首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rho GTPases regulate the assembly of cellular actin structures and are activated by GEFs (guanine-nucleotide-exchange factors) and rendered inactive by GAPs (GTPase-activating proteins). Using the Rho GTPases Cdc42, Rac1 and RhoA, and the GTPase-binding portions of the effector proteins p21-activated kinase and Rhophilin1, we have developed split luciferase assays for detecting both GEF and GAP regulation of these GTPases. The system relies on purifying split luciferase fusion proteins of the GTPases and effectors from bacteria, and our results show that the assays replicate GEF and GAP specificities at nanomolar concentrations for several previously characterized Rho family GEFs (Dbl, Vav2, Trio and Asef) and GAPs [p190, Cdc42 GAP and PTPL1-associated RhoGAP]. The assay detected activities associated with purified recombinant GEFs and GAPs, cell lysates expressing exogenous proteins, and immunoprecipitates of endogenous Vav1 and p190. The results demonstrate that the split luciferase system provides an effective sensitive alternative to radioactivity-based assays for detecting GTPase regulatory protein activities and is adaptable to a variety of assay conditions.  相似文献   

2.
CDC42 and FGD1 Cause Distinct Signaling and Transforming Activities   总被引:8,自引:2,他引:6       下载免费PDF全文
Activated forms of different Rho family members (CDC42, Rac1, RhoA, RhoB, and RhoG) have been shown to transform NIH 3T3 cells as well as contribute to Ras transformation. Rho family guanine nucleotide exchange factors (GEFs) (also known as Dbl family proteins) that activate CDC42, Rac1, and RhoA also demonstrate oncogenic potential. The faciogenital dysplasia gene product, FGD1, is a Dbl family member that has recently been shown to function as a CDC42-specific GEF. Mutations within the FGD1 locus cosegregate with faciogenital dysplasia, a multisystemic disorder resulting in extensive growth impairments throughout the skeletal and urogenital systems. Here we demonstrate that FGD1 expression is sufficient to cause tumorigenic transformation of NIH 3T3 fibroblasts. Although both FGD1 and constitutively activated CDC42 cooperated with Raf and showed synergistic focus-forming activity, both quantitative and qualitative differences in their functions were seen. FGD1 and CDC42 also activated common nuclear signaling pathways. However, whereas both showed comparable activation of c-Jun, CDC42 showed stronger activation of serum response factor and FGD1 was consistently a better activator of Elk-1. Although coexpression of FGD1 with specific inhibitors of CDC42 function demonstrated the dependence of FGD1 signaling activity on CDC42 function, FGD1 signaling activities were not always consistent with the direct or exclusive stimulation of CDC42 function. In summary, FGD1 and CDC42 signaling and transformation are distinct, thus suggesting that FGD1 may be mediating some of its biological activities through non-CDC42 targets.  相似文献   

3.
XPLN,a guanine nucleotide exchange factor for RhoA and RhoB,but not RhoC   总被引:3,自引:0,他引:3  
Rho proteins cycle between an inactive, GDP-bound state and an active, GTP-bound state. Activation of these GTPases is mediated by guanine nucleotide exchange factors (GEFs), which promote GDP to GTP exchange. In this study we have characterized XPLN, a Rho family GEF. Like other Rho GEFs, XPLN contains a tandem Dbl homology and pleckstrin homology domain topography, but lacks homology with other known functional domains or motifs. XPLN protein is expressed in the brain, skeletal muscle, heart, kidney, platelets, and macrophage and neuronal cell lines. In vitro, XPLN stimulates guanine nucleotide exchange on RhoA and RhoB, but not RhoC, RhoG, Rac1, or Cdc42. Consistent with these data, XPLN preferentially associates with RhoA and RhoB. The specificity of XPLN for RhoA and RhoB, but not RhoC, is surprising given that they share over 85% sequence identity. We determined that the inability of XPLN to exchange RhoC is mediated by isoleucine 43 in RhoC, a position occupied by valine in RhoA and RhoB. When expressed in cells, XPLN activates RhoA and RhoB, but not RhoC, and stimulates the assembly of stress fibers and focal adhesions in a Rho kinase-dependent manner. We also found that XPLN possesses transforming activity, as determined by focus formation assays. In conclusion, here we describe a Rho family GEF that can discriminate between the closely related RhoA, RhoB, and RhoC, possibly giving insight to the divergent functions of these three proteins.  相似文献   

