首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The purpose of this study is to investigate influences of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Tall oil resinic acids were reacted with MgO and MoO(2) stoichiometrically for the production of metal-based fuel additives (combustion catalysts). The metal-based additives were added into tall oil biodiesel (B60) at the rate of 4 micromol/l, 8 micromol/l and 12 micromol/l for preparing test fuels. In general, both of the metal-based additives improved flash point, pour point and viscosity of the biodiesel fuel, depending on the rate of additives. A single cylinder DI diesel engine was used in the tests. Engine performance values did not change significantly with biodiesel fuels, but exhaust emission profile was improved. CO emissions and smoke opacity decreased by 56.42% and by 30.43%, respectively. In general, low NO(x) and CO(2) emissions were measured with the biodiesel fuels.  相似文献   

2.

Life cycle assessment (LCA) of indigenous freshwater microalgae, Scenedesmus dimorphus, cultivation in open raceway pond and its conversion to biodiesel and biogas were carried out. The LCA inventory inputs for the biogas scenario was entirely based on primary data obtained from algal cultivation (in pilot scale raceway pond), harvesting, and biogas production; while only the downstream processing involved in biodiesel production namely drying, reaction and purification were based on secondary data. Overall, eight scenarios were modeled for the integrated process involving: algae-based CO2 capture and downstream processing scenarios for biodiesel and biogas along with impact assessment of nutrient addition and extent of recycling in a life cycle perspective. The LCA results indicated a huge energy deficit and net CO2 negative in terms of CO2 capture for both the biodiesel and biogas scenarios, majorly due to lower algal biomass productivity and higher energy requirements for culture mixing. The sensitivity analysis indicated that variability in the biomass productivity has predominant effect on the primary energy demand and global warming potential (GWP, kg CO2 eq.) followed by specific energy consumption for mixing algal culture. Furthermore, the LCA results indicated that biogas conversion route from microalgae was more energy efficient and sustainable than the biodiesel route. The overall findings of the study suggested that microalgae-mediated CO2 capture and conversion to biodiesel and biogas production can be energy efficient at higher biomass productivity (> 10 g m−2 day−1) and via employing energy-efficient systems for culture mixing (< 2 W m−3).

  相似文献   

3.
In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.  相似文献   

4.
In this study, the combustion characteristics and emissions of two different petroleum diesel fuels (No. 1 and No. 2) and biodiesel from soybean oil were compared. The tests were performed at steady state conditions in a four-cylinder turbocharged DI diesel engine at full load at 1400-rpm engine speed. The experimental results compared with No. 2 diesel fuel showed that biodiesel provided significant reductions in PM, CO, and unburned HC, the NO(x) increased by 11.2%. Biodiesel had a 13.8% increase in brake-specific fuel consumption due to its lower heating value. However, using No. 1 diesel fuel gave better emission results, NO(x) and brake-specific fuel consumption reduced by 16.1% and 1.2%, respectively. The values of the principal combustion characteristics of the biodiesel were obtained between two petroleum diesel fuels. The results indicated that biodiesel may be blended with No. 1 diesel fuel to be used without any modification on the engine.  相似文献   

5.
The biodiesel processor was developed for the production of biodiesel from non-edible oil of jatropha and karanj. The newly developed biodiesel processor is suitable for farmers in village level biodiesel production. The biodiesel processor was capable of producing 15 kg biodiesel per batch in 1.5 h at reaction temperature of 60°C. The biodiesel was produced from raw jatropha and karanj oil, and its blends with diesel were tested for power generation in a 7.5-kVA diesel engine generator set. The fuel properties, namely, kinematic viscosity and specific gravity, were found within the limits of Bureau of Indian Standards specifications. The overall efficiency of the generator for 4,500 W loading condition of jatropha- and karanj-biodiesel-blended fuel were recorded in the range of 21–23% and 24–27%, respectively. The overall efficiency of the generator for 6,000 W loading conditions was improved for jatropha and karanj biodiesel blends and were found in the range of 31–33% and 33–39%, respectively. Biodiesel blends B80 and pure biodiesel of karanj produced more power, and maximum overall efficiency was recorded as compared with diesel fueled generator. The overall efficiency on jatropha-biodiesel-blended fuel were found less than the diesel-fueled generator. The biodiesel processor based on alkali-catalyzed transesterification process can be used for quality biodiesel production from edible and non-edible vegetable oils. This processor can be integrated with rural energy system for domestic and small-scale industrial unit for biodiesel production.  相似文献   

