首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Active bovine selenophosphate synthetase 2, not having selenocysteine   总被引:1,自引:0,他引:1  
During the course of studying selenocysteine (Sec) synthesis mechanisms in mammals, we prepared selenophosphate synthetase (SPS) from bovine liver by 4-step chromatography. In the last step of chromatography of hydroxyapatite, we found a protein band of molecular mass 33 kDa on SDS-PAGE, consistent with the pattern of SPS activity that was indirectly manifested by [75Se]Sec production activity; however, we could not detect significant Se content in this active fraction. We also found a clear band of 33 kDa by Western blotting with antibody against a common peptide (387-401) in SPS2. We detected selenophosphate as the product of this active enzyme in the reaction mixture, composed of ATP, [75Se]H2Se and SPS. Chemically synthesized selenophosphate plays a role in Sec synthesis, not the addition of this enzyme. These results support that the product of SPS2 is selenophosphate itself. During this investigation, the probable sequence of bovine SPS2 not having Sec was reported in the blast information and the molecular mass was near with the protein in this report. Thus, bovine active SPS2 of molecular mass 33 kDa does not contain Sec. K. Furumiya and K. Kanaya contributed equally to this work.  相似文献   

2.
Selenium-containing tRNA was discovered in germinating barley for the first time with the 75Se isotopic tracer technique; therefore, this technique was used to study the effect of different concentrations of selenium and sulfur in the medium on the content of selenium-containing tRNA in germinating barley. Se-containing tRNAs and its hydrolysates were isolated, purified, and characterized by means of column chromatography, ion-exchange chromatography, high-performance liquid chromatography, and the ultraviolet-visible spectrum. The results show that the amount of selenium in tRNA is almost unaffected by the sulfuric content in the medium, and the pathway for selenium and sulfur to enter tRNA might not be exactly the same. Selenium exists within tRNA in the form of 5-methylamine methyl-2-selenouridine, just as it does within a microorganism tRNA.  相似文献   

3.
The aminoacylation of rat liver tRNA with selenocysteine was studied in tissue slices and in a cell-free system with [75Se]selenocysteine and [75Se]selenite as substrates. [75Se]Selenocysteyl tRNA was isolated via phenol extraction, 1 M NaCl extraction and chromatography on DEAE-cellulose. [75Se]Selenocysteyl tRNA was purified on columns of DEAE-Sephacel, benzoylated DEAE-cellulose and Sepharose 4B. In a dual-label aminoacylation with [35S]cysteme, the most highly purified 75Se-fractions were > 100-fold purified relative to 35S. These fractions contained < 0.7% of the [35S]cysteine originally present in the total tRNA. When [35Se]selenocysteyl tRNA was purified from a mixture of 14C-labeled amino acids, over 97% of the [14C]aminoacyl tRNA was removed. The [75Se]selenocysteine was associated with the tRNA via an aminoacyl linkage. Criteria used for identification included alkaline hydrolysis and recovery of [75Se]selenocysteine, reaction with hydroxylamine and recovery of [75Se]selenocysteyl hydroxamic acid and release of 75Se by ribonuclease. The specificity of [75Se]selenocysteine aminoacylation was demonstrated by resistance to competition by a 125-fold molar excess of either unlabeled cysteine or a mixture of the other 19 amino acids in the cell-free selenocysteine aminoacylation system.  相似文献   

4.
The synthesis of glutathione peroxidase from [75Se]selenite was studied in slices and cell-free extracts from rat liver. The incorporation of [75Se]selenocysteine at the active site was detected by carboxymethylation and hydrolysis of partially purified glutathione peroxidase (glutathione:hydrogen peroxide oxidoreductase, EC 1.11.1.9) in the presence of [3H]selenocysteine and subsequent amino acid analysis. The synthesis of glutathione peroxidase in slices was inhibited by cycloheximide or puromycin and 75Se was incorporated from [75Se]selenite into free selenocysteine and selenocysteyl tRNA. Increasing concentrations of selenocystine caused a progressive dilution of the 75Se and a corresponding decrease in glutathione peroxidase labeling. In cell-free systems, [75Se]selenocysteyl tRNA was the best substrate for glutathione peroxidase synthesis. These results indicate the existence in rat liver of the de novo synthesis of free selenocysteine and a translational pathway of selenocysteine incorporation into glutathione peroxidase  相似文献   