4.
5.
6.
Reorganization of the actin cytoskeleton is crucial to the formation and function of the immunological synapse. Rho GTPases are critical mediators of cytoskeletal reorganization, and their activity at the synapse is likely to be stringently regulated. Guanine nucleotide exchange factors (GEFs) belonging to the Dbl family of proteins represent one major class of proteins that regulate the activity of Rho GTPases. Here we demonstrate that IBP, a homologue of SWAP-70, is a novel GEF for Rac1 and Cdc42 in T lymphocytes, which is recruited to the immunological synapse upon engagement of the antigen receptor. Mutational analysis supports a model whereby IBP is inactive in unstimulated cells. Upon engagement of the T cell receptor, its GEF activity is enhanced by tyrosine phosphorylation, as well as by binding newly generated phosphatidylinositol 3,4,5-trisphosphate. Although it is known that T cell receptor engagement leads to the recruitment of Vav to the immunological synapse, these findings indicate that other GEFs, such as IBP, also relocalize to this intercellular region. The recruitment and activation of distinct classes of GEFs may allow for precise control of Rho GTPase function at the crucial interface between T cells and antigen presenting cells.  相似文献   

7.
Cell migration requires the coordinated spatiotemporal regulation of actomyosin contraction and cell protrusion/adhesion. Nonmuscle myosin II (MII) controls Rac1 and Cdc42 activation, and cell protrusion and focal complex formation in migrating cells. However, these mechanisms are poorly understood. Here, we show that MII interacts specifically with multiple Dbl family guanine nucleotide exchange factors (GEFs). Binding is mediated by the conserved tandem Dbl homology–pleckstrin homology module, the catalytic site of these GEFs, with dissociation constants of ∼0.3 µM. Binding to the GEFs required assembly of the MII into filaments and actin-stimulated ATPase activity. Binding of MII suppressed GEF activity. Accordingly, inhibition of MII ATPase activity caused release of GEFs and activation of Rho GTPases. Depletion of βPIX GEF in migrating NIH3T3 fibroblasts suppressed lamellipodial protrusions and focal complex formation induced by MII inhibition. The results elucidate a functional link between MII and Rac1/Cdc42 GTPases, which may regulate protrusion/adhesion dynamics in migrating cells.  相似文献   

8.
Signals triggered by diverse receptors modulate the activity of Rho family proteins, although the regulatory mechanism remains largely unknown. On the basis of their biochemical activity as guanine nucleotide exchange factors (GEFs), Dbl family proteins are believed to be implicated in the regulation of Rho family GTP-binding proteins in response to a variety of extracellular stimuli. Here we show that GEF activity of full-length proto-Dbl is enhanced upon tyrosine phosphorylation. When transiently coexpressed with the activated form of the non-receptor tyrosine kinase ACK1, a downstream target of Cdc42, Dbl became tyrosine-phosphorylated. In vitro GEF activity of Dbl toward Rho and Cdc42 was augmented following tyrosine phosphorylation. Moreover, accumulation of the GTP-bound form of Rho and Rac within the cell paralleled ACK-1-dependent tyrosine phosphorylation of Dbl. Consistently, activation of c-Jun N-terminal kinase downstream of Rho family GTP-binding proteins was also enhanced when Dbl was tyrosine-phosphorylated. Collectively, these findings suggest that the tyrosine kinase ACK1 may act as a regulator of Dbl, which in turn activates Rho family proteins.  相似文献   