6.
Water is the most common choice of absorption medium selected in many gasification systems. Because of poor solubility of tar in water, hydrophobic absorbents (diesel fuel, biodiesel fuel, vegetable oil, and engine oil) were studied on their absorption efficiency of biomass tar and compared with water. The results showed that only 31.8% of gravimetric tar was removed by the water scrubber, whereas the highest removal of gravimetric tar was obtained by a vegetable oil scrubber with a removal efficiency of 60.4%. When focusing on light PAH tar removal, the absorption efficiency can be ranked in the following order; diesel fuel > vegetable oil > biodiesel fuel > engine oil > water. On the other hand, an increase in gravimetric tar was observed for diesel fuel and biodiesel fuel scrubbers because of their easy evaporation. Therefore, the vegetable oil is recommended as the best absorbent to be used in gasification systems.  相似文献   

7.
Effects of biodiesel on emissions of a bus diesel engine   总被引:2,自引:0,他引:2  
This paper discusses the influence of biodiesel on the injection, spray, and engine characteristics with the aim to reduce harmful emissions. The considered engine is a bus diesel engine with injection M system. The injection, fuel spray, and engine characteristics, obtained with biodiesel, are compared to those obtained with mineral diesel (D2) under various operating regimes. The considered fuel is neat biodiesel from rapeseed oil. Its density, viscosity, surface tension, and sound velocity are determined experimentally and compared to those of D2. The obtained results are used to analyze the most important injection, fuel spray, and engine characteristics. The injection characteristics are determined numerically under the operating regimes, corresponding to the 13 mode ESC test. The fuel spray is obtained experimentally under peak torque condition. Engine characteristics are determined experimentally under 13 mode ESC test conditions. The results indicate that, by using biodiesel, harmful emissions (NO(x), CO, smoke and HC) can be reduced to some extent by adjusting the injection pump timing properly.  相似文献   

8.
In the quest for renewable resources, algae are increasingly receiving attention. Their high growth rate, high CO2 fixation and their lack of requirement for fertile soil surface represent several advantages as compared to conventional (energy) crops. Through their ability to store large amounts of oils, they qualify as a source for biodiesel. Algal biomass, however, can also be used as such, namely as a substrate for anaerobic digestion. In the present research, we investigated the use of algae for energy generation in a stand‐alone, closed‐loop system. The system encompasses an algal growth unit for biomass production, an anaerobic digestion unit to convert the biomass to biogas and a microbial fuel cell to polish the effluent of the digester. Nutrients set free during digestion can accordingly be returned to the algal growth unit for a sustained algal growth. Hence, a system is presented that continuously transforms solar energy into energy‐rich biogas and electricity. Algal productivities of 24–30 ton VS ha?1 year?1 were reached, while 0.5 N m3 biogas could be produced kg?1 algal VS. The system described resulted in a power plant with a potential capacity of about 9 kW ha?1 of solar algal panel, with prospects of 23 kW ha?1. Biotechnol. Bioeng. 2009;103: 296–304. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
Fast development of ionic liquids as gaining more and more attention valuable chemicals will undoubtedly lead to environmental pollution. New formulations and application of ionic liquids may result in contamination in the presence of hydrophobic compounds, such as petroleum mixtures. We hypothesize that in the presence of diesel fuel low-water-soluble ionic liquids may become more toxic to hydrocarbon-degrading microorganisms. In this study the influence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues (side-chain length from C3 to C18) on biodegradation of diesel fuel by a bacterial consortium was investigated. Whereas test performed for the consortium cultivated on disodium succinate showed that toxicity of the investigated ionic liquids decreased with increase in side-chain length, only higher homologues (C8–C18) caused a decrease in diesel fuel biodegradation. As a result of exposure to toxic compounds also modification in cell surface hydrophobicity was observed (MATH). Disulphine blue active substances method was employed to determine partitioning index of ionic liquids between water and diesel fuel phase, which varied from 1.1 to 51% for C3 and C18 homologues, respectively. We conclude that in the presence of hydrocarbons acting as a solvent, the increased bioavailability of hydrophobic homologues is responsible for the decrease in biodegradation efficiency of diesel fuel.  相似文献   

