首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When grown on glucose as principal carbon source the culture medium of Polyporus hispidus was found to contain phenolic acids, including p-coumaric and caffeic acids. 14C-Studies indicated that phenylalanine is converted to cinnamic acid as well as to phenylpyruvic acid and tyrosine in cultures. Cell-free preparations of mycelium contained phenylalanine and tyrosine ammonia-lyse activities and were capable of effecting the hydroxylation of cinnamic, p-coumaric and benzoic acids.  相似文献   

2.
It was found that when Rhodotorula rubra IFO 0911 was grown in a phenylalanine medium, benzoic acid and p-hydroxybenzoic acid besides cinnamic acid were formed in the cultured both. The conversions of cinnamic acid into benzoic acid and of benzoic acid into p-hydroxybenzoic acid, and the degradation of p-hydroxybenzoic acid were demonstrated in intact cells of Rhodotorula rubra. These activities were observed in the cells grown on various media, including the medium containing no phenylalanine, and were found to be distributed widely in Rhodotorula. The cells of Rhodotorula rubra were also able to degrade p-coumaric acid, 3,4-dihydroxybenzoic acid (protocatechuic acid), p-hydroxyphenyl-acetic acid, 3-methoxy-4-hydroxycinnamic acid (ferulic acid) and 3-methoxy-4-hydroxybenzoic acid (vanillic acid). From these results, the metabolic pathways for phenylalanine and tyrosine in Rhodotorula were discussed.  相似文献   

3.
Aims: To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4‐vinylphenol [4VP] and 4‐ethylphenol [4EP]) from the metabolism of p‐coumaric acid by lactic acid bacteria (LAB). Methods and Results: Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p‐coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p‐coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l?1) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Conclusions: Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p‐coumaric acid. On the other hand, tannins exert an inhibitory effect. Significance and Impact of the Study: This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium.  相似文献   

4.
The comparative toxicity of lactic acid, acetic acid, and benzoic acid to tilapia (Oreochromis mossambicus), cladoceran crustacea (Moina micrura), and oligochaete worm (Branchiura sowerbyi) were determined using static bioassay tests. Worms were found most sensitive to all the acids whereas the cladoceran was found most resistant to lactic acid and the fish most resistant to acetic acid and benzoic acid. The 96h LC50 values of lactic acid, acetic acid, and benzoic acid, were, respectively, 257.73, 272.87, and 276.74 mg L?1 for O. mossambicus; 329.12, 163.72, and 71.65 mg L?1 for M. micrura and 50.82, 14.90, and 39.47 mg L?1 for B. sowerbyi. Tilapia lost appetite at sub-lethal concentrations as low as 2.18 mg L?1 lactic acid, 1.26 mg L?1 acetic acid, and 13.84 mg L? 1 of benzoic acid. Growth and reproduction of the fish were affected following 90-day chronic exposure to sub-lethal concentrations of the acids. Minimum effective concentration of the acids that significantly reduced food conversion efficiency (FCE), percent increase of weight, specific growth rate, yield and fecundity of the fish were 2.18, 1.47, and 3.95 mg · L?1 of lactic acid, acetic acid, and benzoic acid, respectively. Effects of acetic acid and benzoic acid on FCE, weight increase, and yield were not significantly different from each other whereas lactic acid produced different effects from acetic acid as well as benzoic acid. Mean values of dissolved oxygen, primary productivity, and plankton populations of the test medium significantly reduced from control at 16.94 mg L?1 lactic acid, 16.79 mg L?1 acetic acid, and 13.84 mg L?1 benzoic acid.  相似文献   

5.
Phenylalanine ammonia-lyase (PAL) activity, 11 phenolic acids and lignin accumulation in Matricaria chamomilla roots exposed to low (3 μM) and high (60 and 120 μM) levels of cadmium (Cd) or copper (Cu) for 7 days were investigated. Five derivatives of cinnamic acid (chlorogenic, p-coumaric, caffeic, ferulic and sinapic acids) and six derivatives of benzoic acid (protocatechuic, vanillic, syringic, p-hydroxybenzoic, salicylic acids and protocatechuic aldehyde) were detected. Accumulation of glycoside-bound phenolics (revealed by acid hydrolysis) was enhanced mainly towards the end of the experiment, being more expressive in Cu-treated roots. Interestingly, chlorogenic acid was extremely elevated by the highest Cu dose (21-fold higher than control) suggesting its involvement in antioxidative protection. All compounds, with the exception of chlorogenic acid, were detected in the cell wall bound fraction, but only benzoic acids were found in the ester-bound fraction (revealed by alkaline hydrolysis). Soluble phenolics were present in substantially higher amounts in Cu-treated roots and more Cu was retained there in comparison to Cd. Cu strongly elevated PAL activity (by 5.4- and 12.1-fold in 60 and 120 μM treatment, respectively) and lignin content (by 71 and 148%, respectively) after one day of treatment, indicating formation of a barrier against metal entrance. Cd had slighter effects, supporting its non-redox active properties. Taken together, different forms of phenolic metabolites play an important role in chamomile tolerance to metal excess and participate in active antioxidative protection.  相似文献   

