首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Explants of cerebellum from foetal mouse were cultured in vitro for 10 days in the presence of one of 4 inhibitors of N-linked glycosylation (castanospermine, deoxymannojirimycin, swainsonine, and tunicamycin). 2. The effects of the inhibitors were compared with respect to: (a) the activity of enzymes involved in glycoprotein biosynthesis and degradation; (b) the expression of N-linked glycoproteins; (c) the morphology and ultrastructure of the treated cerebellar explants.  相似文献   

2.
A melanoma proteoglycan model system has been used to examine the role of core protein asparagine-linked (N-linked) oligosaccharides in the transport and assembly of proteoglycan molecules. The use of agents which block discrete steps in the trimming and processing of core oligosaccharides (castanospermine, 1-deoxynojirimycin, N-methyldeoxynojirimycin, 1-deoxymannojirimycin, and swainsonine) demonstrates that removal of glucose residues from the N-linked oligosaccharides is required for the cell surface expression of a melanoma proteoglycan core protein and for the conversion of the core protein to a chondroitin sulfate proteoglycan. However, complete maturation of the oligosaccharides to a "complex" form is not required for these events. Treatment of M21 human melanoma cells with the glucosidase inhibitors castanospermine, 1-deoxynojirimycin, or N-methyldeoxynojirimycin results in a dose-dependent inhibition of glycosaminoglycan (GAG) addition to the melanoma antigen recognized by monoclonal antibody 9.2.27. In contrast, treatment with the mannosidase inhibitors 1-deoxymannojirimycin and swainsonine does not effect GAG addition. Identical results are obtained when the major histocompatibility complex class II antigen gamma chain proteoglycan is examined in inhibitor-treated melanoma and B-lymphoblastoid cells. These data, in conjunction with the known effects of the glucosidase and mannosidase inhibitors on the transport and secretion of other glycoproteins support the hypothesis that the addition, trimming, and processing of N-linked oligosaccharides is involved in the transport of certain proteoglycan core proteins to the site of GAG addition and to the cell surface.  相似文献   

3.
Retinal pigment epithelial cells selectively phagocytize rod outer segments by a process that may be mediated by specific cell surface receptors. Since many receptors are glycoproteins, we have studied the effect of tunicamycin, an inhibitor of N-linked oligosaccharide synthesis, and of castanospermine and swainsonine, which are inhibitors of oligosaccharide processing, on the ability of cultured retinal pigment epithelial cells to phagocytize rod outer segment. Tunicamycin inhibits the glycosylation of newly synthesized glycoproteins by 85-90%; concomitantly, the phagocytosis of rod outer segments is inhibited by 70-80%. The effect of tunicamycin is to initially reduce rod outer segments binding, and therefore the subsequent ingestion of rod outer segments. SDS-PAGE analysis and autoradiography of [35S]methionine labelled extracts of tunicamycin-treated cells, demonstrates the disappearance of a number of glycoprotein bands, and the appearance of a number of protein bands of lower Mr. Kinetic analysis of the disappearance and reappearance of specific glycoproteins suggests that the lower Mr bands are the non-glycosylated forms of the higher Mr bands. By contrast, castanospermine and swainsonine have no effect on the ability of retinal pigment epithelial cells to phagocytize rod outer segments, or on the SDS-PAGE pattern of treated cells, although they were shown to inhibit oligosaccharide processing as expected. These results support the hypothesis that rod outer segment phagocytosis by retinal pigment epithelial cells is mediated by specific glycoprotein receptors. N-Glycosylation of these receptors is required for their function, or for their insertion into the plasma membrane, whereas processing of the N-linked oligosaccharide chains of these receptors is not crucial for rod outer segment phagocytosis by retinal pigment epithelial cells.  相似文献   