5.
《Plant science》1988,57(3):185-193
Sodium[75Se]selenite supplemented culture of Chlamydomonas, wild carrot, tobacco, bamboo, and rice cells as well as mung bean and soybean seedlings incorporated, without exception, 75Se into tRNAs. The content of 75Se-labeled tRNAs ranged from 0.04 to 1.89% of the total tRNAs in these seven plant species. [75Se]tRNA samples of wild carrot and mung bean were fractionated into six or seven seleno-tRNA species by chromatography on RPC-5 column. Samples of tobacco, bamboo and Chlamydomonas each exhibited only a single seleno-tRNA species with a close interspecific resemblance in the elution position among the three samples. All these [75Se]tRNAs contained a new, not yet identified 75Se-labeled nucleoside, whose retention time on HPLC was distinctly different from that of the previously reported bacterial selenonucleosides. [75Se]tRNA samples of rice, tobacco, bamboo, mung bean and Chlamydomonas also contained one or two minor 75Se-labeled nucleosides. These results suggest that (1) selenium-containing tRNAs appear to be widespread in the plant kingdom and (2) a new, not yet characterized selenonucleoside might be universal in plants.  相似文献   

6.
Study of mammalian selenocysteyl-tRNA synthesis with [75Se]HSe   总被引:3,自引:0,他引:3  
The mechanisms of the synthesis of mammalian selenocysteyl-(Scy)-tRNA were studied using [75SE]H2Se. H2Se was prepared from [75Se]selenite, glutathione, NADPH and glutathione reductase, and was purified by chromatography. It was confirmed that this H2Se was a Se donor in the reaction of the synthesis of Scy-tRNA. [75Se]Scy, liberated from aminoacyl-tRNA, was analyzed by TLC on silica gel an subsequent autoradiography. The activity of Scy-tRNA synthesis was found in the supernatant at 105,000 x g of the murine liver extract, but not in the precipitate. The supernatant was chromatographed on DEAE-cellulose, and the activity was eluted at a concentration of 0.17 M KCl. This position is at the front shoulder of the peak of seryl-tRNA synthetase which was eluted at 0.20 M KCl. Major serine tRNA(IGA) is not a substrate on which to synthesize Scy-tRNA, but natural opal suppressor serine tRNA is. On a chromatographic pattern of a Scy-tRNA preparation on Sephacryl S-200, the radioactivity of 75Se was eluted at the tRNA peak. This showed that Scy bound to tRNA. The active protein fraction from DEAE-cellulose did not contain tRNA kinase, therefore Scy-tRNA must be directly synthesized from seryl-tRNA, not through phosphoseryl-tRNA. This mechanism is similar to that seen in Escherichia coli [1991, J. Biol. Chem. 266, 6324].  相似文献   

7.
1. tRNA isolated from non-lactating bovine mammary gland competitively inhibits the formation of aminoacyl-tRNA in the rat liver system. 2. Non-lactating bovine mammary gland tRNA and twice-pyrophosphorolysed rat liver tRNA are unable to accept amino acids in a reaction catalysed by aminoacyl-tRNA synthetases from either rat liver or bovine mammary gland. Deacylated rat liver tRNA can however be aminoacylated in the presence of either enzyme. 3. Bovine mammary gland tRNA lacks the terminal adenine nucleotide at the 3′-terminus amino acid acceptor end, which can be replaced by incubation in the presence of rat liver nucleotide-incorporating enzyme, ATP and CTP. 4. The enzymically modified bovine tRNA (tRNApCpCpA) can bind labelled amino acids to form aminoacyl-tRNA, which can then transfer its labelled amino acids to growing polypeptide chains on ribosomes. 5. Molecules of rat liver tRNA or bovine mammary gland tRNA that lack the terminal adenine nucleotide or the terminal cytosine and adenine nucleotides inhibit the aminoacylation of normal rat liver tRNA to varying degrees. tRNA molecules lacking the terminal −pCpCpA nucleotide sequence exhibit the major inhibitory effect. 6. The enzyme fraction from bovine mammary gland corresponding to that containing the nucleotide-incorporating enzyme in rat liver is unable to catalyse the incorporation of cytosine and adenine nucleotides in pyrophosphorolysed rat liver tRNA and deacylated bovine tRNA. This fraction also markedly inhibits the action of the rat liver nucleotide-incorporating enzyme.  相似文献   

