RG-II in both wild type and mur1 plants. Approximately 95% of the RG-II from wild type and mur1 plants is solubilized as a high-molecular-weight (>100 kDa) complex, by treating walls with aqueous potassium phosphate. The molecular mass of RG-II in this complex was reduced to 5–10 kDa by treatment with endopolygalacturonase, providing additional evidence that RG-II is covalently linked to homogalacturonan. The results of this study provide additional information on the structure of RG-II and the role of this pectic polysaccharide in the plant cell wall.Abbreviations AIR Alcohol-insoluble residue - d-Gal d-Galactosyl - EPG Endopolygalacturonase - ESI–MS Electrospray ionization mass spectrometry - GC–MS Gas chromatography–mass spectrometry - 1H-NMR Proton nuclear magnetic resonance spectroscopy - l-Fuc l-Fucosyl - l-Gal l-Galactosyl - 2-O-MeFuc 2-O-Methyl l-fucosyl - 2-O-MeGal 2-O-Methyl l-galactosyl - 2-O-MeXyl 2-O-Methyl d-xylosyl - MWCO Molecular weight cut-off - RG-II Rhamnogalacturonan II - ppm Parts per million - RI Refractive index - SEC Size-exclusion chromatography - TFA Trifluoroacetic acid - WT Wild type  相似文献   

9.
A 2-O-methylfucosyl-containing heptasaccharide was released from red wine rhamnogalacturonan II (RG-II) by acid hydrolysis of the glycosidic linkage of the aceryl acid residue (AceA) and purified to homogeneity by size-exclusion and high-performance anion-exchange chromatographies. The primary structure of the heptasaccharide was determined by glycosyl-residue and glycosyl-linkage composition analyses, ESIMS, and by 1H and 13C NMR spectroscopy. The NMR data indicated that the pyranose ring of the 2,3-linked L-arabinosyl residue is conformationally flexible. The L-Arap residue was confirmed to be alpha-linked by NMR analysis of a tetraglycosyl-glycerol fragment, [alpha-L-Arap-(1-->4)-beta-D-Galp-(1-->2)-alpha-L-AcefA-(1-->3)-beta-L-Rhap-(1-->3)-Gro], generated by Smith degradation of RG-II. Our data together with the results of a previous study,(1) establish that the 2-O-Me Fuc-containing nonasaccharide side chain of wine RG-II has the structure (Api [triple bond] apiose): [see structure]. Data are presented to show that in Arabidopsis RG-II the predominant 2-O-MeFuc-containing side chain is a mono-O-acetylated heptasaccharide that lacks the non-reducing terminal beta-L-Araf and the alpha-L-Rhap residue attached to the O-3 of Arap, both of which are present on the wine nonasaccharide.  相似文献   

10.
β -1,4-Galactan galactosyltransferase (GT) activity was solubilized from potato microsomal membranes in the presence of 78 m M 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulphonic acid. The solubilized GT activity transferred 14[C]galactose from UDP-14[C]galactose onto the acceptor-substrates composed of rhamnogalacturonan (RG) with short galactan chains (RG-A, approximately 1.2 MDa, mol% Gal/Rha = 0.7; RG-B, approximately 21 kDa, mol% Gal/Rha = 1.2). However, shorter RG containing short galactan chains (approximately 2 kDa and 1.2 kDa), RG oligomers without galactosyl-residues, galactan, and galactooligomers did not act as acceptor-substrates. Optimal pH for 14[C] incorporation onto RG-A and RG-B was around 5.6 and 7.5, respectively. The 14[C]-labelled products synthesized upon RG-A and RG-B could be digested with a RG specific lyase into smaller RG fragments. 1,4- β - Endog alactanase could not digest the former product, whereas the latter product was digested to 14[C]galactobiose and 14[C]galactose. This demonstrates that at least two GT activities were solubilized from potato microsomal membranes. One had optimal pH around 5.6 to transfer galactosyl residues onto RG-A, whereas the other had optimal pH around 7.5 to transfer galactosyl residues onto RG-B. Both synthesized galactan attached to the RG backbone of RG-A and RG-B, and the galactan synthesized onto the RG-B acceptor was 1,4- β -linked.  相似文献   

11.
《Carbohydrate research》1985,138(1):109-126
3-Deoxy-d-manno-2-octulosonic acid (KDO), a sugar previously presumed to occur only as a glycosyl residue in polysaccharides produced by Gram-negative bacteria, was found to be a component of the cell walls of higher plants. In the form of the disaccharide α-l-Rhap-(1→5)-d-KDO, KDO was released by mild hydrolysis with acid from the purified cell wall polysaccharide rhamnogalacturonan II. KDO was shown to be present in purified cell walls of several plants, including dicots, a monocot, and a gymnosperm. Improved methods for detecting and quantitating KDO residues in polysaccharides were developed during this investigation.  相似文献   