6.
Abstract

In spite of the simplicity of its molecules, the complex effects of benzoic acids on the regulation of plant growth are an increasingly attractive field of research to chemists and biologists. Halide substituted benzoic acids offer an excellent opportunity to explore the effect of electron withdrawing substituents (fluoro-, chloro-, bromo- and iodo-) on the response of plant growth stage. Under normal physiological conditions, benzoic acids are ionized molecules that exhibit low solubility in water. Monoethanolamine, a natural alkanolamine, was used to generate salts of monoethanolamine of halogenated para-substituted benzoic acids, new compounds with biological activity. This study reports on the biological effects of these substances at different concentrations on Arabidopsis thaliana seed germination and early seedling growth. Seed germination at 22°C, in a vertical position, under a photoperiod of 16 h light and 8 h darkness, was variable depending on the concentration of the compounds applied. Final germination percentages were similar for all treatments and control at 0.05 mM and 0.1 mM (exception p-Br BA and p-I MEASPBA). No germination occurred when seeds were treated with more than 0.5 mM. The results also revealed that the primary root length and the number of secondary roots are reduced in a concentration-dependent manner and also in relation to increasing atomic size of the substituents (F < Cl < Br < I). It is concluded that uptake rates of benzoic acid anions by roots decrease with a decrease in hydrophilic character of the anion and with an increase in molecular size.  相似文献   

7.
Summary Enterobacteria growing on wastewater from olive oil extraction were selected. Among this microflora, strains of Klebsiella oxytoca and Citrobacter diversus able to degrade simple monomeric aromatic compounds were isolated by enrichment culture of the effluent lacking simple sugars. In this preliminary investigation, the phenolic acids tested on solid and liquid media were gentisic, protocatechuic, p-hydroxybenzoic, benzoic, vanillic and ferulic. It was shown that the biodegradation of an aromatic acid is tightly dependent on both the type and the position of the radical substituted on the aromatic ring. Citrobacter was the most efficient strain in metabolizing ferulic acid in liquid medium at a concentration of 1.5 g/l. The substrate biodegradation yield achieved exceeded 86%.  相似文献   

8.
Studies of phenolic compounds were performed during cell suspension cultures in relation with the induction of embryogenic structures in two cultivars of cotton. Coker 312 produced embryogenic structures, unlike R405-2000 which was found to be a non-embryogenic cultivar. Embryogenesis induction in Coker 312 was strongly linked to a higher content of caffeic, ferulic and salicylic acids and to the appearance of p-coumaric acid, benzoic acid, trans-resveratrol, catechin and naringenin.  相似文献   

9.
Soil phenolics and plant growth inhibition   总被引:1,自引:0,他引:1  
Summary Vanillic acid, p-hydroxy benzoic acid, p-coumaric acid and three other unidentified phenolic acids were detected in the Annamalainagar rice field soils. The quantity of total phenols decreased significantly following increased dose of nitrogenous fertilizer. The rice cultivar Co. 13 responded well to increasing N application. When tested in vitro, cinnamic acid even at 0.0001 M concentration proved detrimental to the growth of rice seedlings. The decrease in the level of phenols in soil following increased N application was suggested as one of the causes for prolific growth of rice plants. re]19721024  相似文献   

10.
The carbohydrate and lipid components of mycelium and conidia ofFonsecaea pedrosoi (Brumpt) were analysed by paper, thin-layer and gas-chromatography, mass spectrometry and ultraviolet spectroscopy. Glucose, mannose, galactofuranose, rhamnose and glucosamine were polysaccharide components identified inF. pedrosoi. Significant changes in the carbohydrate pattern occurred during the conversion of mycelium into conidia. Rhamnose was predominant in conidia whereas galactose was prominent in mycelium. Palmitic, stearic, oleic, linoleic, and arachidonic acids were the fatty acids identified in the total lipid fraction. Palmitic and oleic acids were major fatty acids. Marked alterations in the fatty acid constituents were observed between the cell types ofF. pedrosoi. Arachidonic acid was detected only in conidia and linoleic acid was preferentially identified in mycelium. Differences in the sterol composition was also associated with morphogenesis inF. pedrosoi. Two main sterols, ergosterol and another less polar sterol, not fully characterized, were found in mycelium whereas in conidia only the latter sterol was present.  相似文献   

11.
It was found that a new compound of phenylalanine metabolites (2-hydroxy-3-phenylpropenoic acid) and phenylacetic acid were formed in the cultured Czapek medium containing phenylalanine by Aspergillus sojae. 2-Hydroxy-3-phenylpropenoic acid (HPPA) was formed from phenylalanine (d- and l-form) via phenyllactic acid (d- and l-form), and degraded to benzoic acid, p-hydroxybenzoic acid, protocatechuic acid, and catechol in this order.

