首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Salinization of crop fields is a pressing matter for sustainable agriculture under desertification and is largely attributed to root absorptive functions of the major crops such as maize. The rates of water and ion absorption of intact root system of maize plants were measured under the salinized condition, and the salt absorptive function of maize roots was analyzed by applying different two kinetic models of root ion absorption (i.e. the concentration dependent model and the transpiration integrated model). The absorption rates for salinization ions (Na+, Cl?, Ca2+ and Mg2+) were found to depend on ion mass flow through roots driven by the transpiration, and therefore the transpiration integrated model represented more accurately rates of root ion absorption. The root absorption of salinization ions was characterized quantitatively by two model parameters of Qmax and KM involved in the transpiration integrated model, which are considered to relate to the potential absorbing power and the ion affinity of transport proteins on root cell membranes, respectively.  相似文献   

3.
The physiological reasons associated with differential sensitivity of C3 and C4 plant species to soil compaction stress are not well explained and understood. The responses of growth characteristics, changes in leaf water potential and gas exchange in maize and triticale to a different soil compaction were investigated. In the present study seedlings of triticale and maize, representative of C3 and C4 plants were subjected to low (L – 1.10 g cm−3), moderate (M – 1.34 g cm−3) and severe (S – 1.58 g cm−3) soil compaction level. Distinct differences in distribution of roots in the soil profile were observed. Plants of treatments M or S in comparison to treatment L, showed a decrease in leaf number, dry mass of stem, leaves and roots, and an increase in the shoot to root ratio. A drastic decrease in root biomass in M and S treatments in the soil profile on depth from 15 to 40 cm was observed. Any level of soil compaction did not influence the number of seminal and seminal-adventitious roots but decreased their length. The number and total length of nodal roots decreased with compaction. Changes of growth traits in M and S treatments in comparison to the L were greater for maize than for triticale and were accompanied by daily changes in water potential (ψ) and gas exchange parameters (PN, E, gs). Differences between M and S treatments in daily changes in ψ for maize were in most cases statistically insignificant, whereas for triticale, they were statistically significant. Differences in the responses of maize and triticale to soil compaction were found in PN, E and gs in particular for the measurements taken at 12:00 and 16:00. The highest correlation coefficients were obtained for the relationship between leaf water potential and stomatal conductance, both for maize and triticale, which indicates the close association between stomata behavior and changes in leaf water status.  相似文献   

4.
5.
Summary In a split root experiment translocation of N from shoot to root was studied using15NO 3 . The three plant species selected for this experiment differed significantly with respect to root NRA. For lupin, maize and cocklebur about 80, 50 and 6% of all absorbed NO 3 was assmilated in the roots, respectively.Although NO 3 was reduced in the roots of lupin and maize plants to a greater extent than required for the roots' demand for organic N, a significant phloem flow of N from shoot to roots was found in these plants. Unexpectedly, for cocklebur, the plant with the very low root NRA, the fraction of total N present in the root that has been imported from the shoot was only half that as found for lupin and maize.  相似文献   

6.
The effect of Ca on the polar movement of [3H]indoleacetic acid ([3H] IAA) in gravistimulated roots was examined using 3-day-old seedlings of maize (Zea mays L.). Transport of label was measured by placing an agar donor block containing [3H]IAA on one side of the elongation zone and measuring movement of label across the root into an agar receiver block on the opposite side. In vertically oriented roots, movement of label across the elongation zone into the receiver was slight and was not enhanced by incorporating 10 millimolar CaCl2 into the receiver block. In horizontally oriented roots, movement of label across the root was readily detectable and movement to a receiver on the bottom was about 3-fold greater than movement in the opposite direction. This polarity was abolished in roots from which the caps were removed prior to gravistimulation. When CaCl2 was incorporated into the receivers, movement of label across horizontally oriented intact roots was increased about 3-fold in both the downward and upward direction. The ability of Ca to enhance the movement of label from [3H]IAA increased with increasing Ca concentration in the receiver up to 5 to 10 millimolar CaCl2. With the inclusion of CaCl2 in the receiver blocks, gravity-induced polar movement of label into receiver blocks from applied [3H]IAA was detectable within 30 minutes, and asymmetric distribution of label within the tissue was detectable within 20 minutes. The results indicate that gravistimulation induces a physiological asymmetry in the auxin transport system of maize roots and that Ca increases the total transport of auxin across the root.  相似文献   