4.
Varicella-zoster virus (VZV) specifies the synthesis of at least four families of glycoproteins, which have been designated gpI, gpII, gpIII, and gpIV. In this report we describe the assembly and processing of VZV gpII, a structural protein of an apparent Mr of 140,000, which is the homolog of gB of herpes simplex virus. For these studies, we used two anti-gpII monoclonal antibodies which exhibited both complement-independent neutralization activity and inhibition of virus-induced cell-to-cell fusion. Pulse-chase labeling experiments identified a 124,000-Mr intermediate which was chased to the mature 140,000-Mr product when analyzed in nonreducing gels; in the presence of a reducing agent, the native gp140 was cleaved into two closely migrating species (gp66 and gp68). The biosynthesis of VZV gpII was further analyzed in the presence of the following inhibitors of glycoprotein processing: tunicamycin, monensin, castanospermine, swainsonine, and deoxymannojirimycin. All intermediate and mature forms were digested with endoglycosidases H and F, neuraminidase, and O-glycanase to further define high-mannose, complex, and O-linked glycans. Finally, the addition of sulfate residues was investigated. This characterization of VZV gpII revealed the following results. (i) gp128 and gp124 were early high-mannose forms, (ii) gp126 was an intermediate form with complex N-linked oligosaccharides, (iii) gp130 was a later intermediate with both N-linked and O-linked glycans, and (iv) the mature product gp140 contained a mixture of N-linked and O-linked glycans which were both sialated and sulfated. Further investigations indicated that gpII sulfation was inhibited by tunicamycin and castanospermine but not by deoxymannojirimycin or swainsonine. We also concluded that VZV gpII displayed many biological and biochemical properties similar to those of its herpes simplex virus homolog gB.  相似文献   

5.
The regulation of adipose tissue lipoprotein lipase (LPL) by feeding and fasting occurs through post-translational changes in the LPL protein. In addition, LPL activity and secretion are decreased when N-linked glycosylation is inhibited. To better understand the role of oligosaccharide processing in the development of LPL activity and in LPL secretion, primary cultures of rat adipocytes were treated with inhibitors of oligosaccharide processing. LPL catalytic activity from the heparin-releasable fraction of adipocytes was inhibited by more than 70%, with similar decreases in LPL mass, when cells were cultured for 24 h in the presence of either tunicamycin or castanospermine. On the other hand, deoxymannojirimycin (DMJ) and swainsonine had no effect on LPL activity. LPL secretion was examined after pulse-labeling cells with [35S]methionine. The appearance of 35S-labeled LPL in the medium was blocked by treatment of cells with tunicamycin and castanospermine, whereas secretion was not affected by DMJ or swainsonine. To examine the effect of oligosaccharide processing on LPL intracellular degradation, adipocytes were treated with tunicamycin, castanospermine, and DMJ and then pulse-labeled with [35S]methionine, followed by a chase with unlabeled methionine for 120 min. The unglycosylated [35S]LPL that was synthesized in the presence of tunicamycin demonstrated essentially no intracellular degradation. In the presence of castanospermine and DMJ, the half-life of newly synthesized LPL was increased to 81 and 113 min, as compared to 65 min in control cells. Thus, castanospermine-treated adipocytes demonstrated a decrease in LPL activity and secretion, suggesting that the glucosidase-mediated cleavage of terminal glucose residues from oligosaccharides is a critical step in LPL maturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The significance of the envelope glycoprotein in the transmission of pig endogenous retrovirus (PERV) to human cells was investigated. Pig endothelial cells (PEC) were transduced with the LacZ gene by a pseudotype infection and then infected with PERV subtype B. Culture supernatants of the infected PEC previously incubated with several types of drugs were inoculated into HEK293 cells. The inoculated cells were then stained and the number of LacZ-positive foci was counted. PERV from tunicamycin treated PEC was not transmitted to human cells, indicating the importance of N-linked sugars in this process. Moreover, while inhibition of the terminal alpha-glucose residues from the precursor N-glycan by castanospermine and 1-deoxynojirimycin attenuated PERV infectivity, the mannosidase inhibitors, 1-deoxymannojirimycin and swainsonine, upregulated the infectivity. In addition, treatment with alpha-mannosidase and incubation with concanavalin A completely abrogated the transmission of PERV to HEK293. These data imply that the high-mannose type of N-glycan plays a key role in PERV infectivity.  相似文献   