On the other hand, phenylacetic acid was formed from phenylpyruvic acid, and converted to homogentisic acid via o-hydroxyphenylacetic acid. From these results, a metabolic pathway of phenylalanine in Asp. sojae was proposed.  相似文献   

12.
Weinkove, D., Poyatos, J. A., Greiner, H., Oltra, E., Avalos, J., Fukshansky, L., Barrero, A. F., and Cerdá-Olmedo, E. 1998. Mutants ofPhycomyceswith decreased gallic acid content.Fungal Genetics and Biology25, 196–203. Most plants and some fungi accumulate phenols. Two hydroxybenzoic acids, gallic and protocatechuic acids, are abundant in the giant sporangiophores of the zygomycetePhycomyces blakesleeanus,much more so than in the basal mycelium or the culture medium. The actual concentrations vary with illumination, age of the culture, and composition of the medium. We devised a simple screening procedure to isolatehbamutants whose sporangiophores contained less gallic acid than the wild type. The most useful mutant had very low concentrations of hydroxybenzoic acids in the sporangiophores, but about the same as the wild type in the basal mycelium and the medium. The mutant was only slightly different from the wild type in growth and morphology. Mutant and wild-type sporangiophores grew away from ultraviolet C sources (260 nm) equally well. Contrary to previous conjectures, ultraviolet tropism does not depend on the ultraviolet absorption of gallic acid or other free hydroxybenzoic acids in the sporangiophore. Against expectations, phenols did not impair DNA extraction: sporangiophores produced better DNA preparations than basal mycelia and thehbamutant only slightly better than the wild type.  相似文献   

13.
The lipid composition of the mycelium and sclerotia ofPhymatotrichum omnivorum was compared. The lipids of the mycelium contained 47.9 % polar lipids as compared to 21.4 % in the sclerotia. Sterols represented 10 % of the lipids in sclerotia as contrasted to 3.6 % of the mycelium. More monoglycerides (17.5 %) were detected in the sclerotia as compared to the mycelium (1.6 %). Fatty acid analysis indicated that linoleic acid was the predominant fatty acid in the total fatty acids fraction in both the mycelium and the sclerotia. Palmitic acid was the major free fatty acid in the mycelium, whereas myristic acid was the predominant free fatty acid in the sclerotia. In the fatty acids of the diglycerides of sclerotia, palmitic acid represented 71 % of that fraction, as compared to 6.6 % of the fatty acids of the diglycerides in the mycelium. The major fatty acid in the diglycerides of the mycelium was oleic acid.  相似文献   

14.
Metabolites of Taphrina wiesneri (Rath.) Mix. were examined. Brassicasterol, stearic acid, and p-hydroxyphenylacetic acid were isolated in crystalline form. p-Hydroxybenzoic acid and vanillic acid were identified by paper chromatography and UV measurement. Palmitic acid was identified by gas-chromatography. The fungus produced usually these compounds on any one of four kinds of medium used. p-Hydroxyphenylacetic acid promoted germination of rape seeds at the concentration of 20 ppm in water and showed inhibition at 250 ppm.

Phenolic acids and their related compounds in Japanese flowering cherry leaves infected by Taphrina wiesneri were examined. In the acidic and neutral extracts of infected cherry leaves (I), eighteen compounds positive to diazotized sulfanilic acid and two fluorescent compounds were detected by paper chromatography. Of these compounds, coumarin, 3, 4-dihydrocoumarin, melilotic acid, o- and p-coumaric acids, p-hydroxybenzoic melilotic acid, ferulic acid and caffeic acid were identified. Melilotic acid and coumarin were obtained in crystalline form. The amount of melilotic acid in I was higher than that in healthy leaves independent of sample source, although increased with the growth of cherry leaves.  相似文献   

15.
Abstract

Benzoates and particularly, benzoic acids are known biologically for their effects in the regulation of seed germination. A series of monoethanolamine salts of para-substituted benzoic acids (MEASPBAs), the corresponding acids (BAs) and monoethanolamine (MEA) were tested at different concentrations, on Cucumis sativus L. germination in order to assess their biological activity. The correlation between the effects of different substituents of these salts and the corresponding acids with germination rate, root and shoot length, fresh and dry biomass, soluble protein content, isocitrate lyase (ICL, EC 4.1.3.1) and catalase (CAT, EC 1.11.1.6.) activity, was evaluated. Data showed that p-OH and p-CH3 substituents had a lower inhibitory effect compared to the halogenated substituents. Moreover, the inhibition of root and shoot lengths and the dramatic decrease of fresh biomass for halogenated (p-Cl, p-Br, p-I) MEASPBAs and BAs followed the increase of the atomic size of the substituent.  相似文献   