7.
Indole-3-butyric acid (IBA) was identified as an endogenous compound in leaves and roots of maize (Zea mays L.) var Inrakorn by thin layer chromatography, high-performance liquid chromatography, and gas chromatography-mass spectrometry. Its presence was also confirmed in the variety Hazera 224. Indole-3-acetic acid (IAA) was metabolized to IBA in vivo by seedlings of the two maize varieties. The reaction product was identified by thin layer chromatography, high performance liquid chromatography, and gas chromatography-mass spectrometry after incubating the corn seedlings with [14C]IAA and [13C6]IAA. The in vivo conversion of IAA to IBA and the characteristics of IBA formation in two different maize varieties of Zea mays L. (Hazera 224 and Inrakorn) were investigated. IBA-forming activity was examined in the roots, leaves, and coleoptiles of both maize varieties. Whereas in the variety Hazera 224, IBA was formed mostly in the leaves, in the variety Inrakorn, IBA synthesis was detected in the roots as well as in the leaves. A time course study of IBA formation showed that maximum activity was reached in Inrakorn after 1 hour and in Hazera after 2 hours. The pH optimum for the uptake of IAA was 6.0, and that for IBA formation was 7.0. The Km value for IBA formation was 17 micromolar for Inrakorn and 25 micromolar for Hazera 224. The results are discussed with respect to the possible functions of IBA in the plant.  相似文献   

8.
We investigated the possibility of interspecific water transfer in an alfalfa (Medicago sativa L.) and maize (Zea mays L.) association. An alfalfa plant was grown through two vertically stacked plastic tubes. A 5 centimeter air gap between tubes was bridged by alfalfa roots. Five-week old maize plants with roots confined to the top tube were not watered, while associated alfalfa roots had free access to water in the bottom tube (the −/+ treatment). Additional treatments included: top and bottom tubes watered (+/+), top and bottom tubes droughted (−/−), and top tube droughted after removal of alfalfa root bridges and routine removal of alfalfa tillers (−*). Predawn leaf water potential of maize in the −/+ treatment fell to −1.5 megapascals 13 days after the start of drought; thereafter, predawn and midday potentials were maintained near −1.9 megapascals. Leaf water potentials of maize in the −/− and −* treatments declined steadily; all plants in these treatments were completely desiccated before day 50. High levels of tritium activity were detected in water extracted from both alfalfa and maize leaves after 3H2O was injected into the bottom −/+ tube at day 70 or later. Maize in the −/+ treatment was able to survive an otherwise lethal period of drought by utilizing water lost by alfalfa roots.  相似文献   

9.
The electrical response of nitrate-grown maize (Zea mays L.) roots to 0.1 millimolar nitrate was comprised of two sequential parts: a rapid and transient depolarization of the membrane potential, followed by a slower, net hyperpolarization to a value more negative than the original resting potential. The magnitude of the response was smaller in roots of seedlings grown in the absence of nitrate, but, within 3 hours of initial exposure to 0.1 millimolar nitrate, increased to that of nitrate-grown roots. Chloride elicited a separate electrical response with a pattern similar to that of the nitrate response. However, the results presented in this study strongly indicate that the electrical response to nitrate reflects the activity of a nitrate-inducible membrane transport system for nitrate which is distinct from that for chloride. Inhibitors of the plasmalemma H+-ATPase (vanadate, diethylstilbestrol) completely inhibited both parts of the electrical response to nitrate, as did alkaline external pH. The magnitude of the initial nitrate-dependent, membrane potential depolarization was independent of nitrate concentration, but the subsequent nitrate-dependent hyperpolarization showed saturable dependence with an apparent Km of 0.05 millimolar. These results support a model for nitrate uptake in maize roots which includes a depolarizing NO3/H+ symport. The model proposes that the nitrate-dependent membrane potential hyperpolarization is due to the plasma membrane proton pump, which is secondarily stimulated by the operation of the NO3/H+ symport.  相似文献   