7.
The human asialoglycoprotein receptor (ASGP-R) is a membrane glycoprotein of 46,000 Da which possesses two N-linked oligosaccharide chains (Schwartz, A. L., and Rup, D. (1983) J. Biol. Chem. 258, 11249-11255). In order to examine the role of N-linked oligosaccharides in the biosynthesis, intracellular routing, and function of the ASGP-R, we have used Hep G2 cells, which have a large number of ASGP-R, and two inhibitors of glycosylation, swainsonine and tunicamycin. In the presence of swainsonine, newly synthesized ASGP-R is a 43,000-Da species which is endoglycosidase H-sensitive, appears on the Hep G2 cell surface, and specifically binds 125I-asialoorosomucoid (ASOR). In the presence of tunicamycin newly synthesized ASGP-R is a 34,000-Da nonglycosylated species which appears on the Hep G2 cell surface where it specifically binds 125I-ASOR. There is no major effect on subsequent uptake and degradation of 125I-ASOR in cells whose ASGP-R was synthesized in the presence of tunicamycin. The turnover of ASGP-R synthesized in the presence of either swainsonine or tunicamycin is not significantly altered from that found for the normal 46,000-Da species. Thus, it appears that the two N-linked oligosaccharide chains of the human ASGP-R do not play a major role in the intracellular routing, turnover, or function of ASGP-R.  相似文献   

8.
Rat hepatic lipase is a glycoprotein bearing two N-linked oligosaccharide chains. The importance of glycosylation in the secretion of hepatic lipase was studied using freshly isolated rat hepatocytes. Various inhibitors of oligosaccharide synthesis and processing were used at concentrations that selectively interfere with protein glycosylation. Secretion of hepatic lipase activity was abolished by tunicamycin, castanospermine, and N-methyldeoxynojirimycin. No evidence was found by ELISA or Western blotting for secretion of inactive protein. Inhibition of secretion became apparent after a 30-min lag, corresponding to the time of intracellular transport of pre-existing protein. Simultaneously, intracellular hepatic lipase activity ws depleted. Secretion of hepatic lipase protein and activity was not affected by deoxymannojirimycin and swainsonine. Upon SDS-polyacrylamide gel electrophoresis, hepatic lipase secretion by deoxymannojirimycin- or swainsonine-treated cells showed an apparent Mr of 53 kDa and 55 kDa, respectively, which was distinct from hepatic lipase secreted by untreated cells (Mr = 58 kDa). We conclude that glycosylation and subsequent oligosaccharide processing play a permissive role in the secretion of hepatic lipase. As secretion is prevented by the glucosidase inhibitors castanospermine and N-methyldeoxynojirimycin, but not by inhibitors of subsequent oligosaccharide trimming, the removal of glucose residues from the high-mannose oligosaccharide intermediate in the rough endoplasmic reticulum appears the determining step.  相似文献   