8.
Glycogen synthase from bovine adipose tissue has been kinetically characterized. Glucose 6-phosphate increased enzyme activity 50-fold with an activation constant (A0.5) of 2.6 mm. Mg2+ reversibly decreased this A0.5 to 0.75 mm without changing the amount of stimulation by glucose 6-phosphate. Mg2+ did not alter the apparent Km for UDP-glucose (0.13 mm). The pH optimum was broad and centered at pH 7.6. The glucose 6-phosphate activation of the enzyme was reversible and competitively inhibited by ATP (Ki = 0.6 mm) and Pi(Ki = 2.0 mm). The use of exogenous sources of glycogen synthase and glycogen synthase phosphatase suggests that (i) adipose tissue glycogen synthase phosphatase activity in fed mature steers is low or undetectable, and (ii) endogenous bovine adipose tissue glycogen synthase can be activated to other glucose 6-phosphate-dependent forms by addition of adipose tissue extracts from fasted steers or fed rats.  相似文献   

9.
Escherichia coli has eight genes predicted to encode sulfurtransferases having the active site consensus sequence Cys-Xaa-Xaa-Gly. One of these genes, ybbB, is frequently found within bacterial operons that contain selD, the selenophosphate synthetase gene, suggesting a role in selenium metabolism. We show that ybbB is required in vivo for the specific substitution of selenium for sulfur in 2-thiouridine residues in E. coli tRNA. This modified tRNA nucleoside, 5-methylaminomethyl-2-selenouridine (mnm(5)se(2)U), is located at the wobble position of the anticodons of tRNA(Lys), tRNA(Glu), and tRNA(1)(Gln). Nucleoside analysis of tRNAs from wild-type and ybbB mutant strains revealed that production of mnm(5)se(2)U is lost in the ybbB mutant but that 5-methylaminomethyl-2-thiouridine, the mnm(5)se(2)U precursor, is unaffected by deletion of ybbB. Thus, ybbB is not required for the initial sulfurtransferase reaction but rather encodes a 2-selenouridine synthase that replaces a sulfur atom in 2-thiouridine in tRNA with selenium. Purified 2-selenouridine synthase containing a C-terminal His(6) tag exhibited spectral properties consistent with tRNA bound to the enzyme. In vitro mnm(5)se(2)U synthesis is shown to be dependent on 2-selenouridine synthase, SePO(3), and tRNA. Finally, we demonstrate that the conserved Cys(97) (but not Cys(96)) in the rhodanese sequence motif Cys(96)-Cys(97)-Xaa-Xaa-Gly is required for 2-selenouridine synthase in vivo activity. These data are consistent with the ybbB gene encoding a tRNA 2-selenouridine synthase and identifies a new role for the rhodanese homology domain in enzymes.  相似文献   

10.
The selenoenzyme glutathione peroxidase cannot account for all the physiological effects of selenium in rat liver. Therefore, a study was carried out with the ultimate aim of identifying selenoproteins other than glutathione peroxidase. The incorporation of 75Se, given as 75SeO32?, into centrifugally separated fractions of selenium-deficient and control rat livers was determined. In selenium-deficient liver much less 75Se was incorporated into the 105,000g supernatant fraction than in controls, so this fraction was studied further by gel filtration, ion-exchange, and hydroxylapatite chromatography. Selenoglutathione peroxidase and another selenoprotein, called 75Se-P, were separated and identified. Both these selenoproteins were also found in plasma. Selenium deficiency had opposite effects on incorporation of 75Se by these proteins. It decreased 75Se incorporation by glutathione peroxidase at 3 and 72 h after 75Se injection but increased 75Se incorporation by 75Se-P. This suggests that 75Se-P competes for available selenium better than does glutathione peroxidase when the element is in short supply. Apparent molecular weights of 75Se-P from liver and plasma determined by gel filtration were, respectively, 83,000 and 79,000, which indicate proteins smaller than glutathione peroxidase. Cycloheximide pretreatment of the rat blocked 75Se incorporation into plasma 75Se-P. These experiments establish the existence of a selenoprotein, 75Se-P, in rat liver and plasma which is chromatographically distinct from glutathione peroxidase and which incorporates 75Se differently from glutathione peroxidase. 75Se-P may account for some of the physiological effects of selenium.  相似文献   