9.
RhoG is a member of the Rho family of small GTPases and shares high sequence identity with Rac1 and Cdc42. Previous studies suggested that RhoG mediates its effects through activation of Rac1 and Cdc42. To further understand the mechanism of RhoG signaling, we studied its potential activation pathways, downstream signaling properties, and functional relationship to Rac1 and Cdc42 in vivo. First, we determined that RhoG was regulated by guanine nucleotide exchange factors that also activate Rac and/or Cdc42. Vav2 (which activates RhoA, Rac1, and Cdc42) and to a lesser degree Dbs (which activates RhoA and Cdc42) activated RhoG in vitro. Thus, RhoG may be activated concurrently with Rac1 and Cdc42. Second, some effectors of Rac/Cdc42 (IQGAP2, MLK-3, PLD1), but not others (e.g. PAKs, POSH, WASP, Par-6, IRSp53), interacted with RhoG in a GTP-dependent manner. Third, consistent with this differential interaction with effectors, activated RhoG stimulated some (JNK and Akt) but not other (SRF and NF-kappaB) downstream signaling targets of activated Rac1 and Cdc42. Finally, transient transduction of a tat-tagged Rac1(17N) dominant-negative fusion protein inhibited the induction of lamellipodia by the Rac-specific activator, Tiam1, but not by activated RhoG. Together, these data argue that RhoG function is mediated by signals independent of Rac1 and Cdc42 activation and instead by direct utilization of a subset of common effectors.  相似文献   

10.
The Rho family of GTPases plays an important role in coordinating dynamic changes in the cell migration machinery after integrin engagement with the extracellular matrix. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and negatively regulated by GTPase-activating proteins (GAPs). However, the mechanisms by which GEFs and GAPs are spatially and temporally regulated are poorly understood. Here the activity of the proto-oncogene Vav2, a GEF for Rac1, RhoA, and Cdc42, is shown to be regulated by a phosphorylation-dependent interaction with the ArfGAP PKL (GIT2). PKL is required for Vav2 activation downstream of integrin engagement and epidermal growth factor (EGF) stimulation. In turn, Vav2 regulates the subsequent redistribution of PKL and the Rac1 GEF β-PIX to focal adhesions after EGF stimulation, suggesting a feedforward signaling loop that coordinates PKL-dependent Vav2 activation and PKL localization. Of interest, Vav2 is required for the efficient localization of PKL and β-PIX to the leading edge of migrating cells, and knockdown of Vav2 results in a decrease in directional persistence and polarization in migrating cells, suggesting a coordination between PKL/Vav2 signaling and PKL/β-PIX signaling during cell migration.  相似文献   

11.
Recognition of cognate Rho GTPases by guanine-nucleotide exchange factors (GEF) is fundamental to Rho GTPase signaling specificity. Two main GEF families use either the Dbl homology (DH) or the DOCK homology region 2 (DHR-2) catalytic domain. How DHR-2-containing GEFs distinguish between the GTPases Rac and Cdc42 is not known. To determine how these GEFs specifically recognize the two Rho GTPases, we studied the amino acid sequences in Rac2 and Cdc42 that are crucial for activation by DOCK2, a Rac-specific GEF, and DOCK9, a distantly related Cdc42-specific GEF. Two elements in the N-terminal regions of Rac2 and Cdc42 were found to be essential for specific interactions with DOCK2 and DOCK9. One element consists of divergent amino acid residues in the switch 1 regions of the GTPases. Significantly, these residues were also found to be important for GTPase recognition by Rac-specific DOCK180, DOCK3, and DOCK4 GEFs. These findings were unexpected because the same residues were shown previously to interact with GTPase effectors rather than GEFs. The other element comprises divergent residues in the beta3 strand that are known to mediate specific recognition by DH domain containing GEFs. Remarkably, Rac2-to-Cdc42 substitutions of four of these residues were sufficient for Rac2 to be specifically activated by DOCK9. Thus, DOCK2 and DOCK9 specifically recognize Rac2 and Cdc42 through their switch 1 as well as beta2-beta3 regions and the mode of recognition via switch 1 appears to be conserved among diverse Rac-specific DHR-2 GEFs.  相似文献   

