首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrP(Sc), suggesting that these domains of cellular prion protein (PrP(C)) serve as docking sites for PrP(Sc) during prion propagation. To examine the role of polybasic domains in the context of full-length PrP(C), we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ~5 rounds of sPMCA, PrP(Sc) molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrP(Sc) prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrP(Sc) molecules. Remarkably, ΔC-PrP(Sc) and other polybasic domain PrP(Sc) molecules displayed diminished or absent biological infectivity relative to wild-type PrP(Sc), despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrP(Sc) prions interact with PrP(C) molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrP(Sc) propagation. Furthermore, polybasic domain deficient PrP(Sc) molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrP(Sc) molecules may not depend on a single stereotypic mechanism, but that normal PrP(C)/PrP(Sc) interaction through polybasic domains may be required to generate prion infectivity.  相似文献   

2.
Aberrant folding of the mammalian prion protein (PrP) is linked to prion diseases in humans and animals. We show that during post-translational targeting of PrP to the endoplasmic reticulum (ER) the putative transmembrane domain induces misfolding of PrP in the cytosol and interferes with its import into the ER. Unglycosylated and misfolded PrP with an uncleaved N-terminal signal sequence associates with ER membranes, and, moreover, decreases cell viability. PrP expressed in the cytosol, lacking the N-terminal ER targeting sequence, also adopts a misfolded conformation; however, this has no adverse effect on cell growth. PrP processing, productive ER import, and cellular viability can be restored either by deleting the putative transmembrane domain or by using a N-terminal signal sequence specific for co-translational ER import. Our study reveals that the putative transmembrane domain features in the formation of misfolded PrP conformers and indicates that post-translational targeting of PrP to the ER can decrease cell viability.  相似文献   

3.
The pathological conversion of cellular prion protein (PrP(C)) into the scrapie prion protein (PrP(Sc)) isoform appears to have a central role in the pathogenesis of transmissible spongiform encephalopathies. However, the identity of the intracellular compartment where this conversion occurs is unknown. Several lines of evidence indicate that detergent-resistant membrane domains (DRMs or rafts) could be involved in this process. We have characterized the association of PrP(C) to rafts during its biosynthesis. We found that PrP(C) associates with rafts already as an immature precursor in the endoplasmic reticulum. Interestingly, compared with the mature protein, the immature diglycosylated form has a different susceptibility to cholesterol depletion vs. sphingolipid depletion, suggesting that the two forms associate with different lipid domains. We also found that cholesterol depletion, which affects raft-association of the immature protein, slows down protein maturation and leads to protein misfolding. On the contrary, sphingolipid depletion does not have any effect on the kinetics of protein maturation or on the conformation of the protein. These data indicate that the early association of PrP(C) with cholesterol-enriched rafts facilitates its correct folding and reinforce the hypothesis that cholesterol and sphingolipids have different roles in PrP metabolism.  相似文献   

4.
In this study, we established Neuro2a (N2a) neuroblastoma subclones and characterized their susceptibility to prion infection. The N2a cells were treated with brain homogenates from mice infected with mouse prion strain Chandler. Of 31 N2a subclones, 19 were susceptible to prion as those cells became positive for abnormal isoform of prion protein (PrP(Sc)) for up to 9 serial passages, and the remaining 12 subclones were classified as unsusceptible. The susceptible N2a subclones expressed cellular prion protein (PrP(C)) at levels similar to the parental N2a cells. In contrast, there was a variation in PrP(C) expression in unsusceptible N2a subclones. For example, subclone N2a-1 expressed PrP(C) at the same level as the parental N2a cells and prion-susceptible subclones, whereas subclone N2a-24 expressed much lower levels of PrP mRNA and PrP(C) than the parental N2a cells. There was no difference in the binding of PrP(Sc) to prion-susceptible and unsusceptible N2a subclones regardless of their PrP(C) expression level, suggesting that the binding of PrP(Sc) to cells is not a major determinant for prion susceptibility. Stable expression of PrP(C) did not confer susceptibility to prion in unsusceptible subclones. Furthermore, the existence of prion-unsusceptible N2a subclones that expressed PrP(C) at levels similar to prion-susceptible subclones, indicated that a host factor(s) other than PrP(C) and/or specific cellular microenvironments are required for the propagation of prion in N2a cells. The prion-susceptible and -unsusceptible N2a subclones established in this study should be useful for identifying the host factor(s) involved in the prion propagation.  相似文献   

5.
Oxidative stress and misfolding of the prion protein (PrP(C)) are fundamental to prion diseases. We have therefore probed the effect of oxidation on the structure and stability of PrP(C). Urea unfolding studies indicate that H(2)O(2) oxidation reduces the thermodynamic stability of PrP(C) by as much as 9 kJ/mol. (1)H-(15)N NMR studies indicate methionine oxidation perturbs key hydrophobic residues on one face of helix-C as follows: Met-205, Val-209, and Met-212 together with residues Val-160 and Tyr-156. These hydrophobic residues pack together and form the structured core of the protein, stabilizing its ternary structure. Copper-catalyzed oxidation of PrP(C) causes a more significant alteration of the structure, generating a monomeric molten globule species that retains its native helical content. Further copper-catalyzed oxidation promotes extended β-strand structures that lack a cooperative fold. This transition from the helical molten globule to β-conformation has striking similarities to a misfolding intermediate generated at low pH. PrP may therefore share a generic misfolding pathway to amyloid fibers, irrespective of the conditions promoting misfolding. Our observations support the hypothesis that oxidation of PrP destabilizes the native fold of PrP(C), facilitating the transition to PrP(Sc). This study gives a structural and thermodynamic explanation for the high levels of oxidized methionine in scrapie isolates.  相似文献   