11.
A bovine liver serine tRNA with a variety of unusual features has been sequenced and characterized. This tRNA is aminoacylated with serine, although it has a tryptophan anticodon CmCA. In ribosome binding assays, this tRNA (tRNACmCASer) binds to the termination codon UGA and shows little or no binding in response to a variety of other codons including those for tryptophan and serine. The unusual codon recognition properties of this molecule were confirmed in an in vitro assay where this tRNA suppressed UGA termination. This is the first naturally occurring eucaryotic suppressor tRNA to be so characterized. Other unusual features, possibly related to the ability of this tRNA to read UGA, are the presence of two extra nucleotides, compared to all other tRNAs, between the universal residues U at position 8 and A at position 14 and the presence of an extra unpaired nucleotide within the double-stranded loop IV stem. This tRNA is also the largest eucaryotic tRNA sequenced to date (90 nucleotides). Despite its size, however, it contains only six modified residues. tRNACmCASer shows extremely low homology to other mammalian serine (47–52% homology) or tryptophan (49% homology) tRNAs.  相似文献   

12.
The erythrocyte-free, isolated perfused rat liver was used to study the incorporation of selenium into glutathione peroxidase. Gel filtration and ion exchange chromatography of liver supernatant demonstrated 75Se incorporation into glutathione peroxidase. A 9-fold excess of unlabelled selenium as selenite or selenide very effectively reduced 75Se incorporation from L[75Se]-selenocystine, but a 100-fold excess of unlabelled selenium as selenocystine was relatively ineffective as compared to selenite or selenide in diluting 75Se incorporation from [75Se]selenite. These results indicate that selenide and selenite are more readily metabolized than is selenocysteine to the immediate selenium precursor used for glutathione peroxidase synthesis, and suggest a posttranslational modification at another amino acid residue, rather than direct incorporation of selenocysteine, as the mechanism for formation of the presumed selenocysteine moiety of the enzyme.  相似文献   

13.
The molecular structure of plasma and erythrocyte selenium-dependent glutatione peroxidase (GSH-Px) was studied in rats drinking water containing [75Se]selenious acid, 1.3 mg Se/L. Substantial differences were found using three-step fractionation, including gel filtration of crude plasma and erythrocyte lysate, gel filtration of75Se-GSH-Px treated by mercaptoethanol, and SDS-electrophoresis. Native plasma75Se-GSH-Px, which exhibited a molecular weight (M r) of approx 700,000, could be destroyed by mercaptoethanol action, resulting in disintegration of enzyme into several different75Se-protein fragments and release of part of low-mol-wt75Se. Native erythrocyte75Se-GSH-PxM r, value was found to be 113,000; two75Se-protein fragments arose after mercaptoethanol treatment without75Se release from the enzyme. The75Se-subunits of 22,500 and 21,900 were isolated from plasma and erythrocyte75Se-GSH-Px, respectively. Another minor75Se-GSH-Px was identified in erythrocyte lysate (M r, 214,000, subunit 22,100), which was considered to be a dimer of the above-mentioned erythrocyte enzyme. It can be assumed, based on these data, that native plasma GSH-Px, in contrast to erythrocyte enzyme, represents a high-molecular wt complex composed of several tetramers linked with S—S bonds. A certain part of selenium present in this complex is probably not selenocysteine and may be released with the mercaptoethanol treatment.  相似文献   