9.
Antibodies to the alpha and beta 2 subunits and site-directed antibodies that distinguish alpha subunits of the RI and RII subtypes have been used to study the biosynthesis and assembly of sodium channels. The RII sodium channel subtype is preferentially expressed in rat brain neurons in primary cell culture. Post-translational processing of alpha subunits includes incorporation of palmityl residues in thioester linkage and sulfate residues attached to oligosaccharides. The incorporation of [3H] palmitate into alpha subunits is inhibited by tunicamycin, indicating that it occurs in the early stages of biosynthesis but after co-translational glycosylation. Mature alpha subunits are attached to beta 2 subunits through disulfide bonds within 1 h after synthesis and up to 30% can be specifically immunoprecipitated from the cell surface with antibodies against the beta 2 subunits by 4 h after synthesis. The remaining alpha subunits remain in an intracellular pool. The alpha subunits synthesized in the presence of castanospermine and swainsonine have reduced apparent size. Castanospermine prevents incorporation of approximately 81% of the sialic acid of the alpha subunit and inhibits sulfation but not palmitylation. Although inhibition of glycosylation with tunicamycin blocks assembly of functional sodium channels, castanospermine and swainsonine do not prevent the covalent assembly of alpha and beta 2 subunits or the transport of alpha beta 2 complexes to the cell surface, and sodium channels synthesized under these conditions have normal affinity for saxitoxin. Thus, the extensive processing and terminal sialylation of oligosaccharide chains during maturation of the alpha subunit is not essential. A kinetic model for biosynthesis, processing, and assembly of sodium channel subunits is presented.  相似文献   

10.
The concanavalin A staining of cellular glycoproteins and thedirect analysis of their sugar chains released by hydrazinolysisrevealed that the processing of N-linked sugar chains of someglycoproteins is suppressed by exposure of mouse monocytoidcells P388D1 to dimethyl sulphoxide, which can induce Fc receptor-mediatedphagocytosis. To elucidate the significance of altered glycosylationin inducing phagocytosis, the effects of exposure of the cellsto processing inhibitors (swainsonine and castanospermine) wereexamined and it was found that the cells are induced to acquirean ability to ingest IgG-coated sheep red blood cells, dependingon the dose of the inhibitors and incubation time. Analysisof the N-linked sugar chains liberated from cellular glycoproteinsby hydrazinolysis confirmed that the processing of the sugarchains is suppressed by the two inhibitors as expected. Sinceno significant alteration was induced in protein synthesis andDNA synthesis after exposure to the inhibitors, it is suggestedthat the altered glycosylation of cellular glycoproteins mayhave some direct role in the induction of Fc receptor-mediatedphagocytosis. The inhibitors did not affect the binding of theIgG-coated red blood cells to Fc receptors on the cells, non-specificphagocytosis of latex beads, and the contents of lysosomal enzymes,ß-glucuronidase and acid phosphatase. These resultssuggest that the glycosylation status of cellular glycoproteinsinfluences some specific processes involved in the ingestionof the ligands bound to Fc receptors. castanospermine macrophages phagocytosis swainsonine  相似文献   

11.
In the murine coronavirus mouse hepatitis virus, a single glycoprotein, E2, is required both for attachment to cells and for cell fusion. Cell fusion induced by infection with mouse hepatitis virus strain A59 was inhibited by the addition of monospecific anti-E2 antibody after virus adsorption and penetration. Adsorption of concentrated coronavirions to uninfected cells did not cause cell fusion in the presence of cycloheximide. Thus, cell fusion was induced by E2 on the plasma membrane of infected 17 Cl 1 cells but not by E2 on virions grown in these cells. Trypsin treatment of virions purified from 17 Cl 1 cells quantitatively cleaved 180K E2 to 90K E2 and activated cell-fusing activity of the virions. This proteolytic cleavage yielded two different 90K species which were separable by sodium dodecyl sulfate-hydroxyapatite chromatography. One of the trypsin cleavage products, 90A, was acylated and may be associated with the lipid bilayer. The other, 90B, was not acylated and yielded different peptides than did 90A upon limited digestion with thermolysin or staphylococcal V8 protease. Thus, the cell-fusing activity of a coronavirus required proteolytic cleavage of the E2 glycoprotein, either by the addition of a protease to virions or by cellular proteases acting on E2, which was transported to the plasma membrane during virus maturation. There is a striking functional similarity between the E2 glycoprotein of coronavirus, which is a positive-strand RNA virus, and the hemagglutinin glycoprotein of negative-strand orthomyxoviruses, in that a single glycoprotein has both attachment and protease-activated cell-fusing activities.  相似文献   