12.
L-galactose (L-Gal), a monosaccharide involved in L-ascorbate and rhamnogalacturonan II (RG-II) biosynthesis in plants, is produced in the cytosol by a GDP-D-mannose 3,5-epimerase (GME). It has been recently reported that the partial inactivation of GME induced growth defects affecting both cell division and cell expansion (Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F., Bouchet, B., Faurobert, M., Gouble, B., Page, D., Garcia, V., Petit, J., Stevens, R., Causse, M., Fernie, A. R., Lahaye, M., Rothan, C., and Baldet, P. (2009) Plant J. 60, 499-508). In the present study, we show that the silencing of the two GME genes in tomato leaves resulted in approximately a 60% decrease in terminal L-Gal content in the side chain A of RG-II as well as in a lower capacity of RG-II to perform in muro cross-linking. In addition, we show that unlike supplementation with L-Gal or ascorbate, supplementation of GME-silenced lines with boric acid was able to restore both the wild-type growth phenotype of tomato seedlings and an efficient in muro boron-mediated cross-linking of RG-II. Our findings suggest that developmental phenotypes in GME-deficient lines are due to the structural alteration of RG-II and further underline the crucial role of the cross-linking of RG-II in the formation of the pectic network required for normal plant growth and development.  相似文献   

13.
Rhamnogalacturonan II (RG-II) is a structurally complex, low molecular weight pectic polysaccharide that is released from primary cell walls of higher plants by treatment with endopolygalacturonase and is chromatographically purified after alkaline deesterification. A recombinant monovalent antibody fragment (Fab) that specifically recognizes RG-II has been obtained by selection from a phage display library of mouse immunoglobulin genes. By itself, RG-II is not immunogenic. Therefore, mice were immunized with a neoglycoprotein prepared by covalent attachment of RG-II to modified BSA. A cDNA library of the mouse IgG1/kappa antibody repertoire was constructed in the phage display vector pComb3. Selection of antigen-binding phage particles resulted in the isolation of an antibody Fab, CCRC-R1, that binds alkali-treated RG-II with high specificity. CCRC-R1 binds an epitope found primarily at sites proximal to the plasma membrane of suspension-cultured sycamore maple cells. In cells deesterified by alkali, CCRC-R1 labels the entire wall, suggesting that the RG-II epitope recognized by CCRC-R1 is masked by esterification in most of the wall and tha such RG-II esterification is absent near the plasma membrane.  相似文献   

14.
Structural characteristics of pectic substances extracted from soybean meal cell walls (water unextractable solids) with a chelating agent-containing buffer (0.05M 1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) and 0.05M NH(4)-oxalate in 0.05M NaOAc buffer) were studied. The arabinogalactans present as side chains to the rhamnogalacturonan backbone were largely removed by enzymatic hydrolysis using endo-galactanase, exo-galactanase, endo-arabinanase, and arabinofuranosidase B. The remaining pectic backbone appeared to be resistant to enzymatic degradation by pectolytic enzymes. After partial acid hydrolysis of the isolated pectic backbone, one oligomeric and two polymeric populations were obtained by size-exclusion chromatography. Monosaccharide and linkage analyses, enzymatic degradation, and NMR spectroscopy of these populations showed that the pectic substances in the original extract contain both rhamnogalacturonan and xylogalacturonan regions, while homogalacturonan is absent.  相似文献   

15.
A stereocontrolled synthesis of the model compound for an anti-ulcer active polysaccharide (Bupleuran 2IIc) is described. Glycosidation of the disaccharide acceptor, 2-O-acetyl-3-O-benzyl-4-O-(p-methoxybenzyl)-alpha-L-rhamnopyranosyl-(1-- >4)-2,3,6-tri-O-benzyl-alpha-D-galactopyranosyl trichloroacetimidate, with the disaccharide receptor, allyl 3,4-di-O-benzyl-alpha-L-rhamnopyranosyl-(1-->4)-2,3,6-tri-O-benzyl-beta- D-galactopyranoside, using silver triflate (AgOTf) as a promoter gave the desired tetrasaccharide derivative, which was transformed into the acidic tetrasaccharide, corresponding to a segment of the rhamnogalacturonan (Bupleuran 2IIc) polysaccharide, propyl alpha-L-Rha-(1-->4)-alpha-D-GalA-(1-->2)-alpha-L-Rha-(1-->4)-beta-D-GalA , via removal of the corresponding ether and ester protecting groups, followed by oxidation.  相似文献   

16.
Plant cell walls are complex configurations of polysaccharides that fulfil a diversity of roles during plant growth and development. They also provide sets of biomaterials that are widely exploited in food, fibre and fuel applications. The pectic polysaccharides, which comprise approximately a third of primary cell walls, form complex supramolecular structures with distinct glycan domains. Rhamnogalacturonan I (RG–I) is a highly structurally heterogeneous branched glycan domain within the pectic supramolecule that contains rhamnogalacturonan, arabinan and galactan as structural elements. Heterogeneous RG–I polymers are implicated in generating the mechanical properties of cell walls during cell development and plant growth, but are poorly understood in architectural, biochemical and functional terms. Using specific monoclonal antibodies to the three major RG–I structural elements (arabinan, galactan and the rhamnogalacturonan backbone) for in situ analyses and chromatographic detection analyses, the relative occurrences of RG–I structures were studied within a single tissue: the tobacco seed endosperm. The analyses indicate that the features of the RG–I polymer display spatial heterogeneity at the level of the tissue and the level of single cell walls, and also heterogeneity at the biochemical level. This work has implications for understanding RG–I glycan complexity in the context of cell‐wall architectures and in relation to cell‐wall functions in cell and tissue development.  相似文献   