14.
Using the cDNA of bovine lung prostaglandin F synthase (EC 1.1.1.2) as a probe, we isolated a clone from a bovine liver cDNA library which differed in only eleven nucleotides from the probe. The corresponding protein contained three amino acid substitutions, including a leucine residue which is conserved throughout all aldo-keto reductases. We inserted the liver cDNA into expression vector pUC19 and expressed the recombinant liver enzyme in E.coli. The purified liver enzyme reduced prostaglandin H2 as well as prostaglandin D2 and various carbonyl compounds. The high relative activity against prostaglandin H2 in combination with a high Km value for prostaglandin D2 identified this liver enzyme as a lung type prostaglandin F synthase. However, the binding constant for NADPH of the liver enzyme was 3.5 fold higher than that of lung prostaglandin F synthase.  相似文献   

15.
The photoinduced reaction of phenylalanyl-tRNA synthetase (E.C. 6.1.1.20) from E.coli MRE-600 with tRNAphe containing photoreative p-N3-C6H4-NHCOCH2-group attached to 4-thiouridine sU8 (azido-tRNAphe) was investigated. The attachment of this group does not influence the dissociation constant of the complex of Phe-tRNAphe with the enzyme,however it results in sevenfold increase of Km in the enzymatic aminoacylation of tRNAphe. Under irradiation at 300 nm at pH 5.8 the covalent binding of [14C]-Phe-azido-tRNAphe to the enzyme takes place 0.3 moles of the reagent being attached per mole of the enzyme. tRNA prevents the reaction. Phenylalanine, ATP,ADP,AMP, adenosine and pyrophosphate (2.5 × x 10−3 M) don't affect neither the stability of the tRNA-enzyme complex nor the rate of the affinity labelling. The presence of the mixture of either phenylalanine or phenylalaninol with ATP as well as phenylalaninol adenylate exibits 50% inhibition of the photoinduced reaction. Therefore, the reaction of [14C]-Phe-azido-tRNA with the enzyme is significantly less sensitive to the presence of the ligands than the reaction of chlorambucilyl-tRNA with the reactive group attached to the acceptor end of the tRNA studied in 1. It has been concluded that the kinetics of the affinity labelling does permit to discriminate the influence of the low molecular weight ligands of the enzyme on the different sites of the tRNA - enzyme interaction.  相似文献   

16.
Thalassiosira pseudonana Husedt (Hasle and Heimdal) clone 3H was grown in axenic culture in artificial seawater medium containing 10−8 molar Na275SeO3. Biochemical distribution of radiolabeled Se was determined by solvent extraction techniques, gel filtration, and polyacrylamide gel electrophoresis. Of the total cellular Se, 51% was protein bound. Two soluble macromolecules of 21 and 29 kilodaltons contained 75Se. These results are the first to provide evidence of specific Se-containing compounds in a photosynthetic organism. Glutathione peroxidase (GSH-Px) activity was measured in cell-free extracts and on nondenaturing polyacrylamide gels by a glutathione-reductase coupled assay. Two enzymes showing GSH-Px activity were present. One enzyme was active with H2O2 and tert-butyl hydroperoxide (tBOOH); consistent with known Sedependent GSH-Pxs, but the other enzyme was only active with tBOOH. Co-migration of the H2O2-active GSH-Px and 75Se on nondenaturing polyacrylamide gels provides evidence that T. pseudonana contains a Sedependent GSH-Px. The molecular weight of one of the 75Se-labeled macromolecules is identical with the weight of previously characterized GSH-PX subunits. We conclude that the obligate requirement for Se in Thalassiosira pseudonana is due in part to the presence of the selenoenzyme glutathione peroxidase.  相似文献   