12.
Dbl is a representative prototype of a growing family of oncogene products that contain the Dbl homology/pleckstrin homology elements in their primary structures and are associated with a variety of neoplastic pathologies. Members of the Dbl family have been shown to function as physiological activators (guanine nucleotide exchange factors) of the Rho-like small GTPases. Although the expression of GTPase-defective versions of Rho proteins has been shown to induce a transformed phenotype under different conditions, their transformation capacity has been typically weak and incomplete relative to that exhibited by dbl-like oncogenes. Moreover, in some cases (e.g. NIH3T3 fibroblasts), expression of GTPase-defective Cdc42 results in growth inhibition. Thus, in attempting to reconstitute dbl-induced transformation of NIH3T3 fibroblasts, we have generated spontaneously activated ("fast-cycling") mutants of Cdc42, Rac1, and RhoA that mimic the functional effects of activation by the Dbl oncoprotein. When stably expressed in NIH3T3 cells, all three mutants caused the loss of serum dependence and showed increased saturation density. Furthermore, all three stable cell lines were tumorigenic when injected into nude mice. Our data demonstrate that all three Dbl targets need to be activated to promote the full complement of Dbl effects. More importantly, activation of each of these GTP-binding proteins contributes to a different and distinct facet of cellular transformation.  相似文献   

13.
Rho GTPases are activated by a family of guanine nucleotide exchange factors (GEFs) known as Dbl family proteins. The structural basis for how GEFs recognize and activate Rho GTPases is presently ill defined. Here, we utilized the crystal structure of the DH/PH domains of the Rac-specific GEF Tiam1 in complex with Rac1 to determine the structural elements of Rac1 that regulate the specificity of this interaction. We show that residues in the Rac1 beta2-beta3 region are critical for Tiam1 recognition. Additionally, we determined that a single Rac1-to-Cdc42 mutation (W56F) was sufficient to abolish Rac1 sensitivity to Tiam1 and allow recognition by the Cdc42-specific DH/PH domains of Intersectin while not impairing Rac1 downstream activities. Our findings identified unique GEF specificity determinants in Rac1 and provide important insights into the mechanism of DH/PH selection of GTPase targets.  相似文献   

14.
Background Dbl, a guanine nucleotide exchange factor (GEF) for members of the Rho family of small GTPases, is the prototype of a family of 15 related proteins. The majority of proteins that contain a DH (Dbl homology) domain were isolated as oncogenes in transfection assays, but two members of the DH family, FGD1 (the product of the faciogenital dysplasia or Aarskog–Scott syndrome locus) and Vav, have been shown to be essential for normal embryonic development. Mutations to the FGD1 gene result in a human developmental disorder affecting specific skeletal structures, including elements of the face, cervical vertebrae and distal extremities. Homozygous Vav−/− knockout mice embryos are not viable past the blastocyst stage, indicating an essential role of Vav in embryonic implantation.Results Here, we show that the microinjection of FGD1 and Vav into Swiss 3T3 fibroblasts induces the polymerization of actin and the assembly of clustered integrin complexes. FGD1 activates Cdc42, whereas Vav activates Rho, Rac and Cdc42. In addition, FGD1 and Vav stimulate the mitogen activated protein kinase cascade that leads to activation of the c-Jun kinase SAPK/JNK1.Conclusions We conclude that FGD1 and Vav are regulators of the Rho GTPase family. Along with their target proteins Cdc42, Rac and Rho, FGD1 and Vav control essential signals required during embryonic development.  相似文献   