10.
Microbial fuel cells are attracting attention as one of the systems for producing electrical energy from organic compounds. We used commercial baker's yeast (Saccharomyces cerevisiae) for a glucose fuel cell because the yeast is a safe organism and relatively high power can be generated in the system. In the present study, a milliliter (mL)-scale dual-chamber fuel cell was constructed for evaluating the power generated by a variety of yeasts and their mutants, and the optimum conditions for high performance were investigated. When carbon fiber bundles were used as an electrode in the fuel cell, high volumetric power density was obtained. The maximum power produced per volume of anode solution was 850 W/m3 under optimum conditions. Furthermore, the power was examined using seven kinds of yeast. In Kluyveromyces marxianus, not only the power but also the power per consumed glucose was high. Moreover, it was suggested that xylose is available as fuel for the fuel cell. The fuel cell powered by K. marxianus may prove to be helpful for the effective utilization of woody biomass.  相似文献   

11.
In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NOx) emission. However, compared with the diesel fuel, NOx emission with diesel-biodiesel blends was slightly reduced when EGR was applied.  相似文献   

12.
Diesel particulate emissions from used cooking oil biodiesel   总被引:9,自引:1,他引:8  
Two different biodiesel fuels, obtained from waste cooking oils with different previous uses, were tested in a DI diesel commercial engine either pure or in 30% and 70% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions corresponding to typical road conditions. Although the engine efficiency was not significantly affected, an increase in fuel consumption with the biodiesel concentration was observed. This increase was proportional to the decrease in the heating value. The main objective of the work was to study the effect of biodiesel blends on particulate emissions, measured in terms of mass, optical effect (smoke opacity) and size distributions. A sharp decrease was observed in both smoke and particulate matter emissions as the biodiesel concentration was increased. The mean particle size was also reduced with the biodiesel concentration, but no significant increases were found in the range of the smallest particles. No important differences in emissions were found between the two tested biodiesel fuels.  相似文献   

13.
Glycerol degradation in single-chamber microbial fuel cells   总被引:1,自引:0,他引:1  
Glycerol degradation with electricity production by a pure culture of Bacillus subtilis in a single-chamber air cathode of microbial fuel cell (MFC) has been demonstrated. Steady state polarization curves indicated a maximum power density of 0.06 mW/cm2 with an optimal external resistance of 390Ω. Analysis of the effect of pH on MFC performance demonstrated that electricity generation was sustained over a long period of time under neutral to alkaline conditions. Cyclic voltammetry exhibited the increasing electrochemical activity with the increase of pH of 7, 8 and 9. Voltammetric studies also demonstrated that a two-electron transfer mechanism was occurring in the reactor. The low Coulombic efficiency of 23.08% could be attributed to the loss of electrons for various activities other than electricity generation. This study describes an application of glycerol that could contribute to transformation of the biodiesel industry to a more environmentally friendly microbial fuel cell-based technology.  相似文献   