17.
It has been established that the hydrogenase from autotrophically cultured Bradyrhizobium japonicum contains selenium as a bound constituent. About 80% of the enzyme selenium remains bound during precipitation with 5% trichloroacetic acid (TCA). However, 85% of the selenium bound to the enzyme is released by a combined treatment of urea, heat and TCA. Neither selenomethionine nor selenocysteine could be detected on analysis of anaerobically hydrolyzed enzyme. These results are consistent with the report showing that the structural genes for this enzyme do not contain a TGA codon (Sayavedra-Soto et al. 1988) which has been reported to code for selenocysteine incorporation into several proteins (Chambers et al. 1986; Zinoni et al. 1986; Stadtman 1987). We have demonstrated that 75Se from the labeled hydrolyzed enzyme forms the derivative' selenodicysteine. The form of selenium resulting in the synthesis of this derivative apparently is SeO inf3 sup= or a compound such as Se= which is easily oxidized to SeO inf3 sup= . In a separate approach it was established that 12–16% of the total 75Se in the native enzyme reacted with 2,3-diaminonaphthalene indicating that this fraction was present as SeO inf3 sup= . The remaining 75Se was bound to the enzyme protein. From this research, we concluded that Se in Bradyrhizobium japonicum hydrogenase is present in a labile bound form. In this respect, this enzyme is similar to xanthine dehydrogenase and nicotinic acid hydroxylase, both of which contain labile Se constituents that have not been defined.Technical paper no. 8980 from the Oregon Agricultural Experiment Station  相似文献   

18.
An enzyme was purified from rat liver and leukemic rat spleen which methylates guanosine residues in tRNA to N2-methylguanosine. By sequence analysis of bulk E. coli tRNA methylated with crude extracts it was shown that the enzyme is responsible for about 50% of total m2G formed invitro. The extent of methylation of a number of homogenous tRNA species was measured using the purified enzyme from both sources. Among tested E. coli tRNAs only tRNAArg, tRNAPhe, and tRNAVal yielded significantly more m2G than the bulk tRNA. The Km for tRNAArg in the methylation reaction with enzymes from either tissue was 7.8 × 10−7 M as compared to the value 1 × 10−5 M obtained for the bulk tRNA. In a pancreatic RNase digest of bulk tRNA as well as of pure tRNAArg, tRNAPhe, and tRNAVal, A-m2G-Cp was found to be the only sequence methylated. Thus, the mammalian methyltransferase specifically recognizes the guanylate residue at position 10 from the 5′-end contained in a sequence (s4)U-A-G-Cp. Furthermore, there is no change between the enzyme from normal liver and leukemic spleen in the affinity for tRNA, the methylating capacity, and tRNA site and sequence recognition specificity.  相似文献   

19.
Unfractionated rabbit liver tRNA, charged with [3H]methionine by use of rat liver enzymes, was separated into two [3H]methionine-containing fractions by column chromatography on Sepharose 4B. The two fractions were identified as Met-tRNAm Met and Met-tRNAf met by (a) their different ability to form a GTP- -dependent ternary complex with IF-MP, and (b) the absence of the first fraction after selective charging of the tRNA with E. coli amino acyl tRNA synthetase. The methionine residue was without noticeable influence on the separation.  相似文献   

20.
3-Methylcrotonyl-CoA carboxylase (MCase), an enzyme of the leucine oxidation pathway, was highly purified from bovine kidney. The native enzyme has an approximate molecular weight of 835,000 as measured from exclusion limits by polyacrylamide gel electrophoresis at pH 7.3. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated two subunits, identified as a biotin-free subunit (A subunit; Mr = 61,000) and a biotin-containing subunit (B subunit; Mr = 73,500). The biotin content of the enzyme was 1 mol/ 157,000 g protein, consistent with an AB protomeric structure for the enzyme. The isoelectric point of the enzyme was found to be 5.4. Maximal MCase activity was found at pH 8 and 38 °C in the presence of Mg2+ and an activating monovalent cation such as K+. Kinetic constants (Km values) for the enzyme substrates were: 3-methylcrotonyl-CoA, 75 μm; ATP, 82 μm; HCO3?, 1.8 mm. Certain acyl-CoA derivatives, including crotonyl-CoA, (2Z)-3-ethylcrotonyl-CoA, and acetoacetyl-CoA, were also substrates for the enzyme. Some data on inhibition of the enzyme by acyl-CoA derivatives, and sulfhydryl- and arginyl-reagents, are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号