16.
Wood-decay fungi depend upon recycling of nitrogen-containing molecules to maintain growth in nitrogen-deficient environments. One of the pools that can support growth in these organisms is the pool of free amino acids. The free amino acid (AA) composition of Schizophyllum commune mycelium grown on the surface of nitrogen-rich (M = 6.6 mM L-asparagine) and nitrogen-poor medium (M01 = 0.06 mM L-asparagine) has been examined: When mycelium is grown on M, alanine, glutamate, and asparagine account for almost 2/3 of the amino acid pool. The free amino acid concentration is reduced by 75% for mycelium grown on the M01 medium, with alanine and glutamate predominating. In addition, free NH4+ increases by 60% in nitrogen-deprived mycelia. Except for asparagine, which is absorbed by the apices, the concentration of all free amino acids is higher in the centers of M-grown, 4-day-old mycelia than in the apices. Hyphae grown to exponential growth on M and transferred to M01 for 12 h show greater free amino acid and NH4+ concentrations in the apices, most likely indicating increased translocation to the apices.  相似文献   

17.
Ionic liquids in the form of organic salts are being widely used as new solvent media. In this paper three positional isomers,o-amino benzoic acid,m-amino benzoic acid, andp-amino benzoic acids were separated with four different ionic liquids as mobile phase additives using high performance liquid chromatography (HPLC). The following ionic liquids were used: 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIm][BF4]), 1-ethyl-3-methylimidazolium methylsulfate ([EMIm][MS]), and 1-octyl-3-methylimidazolium methylsulfate ([OMIm][MS]). The effects of the alkyl group length on the imidazolium ring and its counterion, and the concentrations of the ionic liquids on the retention factors and resolutions of amino benzoic acid isomers were tested. The results of the separations with ionic liquids as the eluents were better than those without ionic liquids. Excellent separations of the three isomers were achieved using 2.0≈8.0 mM/L [OMIm][MS] and 1.0≈8.0 mM/L [EMIm][MS] as the eluent modifiers.  相似文献   

18.
The effect of nitrogen source on the free and bound amino acids of mycelium of Phymatotrichum omnivorum (Shear) Dugg was investigated. The largest free amino acid pool was present in the natural medium and the smallest in the synthetic medium. Phymatotrichum omnivorum was able to utilize different nitrogen sources with the best growth occurring with NH4NO3. The ratio of glycine to alanine and aspartic to glutamic was around 0.25 in the free amino acid pool and around 1 in the bound amino acid pool. The free pool of glutamic acid ranged from 5.6 % to 27.2 % depending upon the nitrogen source in the media. The free pool of alanine ranged from 35.7 % to 17.2 % in relation to the nitrogen source. Most other amino acid ratios did not vary significantly between the free amino acids and the bound amino acids.  相似文献   

19.
Glass AD 《Plant physiology》1974,54(6):855-858
The membrane potentials of aged, excised barley (Hordeum vulgare L.) root cells were rapidly depolarized by the addition of salicylic acid (o-hydroxybenzoic acid) to the buffered medium bathing root segments. Initial values for membrane potentials were restored very slowly (within 100 minutes) by replacing the phenolic solution by phenolic-free buffer. Several other naturally occurring benzoic and cinnamic acids depolarized cell membrane potentials. The cinnamic acids consistently caused a greater depolarization than the correspondingly substituted benzoic acids. A strong positive correlation was found between the depolarization values (ΔE) for the benzoic acids and their lipid solubilities. This study supports the hypothesis that the inhibition of ion uptake brought about by naturally occurring phenolic acids is caused by a generalized increase in membrane permeability to inorganic ions.  相似文献   

20.
Summary Citrate synthase (EC 4.1.3.7), aconitate hydratase (EC 4.2.1.3), NADP specific isocitrate dehydrogenase (EC 1.1.1.42), fumarate hydratase (EC 4.2.1.2) and malate dehydrogenase (EC 1.1.1.37) were detected in cell-free preparations of Sclerotinia sclerotiorum (Lib.) D By. grown on liquid glucose-salts medium in stationary culture. Isocitrate lyase (EC 4.1.3.1) was present when the fungus grew on a carbohydrate-free medium but was not detected when the cultures grew on the glucose-salts medium. The amount of oxalate in the culture filtrate declined as the specific activity of citrate synthase and malate dehydrogenase in the mycelium declined. Increasing the initial pH of the medium resulted in an increase of the dicarboxylic acids in the culture filtrate and the specific activity of malate dehydrogenase in the mycelium. The specific reaction(s) leading to oxalic acid formation were not identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号