12.
MDCK (Madin-Darby canine kidney) cells infected with the NWS strain of influenza virus incorporate 35SO4 into complex types of oligosaccharides of the N-linked glycoproteins. On the other hand, when these virus-infected MDCK cells are incubated in the presence of swainsonine, an inhibitor of the processing mannosidase II, approximately 40-80% of the total [35S]glycopeptides were of the hybrid types of structures. Thus, these sulfated, hybrid types of glycopeptides were completely susceptible to digestion by endoglucosaminidase H, whereas the sulfated glycopeptides from infected cells incubated without swainsonine were completely resistant to endo-beta-N-acetylglucosaminidase H. When virus-infected MDCK cells were incubated in the presence of castanospermine, an inhibitor of the processing glucosidase I, the N-linked glycopeptides contained mostly oligosaccharide chains of the Glc3Man7-9GlcNAc2 types of structures, and these oligosaccharides were devoid of sulfate. Structural analysis of these abnormally processed oligosaccharides produced in the presence of swainsonine or castanospermine indicated that they differed principally in the processing of one oligosaccharide branch as indicated by the structures shown below. They also differed in that only the swainsonine-induced structures were sulfated. These data indicate that removal of glucose units and perhaps other processing steps are necessary before sulfate residues can be added. (Formula: see text).  相似文献   

13.
The requirement for intact carbohydrates of glycoproteins at the cell surface was investigated after treatment of lymphoma cells with compounds which interfere at different steps in N-linked glycosylation: swainsonine and 1-deoxynojirimycin act at different levels during the processing, so that complex oligosaccharides cannot be formed; 2-deoxyglucose, beta-hydroxynorvaline, and tunicamycin completely prevent the formation of N-linked (high-mannose as well as complex) oligosaccharides. The role of sialic acid was investigated by treating the cells with neuraminidase. These treatments resulted in altered patterns of surface-labelled glycoproteins after SDS-polyacrylamide gel electrophoresis. Blood-borne arrest of lymphoma cells in the spleen was sensitive to neuraminidase and to treatments interfering with the processing of complex N-linked oligosaccharides. It is suggested that carbohydrates are signals for cellular interactions involved in the recirculation and homing behaviour of lymphoid cells and probably interact with endogenous lectins at their site of homing.  相似文献   

14.
After synthesis on membrane-bound ribosomes, the variant surface glycoprotein (VSG) of Trypanosoma brucei is modified by: (a) removal of an N-terminal signal sequence, (b) addition of N-linked oligosaccharides, and (c) replacement of a C-terminal hydrophobic peptide with a complex glycolipid that serves as a membrane anchor. Based on pulse-chase experiments with the variant ILTat-1.3, we now report the kinetics of three subsequent processing reactions. These are: (a) conversion of newly synthesized 56/58-kD polypeptides to mature 59-kD VSG, (b) transport to the cell surface, and (c) transport to a site where VSG is susceptible to endogenous membrane-bound phospholipase C. We found that the t 1/2 of all three of these processes is approximately 15 min. The comparable kinetics of these processes is compatible with the hypotheses that transport of VSG from the site of maturation to the cell surface is rapid and that VSG may not reach a phospholipase C-containing membrane until it arrives on the cell surface. Neither tunicamycin nor monensin blocks transport of VSG, but monensin completely inhibits conversion of 58-kD VSG to the mature 59-kD form. In the presence of tunicamycin, VSG is synthesized as a 54-kD polypeptide that is subsequently processed to a form with a slightly higher Mr. This tunicamycin-resistant processing suggests that modifications unrelated to N-linked oligosaccharides occur. Surprisingly, the rate of VSG transport is reduced, but not abolished, by dropping the chase temperature to as low as 10 degrees C.  相似文献   