15.
Leukemia-associated Rho guanine nucleotide exchange factor (LARG) was originally identified as a fusion partner with mixed-lineage leukemia in a patient with acute myeloid leukemia. LARG possesses a tandem Dbl homology and pleckstrin homology domain structure and, consequently, may function as an activator of Rho GTPases. In this study, we demonstrate that LARG is a functional Dbl protein. Expression of LARG in cells caused activation of the serum response factor, a known downstream target of Rho-mediated signaling pathways. Transient overexpression of LARG did not activate the extracellular signal-regulated kinase or c-Jun NH(2)-terminal kinase mitogen-activated protein kinase cascade, suggesting LARG is not an activator of Ras, Rac, or Cdc42. We performed in vitro exchange assays where the isolated Dbl homology (DH) or DH/pleckstrin homology domains of LARG functioned as a strong activator of RhoA, but exhibited no activity toward Rac1 or Cdc42. We found that LARG could complex with RhoA, but not Rac or Cdc42, in vitro, and that expression of LARG caused an increase in the levels of the activated GTP-bound form of RhoA, but not Rac1 or Cdc42, in vivo. Thus, we conclude that LARG is a RhoA-specific guanine nucleotide exchange factor. Finally, like activated RhoA, we determined that LARG cooperated with activated Raf-1 to transform NIH3T3 cells. These data demonstrate that LARG is the first functional Dbl protein mutated in cancer and indicate LARG-mediated activation of RhoA may play a role in the development of human leukemias.  相似文献   

16.
We show here that Vav-2, a member of the Vav family of oncoproteins, acts as a guanosine nucleotide exchange factor (GEF) for RhoG and RhoA-like GTPases in a phosphotyrosine-dependent manner. Moreover, we show that Vav-2 oncogenic activation correlates with the acquisition of phosphorylation-independent exchange activity. In vivo, wild-type Vav-2 is activated oncogenically by tyrosine kinases, an effect enhanced further by co-expression of RhoA. Likewise, the Vav-2 oncoprotein synergizes with RhoA and RhoB proteins in cellular transformation. Transient transfection assays in NIH-3T3 cells show that phosphorylated wild-type Vav-2 and the Vav-2 oncoprotein induce cytoskeletal changes resembling those observed by the activation of the RhoG pathway. In contrast, the constitutive expression of the Vav-2 oncoprotein in rodent fibroblasts leads to major alterations in cell morphology and to highly enlarged cells in which karyokinesis and cytokinesis frequently are uncoupled. These results identify a regulated GEF for the RhoA subfamily, provide a biochemical explanation for vav family oncogenicity, and establish a new signaling model in which specific Vav-like proteins couple tyrosine kinase signals with the activation of distinct subsets of the Rho/Rac family of GTPases.  相似文献   

17.
The Dbl family guanine-nucleotide exchange factors (GEFs) for Rho GTPases share the structural array of a Dbl homology (DH) domain in tandem with a Pleckstrin homology (PH) domain. For oncogenic Dbl, the DH domain is responsible for the GEF activity, and the DH-PH module constitutes the minimum structural unit required for cellular transformation. To understand the structure-function relationship of the DH domain, we have investigated the role of specific residues of the DH domain of Dbl in interaction with Rho GTPases and in Dbl-induced transformation. Alanine substitution mutagenesis identified a panel of DH mutants made in the alpha1, alpha6, and alpha9 regions and the PH junction site that suffer complete or partial loss of GEF activity toward Cdc42 and RhoA. Kinetic and binding analysis of these mutants revealed that although most displayed decreased k(cat) values in the GEF reaction, the substrate binding activities of T506A and R634A were significantly reduced. E502A, Q633A, and N673A/D674A, on the other hand, retained the binding capability to the Rho GTPases but lost the GEF catalytic activity. In general, the in vitro GEF activity of the DH mutants correlated with the in vivo Cdc42- and RhoA-activating potential, and the GEF catalytic efficiency mirrored the transforming activity in NIH 3T3 cells. Moreover, the N673A/D674A mutant exhibited a potent dominant-negative effect on serum-induced cell growth and caused retraction of actin structures. These studies identify important sites of the DH domain involved in binding or catalysis of Rho proteins and demonstrate that maintaining a threshold of GEF catalytic activity, in addition to the Rho GTPase binding activity, is essential for efficient transformation by oncogenic Dbl.  相似文献   