14.
The production of fatty acid methyl esters (FAMEs) from waste activated bleaching earth (ABE) discarded by the crude oil refining industry using lipase from Candida cylindracea was investigated in a 50-L pilot plant. Diesel oil or kerosene was used as an organic solvent for the transesterification of triglycerides embedded in the waste ABE. When 1% (w/w) lipase was added to waste ABE, the FAME content reached 97% (w/w) after reaction for 12 h at 25 degrees C with an agitation rate of 30 rpm. The FAME production rate was strongly dependent upon the amount of enzyme added. Mixtures of FAME and diesel oil at ratios of 45:55 (BDF-45) and 35:65 (BDF-35) were assessed and compared with the European specifications for biodiesel as automotive diesel fuel, as defined by pr EN 14214. The biodiesel quality of BDF-45 met the EN 14214 standard. BDF-45 was used as generator fuel, and the exhaust emissions were compared with those of diesel oil. The CO and SO2 contents were reduced, but nitrogen oxide emission increased by 10%. This is the first report of a pilot plant study of lipase-catalyzed FAME production using waste ABE as a raw material. This result demonstrates a promising reutilization method for the production of FAME from industrial waste resources containing vegetable oils for use as a biodiesel fuel.  相似文献   

15.
Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C5H10O2) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C7H16 and C7H8O (and then, by mp2d, C4H6O2 and propyne, C3H4) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C19H34O2 (or C19H36O2). The main fuel vapor thermal properties were taken as those of methyl palmitate C19H36O2 in the NASA polynomial form of the Burcat database. The special global reaction was introduced to “crack” the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NOx formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.  相似文献   

16.
Biodiesel outperforms diesel in emissions and engine performance. They burn efficiently in diesel engines and are eco-friendly. Since cashew nut shell liquid (CNSO) is waste, commercial biodiesel production from it should be profitable. CNSO is cheap and can reduce cashew processing factory waste. From cashew kernels, CNSL is extracted using various mechanical, thermal, and solvent extraction techniques. This article examines current research into using cashew nutshell liquid biodiesel (CNSLBD) in diesel engines. The work also discusses Indian biodiesel demand, availability, export information, life cycle cost analysis, cost economics of per hectare yield, Indian government initiative of CNSO. This review also evaluates the viability of this fuel as an alternative energy source. CNSLBD is a prospective alternative fuel that has the potential to benefit both the cashew nut industry and the energy industry. In addition to this, the study examines the procedures for extracting CNSO. According to the findings of the study, CNSO is a prospective alternative fuel that has the potential to benefit both the cashew nut industry and the energy industry.  相似文献   

17.
The methanolysis of soybean oil to produce a fatty acid methyl ester (ME, i.e., biodiesel fuel) was catalyzed by lipase-producing filamentous fungi immobilized on biomass support particles (BSPs) as a whole-cell biocatalyst in the presence of ionic liquids. We used four types of whole-cell biocatalysts: wild-type Rhizopus oryzae producing triacylglycerol lipase (w-ROL), recombinant Aspergillus oryzae expressing Fusarium heterosporum lipase (r-FHL), Candida antarctica lipase B (r-CALB), and mono- and diacylglycerol lipase from A. oryzae (r-mdlB). w-ROL gave the high yield of fatty acid methyl ester (ME) in ionic liquid [Emim][BF4] or [Bmim][BF4] biphasic systems following a 24 h reaction. While lipases are known to be severely deactivated by an excess amount of methanol (e.g. 1.5 Mequiv. of methanol against oil) in a conventional system, methanolysis successfully proceeded even with a methanol/oil ratio of 4 in the ionic liquid biphasic system, where the ionic liquids would work as a reservoir of methanol to suppress the enzyme deactivation. When only w-ROL was used as a biocatalyst for methanolysis, unreacted mono-glyceride remained due to the 1,3-positional specificity of R. oryzae lipase. High ME conversion was attained by the combined use of two types of whole-cell biocatalysts, w-ROL and r-mdlB. In a stability test, the activity of w-ROL was reduced to one-third of its original value after incubation in [Bmim][BF4] for 72 h. The stability of w-ROL in [Bmim][BF4] was greatly enhanced by cross-linking the biocatalyst with glutaraldehyde. The present study demonstrated that ionic liquids are promising candidates for use as the second solvent in biodiesel fuel production by whole-cell biocatalysts.  相似文献   