10.
The short term uptake of phosphate involving 10 min absorption followed by 5 min desorption, both at 30 °C, in the concentration range 1.0×10?9 to 7.5×10?2 M KH2PO4 by fresh and washed maize (Zea mays L. cv. Ganga Safed-2) roots can be described by a single isotherm having five phases (0 and I–IV) with regularly spaced kinetic constants. Almost identical kinetics were observed in both fresh and washed maize roots. The kinetics of phase 0 in the concentration range 1.0×10?9–3.0×10?5 M. was sigmoidal in fresh maize roots, however, in washed tissue exhibited 2 phases termed here as 0a and 0b. 0a covered the concentration range 1.0×10?9–5.0×10?6 M and 0b 6.0×10?6–3.0×10?5 M. In the concentration range 1.0×10?4–7.5×10?2 M four distinct phases, termed as I, II, III and IV were evident in both fresh and washed maize roots. Each phase obeyed Michaelis—Menten kinetics. The values of Km and Vmax have been estimated for each phase. The uptake isotherm was accompanied by discontinuous transitions.  相似文献   

11.
A transference chamber was developed to measure the osmotic water permeability coefficient (Pos) in protoplasts 40 to 120 μm in diameter. The protoplast was held by a micropipette and submitted to a steep osmotic gradient created in the transference chamber. Pos was derived from the changes in protoplast dimensions, as measured using a light microscope. Permeabilities were in the range 1 to 1000 μm s−1 for the various types of protoplasts tested. The precision for Pos was ≤40%, and within this limit, no asymmetry in the water fluxes was observed. Measurements on protoplasts isolated from 2- to 5-d-old roots revealed a dramatic increase in Pos during root development. A shift in Pos from 10 to 500 μm s−1 occurred within less than 48 h. This phenomenon was found in maize (Zea mays), wheat (Triticum aestivum), and rape (Brassica napus) roots. These results show that early developmental processes modify water-transport properties of the plasma membrane, and that the transference chamber is adapted to the study of water-transport mechanisms in native membranes.  相似文献   

12.
Yan H  Li K  Ding H  Liao C  Li X  Yuan L  Li C 《Journal of plant physiology》2011,168(10):1067-1075
The primary objective of this study was to better understand how root morphological alteration stimulates N uptake in maize plants after root growth restriction, by investigating the changes in length and number of lateral roots, 15NO3 influx, the expression level of the low-affinity Nitrate transporter ZmNrt1.1, and proteomic composition of primary roots. Maize seedlings were hydroponically cultured with three different types of root systems: an intact root system, embryonic roots only, or primary roots only. In spite of sufficient N supply, root growth restriction stimulated compensatory growth of remaining roots, as indicated by the increased lateral root number and root density. On the other hand, there was no significant difference in 15NO3 influx between control and primary root plants; neither in ZmNrt1.1 expression levels in primary roots of different treatments. Our data suggested that increased N uptake by maize seedlings experiencing root growth restriction is attributed to root morphological adaptation, rather than explained by the variation in N uptake activity. Eight proteins were differentially accumulated in embryonic and primary root plants compared to control plants. These differentially accumulated proteins were closely related to signal transduction and increased root growth.  相似文献   

13.
Using a split-root technique, roots of soybean plants were divided between two pots. In one of the two pots, two maize plants were grown and half of those pots were inoculated with the vesicular arbuscular mycorrhizal (VAM) fungus, Glomus fasciculatus. Fifty-two days after planting, 15N-labeled ammonium sulfate was applied to the pots which contained only soybean roots. Forty-eight hours after application, significantly higher values for atom per cent 15N excess were found in roots and leaves of VAM-infected maize plants as compared with the non-VAM-infected maize plants. Results indicated that VAM fungi did enhance N transfer from one plant to another.  相似文献   

14.
Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant−1) and 25.5% (304 mg N2 fixed plant−1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated with PGPR, namely, B. pumilus S1r1, K. pneumoniae Fr1, B. subtilis UPMB10 and Acinetobacter sp. S3r2 at D65 harvest. This study provides evidence that PGPR inoculation, namely, B. pumilus S1r1 can biologically fix atmospheric N2 and provide an alternative technique, besides plant breeding, to delay N remobilisation in maize plant for higher ear yield (up to 30.9%) with reduced fertiliser-N input.  相似文献   