15.
The glucosidase inhibitors 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin and castanospermine were used to inhibit oligosaccharide processing in primary cultures of rat hepatocytes. Their effect on the glycosylation of alpha 1-proteinase inhibitor (alpha 1PI) and alpha 1-acid glycoprotein (alpha 1AGP) was studied. Of the three glucosidase inhibitors examined, 1-deoxynojirimycin inhibited not only oligosaccharide trimming but also glycosylation de novo of newly synthesized proteins, resulting in the formation of alpha 1PI with two and three (normally carrying three) and alpha 1AGP with two to five (normally carrying six) oligosaccharide side chains. In the presence of the glucosidase inhibitors, glucosylated high-mannose-type oligosaccharides accumulated. Whereas most of the endoglucosaminidase-H-sensitive oligosaccharides formed in the presence of 1-deoxynojirimycin contained only one glucose residue, N-methyl-1-deoxynojirimycin and castanospermine led mainly to the formation of oligosaccharides with three glucose residues. None of the three glucosidase inhibitors completely prevented the formation of complex-type oligosaccharides. Thus, in their presence, alpha 1PI and alpha 1AGP with a mixture of both high-mannose and complex-type oligosaccharides were secreted.  相似文献   

16.
Inhibitors of N-linked oligosaccharide processing are useful tools for studies on the biological function of the oligosaccharide structures in glycoprotein hormones. We have synthesized molecules of lutropin (LH) containing high-mannose- and hybrid-type oligosaccharides using rat gonadotroph-enriched primary cultures in the presence of castanospermine (a glucosidase I inhibitor) or swainsonine (a mannosidase II inhibitor), in order to compare the actions of these molecules with that of the hormone containing complex-type oligosaccharides in the activation of the receptor-adenylate cyclase system. Treatment of gonadotrophs with the above inhibitors caused an increase in the synthesis of highly basic LH molecules (pI 9.6-10.0), because addition of charged carbohydrate moieties to these molecules was prevented. Characterization of the oligosaccharide structure performed by enzymatic treatment (endoglycosidase H and neuraminidase) and the use of immobilized lectins (wheat germ agglutinin and Ricinus communis agglutinin-120) showed that these inhibitor-synthesized LH molecules contained high-mannose- and hybrid-type (asialo and sialylated) oligosaccharides. Their immunological properties were similar to that of complex-type oligosaccharide LH, but they had significantly higher receptor-binding ability in comparison with a sialylated complex-type oligosaccharide LH (about 12-fold) and an asialo complex-type oligosaccharide LH (about 3-fold). It was noted that the incompletely processed molecules were less potent than complex-type oligosaccharide LH in the activation of adenylate cyclase of Leydig cells, showing about 40-60% of the activity induced by the sialylated complex-type oligosaccharide molecule. The present data indicate that the inhibition of terminal processing of N-linked oligosaccharides by castanospermine and swainsonine impairs the full hormonal function of rat LH.  相似文献   

17.
A-431 cells were treated with inhibitors of either N-linked glycosylation (tunicamycin or glucosamine) or of N-linked oligosaccharide processing (swainsonine or monensin) to examine the glycosylation of epidermal growth factor (EGF) receptors and to determine the effect of glycosylation modification on receptor function. The receptor was found to be an Mr = 130,000 polypeptide to which a relatively large amount of carbohydrate is added co-translationally in the form of N-linked oligosaccharides. Processing of these oligosaccharides accounts for the 10,000-dalton difference in electrophoretic migration between the Mr = 160,000 precursor and Mr = 170,000 mature forms of the receptor. No evidence was found for O-linked oligosaccharides on the receptor. Mr = 160,000 receptors resulting from swainsonine or monensin treatment were present on the cell surface and retained full function, as judged by 125I-EGF binding to intact cells and detergent-solubilized extracts and by in vitro phosphorylation in the absence or presence of EGF. On the other hand, when cells were treated with tunicamycin or glucosamine, ligand binding was reduced by more than 50% in either intact cells or solubilized cell extracts. The Mr = 130,000 receptors synthesized in the presence of these inhibitors were not found on the cell surface. In addition, no Mr = 130,000 phosphoprotein was detected in the in vitro phosphorylation of tunicamycin or glucosamine-treated cells. It appears, therefore, that although terminal processing of N-linked oligosaccharides is not necessary for proper translocation or function of the EGF receptor, the addition of N-linked oligosaccharides is required.  相似文献   