18.
Dbl family guanine nucleotide exchange factors (GEFs) are characterized by the presence of a catalytic Dbl homology domain followed invariably by a lipid-binding pleckstrin homology (PH) domain. To date, substrate recognition and specificity of this family of GEFs has been reported to be mediated exclusively via the Dbl homology domain. Here we report the novel and unexpected finding that, in the Dbl family Rac-specific GEF P-Rex2, it is the PH domain that confers substrate specificity and recognition. Moreover, the beta3beta4 loop of the PH domain of P-Rex2 is the determinant for Rac1 recognition, as substitution of the beta3beta4 loop of the PH domain of Dbs (a RhoA- and Cdc42-specific GEF) with that of P-Rex2 confers Rac1-specific binding capability to the PH domain of Dbs. The contact interface between the PH domain of P-Rex2 and Rac1 involves the switch loop and helix 3 of Rac1. Moreover, substitution of helix 3 of Cdc42 with that of Rac1 now enables the PH domain of P-Rex2 to bind this Cdc42 chimera. Despite having the ability to recognize this chimeric Cdc42, P-Rex2 is unable to catalyze nucleotide exchange on Cdc42, suggesting that recognition of substrate and catalysis are two distinct events. Thus substrate recognition can now be added to the growing list of functions that are being attributed to the PH domain of Dbl family GEFs.  相似文献   

19.
Rho GTPases are molecular “switches” that cycle between “on” (GTP-bound) and “off” (GDP-bound) states and regulate numerous cellular activities such as gene expression, protein synthesis, cytoskeletal rearrangements, and metabolic responses. Dysregulation of GTPases is a key feature of many diseases, especially cancers. Guanine nucleotide exchange factors (GEFs) of the Dbl family are activated by mitogenic cell surface receptors and activate the Rho family GTPases Cdc42, Rac1, and RhoA. The molecular mechanisms that regulate GEFs from the Dbl family are poorly understood. Our studies reveal that Dbl is phosphorylated on tyrosine residues upon stimulation by growth factors and that this event is critical for the regulated activation of the GEF. These findings uncover a novel layer of complexity in the physiological regulation of this protein.  相似文献   

20.
Heo J  Thapar R  Campbell SL 《Biochemistry》2005,44(17):6573-6585
Vav proteins are Rho GTPase-specific guanine nucleotide exchange factors (GEFs) that are distinguished by the tandem arrangement of Dbl homology (DH), Pleckstrin homology (PH), and cysteine rich domains (CRD). Whereas the tandem DH-PH arrangement is conserved among Rho GEFs, the presence of the CRD is unique to Vav family members and is required for efficient nucleotide exchange. We provide evidence that Vav2-mediated nucleotide exchange of Rho GTPases follows the Theorell-Chance mechanism in which the Vav2.Rho GTPase complex is the major species during the exchange process and the Vav2.GDP-Mg(2+).Rho GTPase ternary complex is present only transiently. The GTPase specificity for the DH-PH-CRD Vav2 in vitro follows this order: Rac1 > Cdc42 > RhoA. Results obtained from fluorescence anisotropy and NMR chemical shift mapping experiments indicate that the isolated Vav1 CRD is capable of directly associating with Rac1, and residues K116 and S83 that are in the proximity of the P-loop and the guanine base either are part of this binding interface or undergo a conformational change in response to CRD binding. The NMR studies are supported by kinetic measurements on Rac1 mutants S83A, K116A, and K116Q and Vav2 CRD mutant K533A in that these mutants affect both the initial binding event of Vav2 with Rac1 (k(on)) and the rate-limiting dissociation of Vav2 from the Vav2.Rac1 binary complex (thereby influencing the enzyme turnover number, k(cat)). The results suggest that the CRD domain in Vav proteins plays an active role, affecting both the k(on) and the k(cat) for Vav-mediated nucleotide exchange on Rho GTPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号