15.
The effect of nitrogen form (NH4-N, NH4-N + NO3, NO3) on nitrate reductase activity in roots and shoots of maize (Zea mays L. cv INRA 508) seedlings was studied. Nitrate reductase activity in leaves was consistent with the well known fact that NO3 increases, and NH4+ and amide-N decrease, nitrate reductase activity. Nitrate reductase activity in the roots, however, could not be explained by the root content of NO3, NH4-N, and amide-N. In roots, nitrate reductase activity in vitro was correlated with the rate of nitrate reduction in vivo. Inasmuch as nitrate reduction results in the production of OH and stimulates the synthesis of organic anions, it was postulated that nitrate reductase activity of roots is stimulated by the released OH or by the synthesized organic anions rather than by nitrate itself. Addition of HCO3 to nutrient solution of maize seedlings resulted in a significant increase of the nitrate reductase activity in the roots. As HCO3, like OH, increases pH and promotes the synthesis of organic anions, this provides circumstantial evidence that alkaline conditions and/or organic anions have a more direct impact on nitrate reductase activity than do NO3, NH4-N, and amide-N.  相似文献   

16.
Active K+ influx was studied in apical segments from maize (Zea mays L., hybrid lines XL 342) and pea (Pisum sativum L. var Laxton superbo) seedlings pretreated with the herbicide chlorsulfuron (2-chloro-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl) aminocarbonyl]benzenesulfonamide).

Even though both plants were sensitive to chlorsulfuron, a strong inhibition of K+ uptake only was evident in maize root segments after 12 hours pretreatment with 10 micromolar chlorsulfuron. The inhibition was revealed only when maize root segments were washed for 2 hours before uptake measurements. This was done in order to recover K+ influx inhibited by cutting injury. Consequently, we demonstrated that roots from chlorsulfuron pretreated maize seedlings lost the capacity to recover from cutting injury by washing. By contrast, K+ influx in pea roots was not inhibited by chlorsulfuron because pea roots notoriously do not exhibit the `washing' effect.

  相似文献   

17.
ABA, H2O2 and Ca2+ play critical roles as signals in the adaptive responses of plants to water and other stresses. They accumulate in plant cells under water and other stresses and induce changes in stress-related gene expressions. CIPKs, protein kinases associated with a calcineurin B-like calcium sensor, play a role in the regulation of stress gene expression in plants. However, it is still unclear whether ABA and H2O2 are key inducers that regulate the changes in CIPK expressions under water stress. In this study, five stress-inducible CIPKs in maize were retrieved from Database. They were designated as ZmCIPK1, 3, 8, 17 and 18, based on their homologies with known CIPK sequences. The expressions of the five ZmCIPKs in maize leaves and roots were analyzed and found to be regulated by PEG, CaCl2, ABA and H2O2 to different extents. Moreover, the effect of ABA and H2O2 on the expressions of ZmCIPKs under water stress was in an organ-dependent manner.  相似文献   

18.
The hypothesized role of secreted reducing compounds in FeIII reduction has been examined with Fe-deficient peanuts (Arachis hypogaea L. cv A124B). Experiments involved the exposure of roots to (a) different gas mixtures, (b) carbonyl cyanide m-chlorophenylhydrazone (CCCP), and (c) agents which impair membrane integrity.

Removing roots from solution and exposing them to air or N2 for 10 minutes did not result in any accumulation in the free space of compounds capable of increasing rates of FeIII reduction when roots were returned to solutions. On the contrary, exposing roots to N2 decreased rates of FeIII reduction. CCCP also decreased rates of FeIII reduction.

Acetic acid and ethylenediaminetetraacetic acid (disodium salt) (EDTA) impaired the integrity and function of the plasma membranes of roots of Fe-deficient peanuts. That is, in the presence of acetic acid or EDTA, there was an efflux of K+ from the roots; K+ (86Rb) uptake was also impaired. Acetic acid increased the efflux from the roots of compounds capable of reducing FeIII. However, both acetic acid and EDTA caused rapid decreases in rates of FeIII reduction by the roots. In addition to peanuts, acetic acid also decreased rates of FeIII reduction by roots of Fe-deficient sunflowers (Helianthus annuus L. cv Sobrid) but not maize (Zea mays L. cv Garbo).

These results suggest that, at least in the short term, the enhanced FeIII reduction by roots of Fe-deficient plants is not due to the secretion of reducing compounds.