18.
The processing and transport of the envelope glycoprotein complex of feline immunodeficiency virus (FIV) in the persistently infected Crandell feline kidney (CRFK) cell line were investigated. Pulse-chase analyses revealed that the glycoprotein is synthesized as a precursor with an Mr of 145,000 (gp145) and is quickly trimmed to a molecule with an Mr of 130,000 (gp130). Treatment of gp130 with endoglycosidase H (endo H) resulted in a protein with an Mr of 75,000, indicating that nearly half the weight of the gp130 precursor consists of endo H-sensitive glycans during biosynthesis. Chase periods of up to 8 h revealed intermediates during the further processing of this glycoprotein precursor. Initially, two minor protein species with apparent Mrs of 100,000 and 90,000 were detected along with gp130. At later chase times these two species appeared to migrate as a single dominant species with an Mr of 95,000 (gp95). Concomitant with the appearance of gp95 was another protein with an Mr of approximately 40,000 (gp40). Chase periods of up to 8 h revealed that approximately half of the precursor was processed into the gp95-gp40 complex within 4 h. gp95 was efficiently transported from the cell into the culture medium by 1 to 2 h after labeling, whereas gp40 was not observed to be released from infected CRFK cells. Analysis of the processing in the presence of monensin, castanospermine, and swainsonine also suggests the existence of these intermediates in the processing of this lentivirus glycoprotein. As with human immunodeficiency virus, virus produced in the presence of glucosidase inhibitors and reduced infectivity for T-lymphocyte cultures.  相似文献   

19.
The objective of this study was to investigate the antiretroviral activity of specific inhibitors of glycosidases and mannosidases that are involved in N-linked oligosaccharide processing of glycoproteins. Castanospermine and 1-deoxynojirimycin, potent inhibitors of glucosidases I and II, showed significant activity against Moloney murine leukemia virus (IC50: 1.2 microgram/ml). Deoxymannojirimycin and swainsonine, inhibitors of mannosidase I and II, respectively, did not show any activity. These observations suggest that removal of the outermost glucose residue from high mannose asparagine-linked oligosaccharide may be essential for the replication of mouse leukemia virus. The relative nontoxic nature of these inhibitors and a novel mechanism of action suggest a potential for compounds of this type as chemopreventive and therapeutic agents in the treatment of acquired immune deficiency syndrome (AIDS).  相似文献   

20.
The role of trimming and processing of N-linked oligosaccharides on the cell surface expression of the melanoma vitronectin receptor, a member of the integrin family of cell adhesion receptors, was examined by using specific glucosidase and mannosidase inhibitors. Inhibition of glucosidases I and II by castanospermine or N-methyldeoxynojirimycin delayed the vitronectin receptor alpha/beta chain heterodimer assembly and alpha chain cleavage and resulted in a decrease in the level of expression cell surface receptor. Conversely, the vitronectin receptor synthesized in the presence of the mannosidase I and II inhibitors, 1-deoxymannojirimycin and swainsonine, was transported normally to the cell surface with its alpha chain N-linked oligosaccharides in an endoglycosidase H-sensitive form. In the presence of swainsonine, time course studies of the cell surface replacement of control, endoglycosidase H-resistant receptor with an endoglycosidase H-sensitive form demonstrated a vitronectin receptor half-life of approximately 15-16 h. These studies provide evidence that the rates of assembly, proteolytic cleavage, and cell surface expression of the melanoma vitronectin receptor are dependent on the initial trimming of glucosyl residues from the alpha chain N-linked oligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号