18.
External resistance affects the performance of microbial fuel cells (MFCs) by controlling the flow of electrons from the anode to the cathode. The purpose of this study was to determine the effect of external resistance on bacterial diversity and metabolism in MFCs. Four external resistances (20, 249, 480, and 1000 Ω) were tested by operating parallel MFCs independently at constant circuit loads for 10 weeks. A maximum power density of 66 mW m−2 was achieved by the 20 Ω MFCs, while the MFCs with 249, 480, and 1000 Ω external resistances produced 57.5, 27, and 47 mW m−2, respectively. Denaturing gradient gel electrophoresis analysis of partial 16S rRNA genes showed clear differences between the planktonic and anode-attached populations at various external resistances. Concentrations of short chain fatty acids were higher in MFCs with larger circuit loads, suggesting that fermentative metabolism dominated over anaerobic respiration using the anode as the final electron acceptor.  相似文献   

19.
Environmental issues surrounding conventional annual biogas crops have led to growing interest in alternative crops, such as miscanthus. In addition to the better environmental performance, miscanthus can be grown on marginal land where no competition with feed and food crops is anticipated. On marginal land however, biomass yields are significantly lower than on good agricultural land. This raises the question of the economic and environmental sustainability of miscanthus cultivated on marginal land for biogas production. This study assessed the environmental and economic performance of miscanthus cultivated on marginal land for biogas production by conducting a Life‐Cycle Assessment and complementary Life‐Cycle Cost analysis. The functional unit chosen was 1 GJ of electricity (GJel.). The substitution of a fossil reference was included using a system expansion approach. Electricity generated by the combustion of miscanthus‐based biogas in a combined heat and power has considerably lower impacts on the environment than the fossil reference in most of the categories assessed. In the impact category “climate change”, the substitution of the marginal German electricity mix leads to a carbon mitigation potential of 256 kg CO2e/GJel.. At 45.12 €/GJel., the costs of miscanthus‐based biogas generation and utilization are considerably lower than those of maize (61.30 €/GJel.). The results of this study clearly show that it can make economic and environmental sense to cultivate miscanthus on marginal land as a substrate for biogas production. The economic sustainability is however limited by the biomass yield. By contrast, there are no clear thresholds limiting the environmental performance. The decision needs to be made on a case‐by‐case basis depending on site‐specific conditions such as local biodiversity.  相似文献   

20.
We studied the spray characteristics of inedible oil using experimental and simulation methods. Spray penetration, spray cone angle and spray tip speed were measured at different biodiesel ratios in a constant volume vessel with wide visualization and high back pressure, using a high-speed camera. The characteristics of biodiesel spray were simulated under the same conditions using Star-CD software. The experimental results showed that, as the ratio of biodiesel in the blends increased, spray penetration and spray speed increased, but the spray cone angle decreased. Throughout the spray injection period, the region at 0.05–0.475S (spray tip penetration) was a key area affecting spray cone angle. From 0.8 ms after injection, the spray penetration deviation ratios started to increase with increasing biodiesel blend ratios. Simulation results showed similar macroscopic spray characteristics to the experimental results for jatropha oil. The results also showed that the Sauter mean diameter of blend fuels was greater than that of diesel, and spray was more concentrated, due to the higher viscosity and surface tension of the biodiesel, compared with conventional diesel fuel. The macroscopic and microscopic spray properties of blended fuels containing 5%, 10% and 20% biodiesel were similar to diesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号