  相似文献   

19.
The relative distributions of tree and crop roots in agroforestry associations may affect the degree of complementarity which can be achieved in their capture of below ground resources. Trees which root more deeply than crops may intercept leaching nitrogen and thus improve nitrogen use efficiency. This hypothesis was tested by injection of small doses of (15NH4)2SO4 at 21.8 atom% 15N at different soil depths within established hedgerow intercropping systems on an Ultisol in Lampung, Indonesia. In the top 10 cm of soil in intercrops of maize and trees, root length density (Lrv) of maize was greater than that of Gliricidia sepium trees, which had greater Lrv in this topsoil layer than Peltophorum dasyrrachis trees. Peltophorum trees had a greater proportion of their roots in deeper soil layers than Gliricidia or maize. These vertical root distributions were related to the pattern of recovery of 15N placed at different soil depths; more 15N was recovered by maize and Gliricidia from placements at 5 cm depth than from placements at 45 or 65 cm depth. Peltophorum recovered similar amounts of 15N from placements at each of these depths, and hence had a deeper N uptake distribution than Gliricidiaor maize. Differences in tree Lrv across the cropping alley were comparatively small, and there was no significant difference (P<0.05) in the uptake of 15N placed in topsoil at different distances from hedgerows. A greater proportion of the 15N recovered by maize was found in grain following 15N placement at 45 cm or 65 cm depth than following placement at 5 cm depth, reflecting the later arrival of maize roots in these deeper soil layers. Thus trees have an important role in preventing N leaching from subsoil during early crop establishment, although they themselves showed a lag phase in 15N uptake after pruning. Residual 15N enrichment in soil was strongly related to application depth even 406 days after 15N placement, demonstrating the validity of this approach to mapping root activity distributions.  相似文献   

20.
Xylem probe measurements in the roots of intact plants of wheat and barley revealed that the xylem pressure decreased rapidly when the roots were subjected to osmotic stress (NaCl or sucrose). The magnitude of the xylem pressure response and, in turn, that of the radial reflection coefficients (σr) depended on the transpiration rate. Under very low transpiration conditions (darkness and high relative humidity), σr assumed values of the order of about 0·2–0·4. The σr values of excised roots were also found to be rather low, in agreement with data obtained using the root pressure probe of Steudle. For transpiring plants (light intensities at least 10 μmol m?2 s?1; relative humidity 20–40%) the response was nearly 1:1, corresponding to radial reflection coefficients of σr= 1. Further increase of the light intensity to about 400 μmol m?2 s?1 resulted in a slight but significant decrease of the σr values to about 0·8. Similar measurements on maize roots confirmed our previous results (Zhu et al. 1995, Plant, Cell and Environment 18, 906–912) that, in intact transpiring plants at low light intensities of about 10 μmol m?2 s?1 and at relative humidities of 20–40% as well as in excised roots, the xylem pressure response was much less than expected from the external osmotic pressure (σr values 0·3–0·5). In contrast to wheat and barley, very high light intensities (about 700 μmol m?2 s?1) were needed to shift the radial reflection coefficients of maize roots to values of about 0·9. Osmotically induced xylem pressure changes were apparently linked to changes in turgor pressure in the root cortical parenchyma cells, as shown by simultaneous measurements of xylem and cell turgor pressure. In analogy to the σr values of the respective glycophytes, the σc values of the root cortical cells of wheat and barley were close to unity, whereas σc for maize was significantly smaller (about 0·7) under laboratory conditions. When the light intensity was increased up to about 700 μmol m?2 s?1 the cellular reflection coefficient of maize roots increased to about 0·95. In contrast to the σr values, the σc values of the three species investigated remained almost unchanged when the leaves were exposed to darkness and humidified air or when the roots were cut. The transpiration-dependent (species-specific) pattern of the cellular and radial reflection coefficients of the root compartment of the three glycophytes apparently resulted from (flow-dependent) concentration-polarization and sweep-away effects in the roots of intact plants. The data could be explained straightforwardly terms of theoretical considerations outlined previously by Dainty (1985, Acta Horticulturae 171, 21–31). The far-reaching consequences of this finding for root pressure probe measurements on excised roots, for the occurrence of pressure gradients under transpiring conditions, and for the non-linear flow-force relationships in roots found by other investigators are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号