17.
Soybean soluble polysaccharides (SSPS) extracted from soybean cotyledons are acidic polysaccharides and have a pectin-like structure. The results of a structural analysis of SSPS by using polygalacturonase (PGase) and rhamnogalacturonase (RGase) clarified that the main backbone consisted of galacturonan (GN) and rhamnogalacturonan (RG), which were composed of the diglycosyl repeating unit, -4)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-. The side chains of beta-1,4-galactans, branched with fucose and arabinose residues, were linked to the C-4 side of rhamnose residues in the RG regions. The degree of polymerization (dps) of GN, which linked the RG regions together, was estimated to be about 4-10 residues, and some were modified with xylose residues on the C-3 side of the galacturonates. The dps of GN at the reducing end of SSPS was estimated to be about 7-9 residues. Moreover, the fragment of the basic structure of the RG region, -[4)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-]2-, some of which had long-chain beta-1,4-galactans branched on the C-4 side of rhamnose residues, were liberated from SSPS by the RGase treatment. The dps of the galactan side chain was estimated to be about 43-47 residues by an analysis of the digestion products from the beta-galactosidase treatment.  相似文献   

18.
The improved syntheses of methyl 2-O-acetyl-3-O-benzyl-alpha-L-rhamnopyranoside (12) and 1,2-di-O-acetyl-3-O-benzyl-alpha-L-rhamnopyranose (15), which were used as glycosyl acceptor and donor, respectively, are described. Glycosylation of the O-4 position of both rhamnose derivatives with 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl bromide (26) provided disaccharides 27 and 29. After partial deprotection of 27 and coupling of the resulting 28 with disaccharide 19, tetrasaccharide 31 was obtained. Furthermore, transforming of 29 into the corresponding bromide 30 and coupling with galacturonates 16 and 32 provided trisaccharides 33 and 34, respectively, which could be regarded as building blocks of ramified rhamnogalacturonan fragments. The preparation of tetra- (21) and hexasaccharide (25) of rhamnogalacturonan I is reported to demonstrate the feasibility of the synthesis of larger pectin fragments using the modular design principle with this type of building blocks.  相似文献   

19.
Conformational behavior of the polysaccharide backbone of murein   总被引:1,自引:0,他引:1  
The energetically possible conformations for the alternating heteropolysaccharide backbone of murein, consisting of N-acetylglucosamine and N-acetylmuramic acid, were calculated using an empirical approach. The calculations were carried out for regular as well as for random-chain polymers, resulting in a model for the saccharide strands featuring extended chains with a length increment of 0.98–1.02 nm per disaccharide unit and peptide attachment sites at every second saccharide residuum pointing into all directions with propagation angles of 80–100° between consecutive sites.  相似文献   

20.
Structural studies of the pectic polysaccharide from duckweed Lemna minor L   总被引:7,自引:0,他引:7  
The pectic polysaccharide of duckweed Lemna minor L. termed lemnan (LM) was shown to contain the ramified, "hairy" region. Using partial acid hydrolysis and Smith degradation followed by NMR spectroscopy of the fragments obtained, some structural features of the hairy region of LM were elucidated. Partial acid hydrolysis of LM afforded the crude polysaccharide fraction LMH that was separated into two polysaccharide fractions: LMH-1 and LMH-2. In addition, the oligosaccharide fraction LMH-3 contained 97% D-apiose was obtained from the supernatant. A further more rigorous acidic hydrolysis of LMH led to the crude polysaccharide fraction LMHR which was separated in to two fractions: LMHR-1 and LMHR-2. Smith degradation of LMH afforded the polysaccharide fragment LMHS differed in low contents of apiose residues. Unfortunately, NMR-spectroscopy failed to provide significant evidence concerning the structure of LMH-1 due to the complexity of the macromolecule. The structure of the 1H/13C-NMR spectroscopy including the correlation 2D NMR spectroscopy. As a result, alpha-1,4-D-galactopyranosyluronan was confirmed to be the main constituent of the LM backbone. In addition, the ramified, "hairy" region of the macromolecule appeared to contain segments consisting of residues of terminal and beta-1,5-linked apiofuranose, terminal and alpha-1,5-linked arabinofuranose, terminal and beta-1,3- and beta-1,4- linked galactopyranose, the terminal and beta-1,4-linked xylopyranose, and beta-1,4-linked 2-mono-O-methyl xylopyranose. Analytical and NMR-spectral data of LMHS confirmed the presence of considerable amounts of the non-oxidized of 1,4-linked D-galactopyranosyl uronic acid residues. Thus, some side chains of the ramified region of lemnan appeared to attach to D-galactopyranosyl uronic acid residues of the backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号