6.
The cellular prion protein (PrP(c)) plays a crucial role in the pathogenesis of prion diseases, but its physiological function is far from understood. Several candidate functions have been proposed including binding and internalization of metal ions, a superoxide dismutase-like activity, regulation of cellular antioxidant activities, and signal transduction. The transmembrane (TM1) region of PrP(c) (residues 110-135) is particularly interesting because of its very high evolutionary conservation. We investigated a possible role of TM1 in the antioxidant defense, by assessing the impact of overexpressing wt-PrP or deletion mutants in N(2)A mouse neuroblastoma cells on intracellular reactive oxygen species (ROS) levels. Under conditions of oxidative stress, intracellular ROS levels were significantly lowered in cells overexpressing either wild-type PrP(c) (wt-PrP) or a deletion mutant affecting TM1 (Delta8TM1-PrP), but, as expected, not in cultures overexpressing a deletion mutant lacking the octapeptide region (Deltaocta-PrP). Overexpression of wt-PrP, Delta8TM1-PrP, or Deltaocta-PrP did not affect basal ROS levels. Interestingly, the mitochondrial membrane potential was significantly lowered in Deltaocta-PrP-transfected cultures in the absence of oxidative stress. We conclude that the protective effect of PrP(c) against oxidative stress involves the octarepeat region but not the TM1 domain nor the high-affinity copper binding site described for human residues His96/His111.  相似文献   

7.
A hallmark in prion diseases is the conformational transition of the cellular prion protein (PrP(C)) into a pathogenic conformation, designated scrapie prion protein (PrP(Sc)), which is the essential constituent of infectious prions. Here, we show that epigallocatechin gallate (EGCG) and gallocatechin gallate, the main polyphenols in green tea, induce the transition of mature PrP(C) into a detergent-insoluble conformation distinct from PrP(Sc). The PrP conformer induced by EGCG was rapidly internalized from the plasma membrane and degraded in lysosomal compartments. Isothermal titration calorimetry studies revealed that EGCG directly interacts with PrP leading to the destabilizing of the native conformation and the formation of random coil structures. This activity was dependent on the gallate side chain and the three hydroxyl groups of the trihydroxyphenyl side chain. In scrapie-infected cells EGCG treatment was beneficial; formation of PrP(Sc) ceased. However, in uninfected cells EGCG interfered with the stress-protective activity of PrP(C). As a consequence, EGCG-treated cells showed enhanced vulnerability to stress conditions. Our study emphasizes the important role of PrP(C) to protect cells from stress and indicate efficient intracellular pathways to degrade non-native conformations of PrP(C).  相似文献   

8.
The prion protein (PrP) is a Cu(2+) binding cell surface glycoprotein that can misfold into a beta-sheet-rich conformation to cause prion diseases. The majority of copper binding studies have concentrated on the octarepeat region of PrP. However, using a range of spectroscopic techniques, we show that copper binds preferentially to an unstructured region of PrP between residues 90 and 115, outside of the octarepeat domain. Comparison of recombinant PrP with PrP-(91-115) indicates that this prion fragment is a good model for Cu(2+) binding to the full-length protein. In contrast to previous reports we show that Cu(2+) binds to this region of PrP with a nanomolar dissociation constant. NMR and EPR spectroscopy indicate a square-planar or square-pyramidal Cu(2+) coordination utilizing histidine residues. Studies with PrP analogues show that the high affinity site requires both His(96) and His(111) as Cu(2+) ligands, rather than a complex centered on His(96) as has been previously suggested. Our circular dichroism studies indicate a loss of irregular structure on copper coordination with an increase in beta-sheet conformation. It has been shown that this unstructured region, between residues 90 and 120, is vital for prion propagation and different strains of prion disease have been linked with copper binding. The role of Cu(2+) in prion misfolding and disease must now be re-evaluated in the light of these findings.  相似文献   

9.
Recently, we identified the 37-kDa laminin receptor precursor (LRP) as an interactor for the prion protein (PrP). Here, we show the presence of the 37-kDa LRP and its mature 67-kDa form termed high-affinity laminin receptor (LR) in plasma membrane fractions of N2a cells, whereas only the 37-kDa LRP was detected in baby hamster kidney (BHK) cells. PrP co-localizes with LRP/LR on the surface of N2a cells and Semliki Forest virus (SFV) RNA transfected BHK cells. Cell-binding assays reveal the LRP/LR-dependent binding of cellular PrP by neuronal and non-neuronal cells. Hyperexpression of LRP on the surface of BHK cells results in the binding of exogenous PrP. Cell binding is similar in PrP(+/+) and PrP(0/0) primary neurons, demonstrating that PrP does not act as a co-receptor of LRP/LR. LRP/LR-dependent internalization of PrP is blocked at 4 degrees C. Secretion of an LRP mutant lacking the transmembrane domain (aa 86-101) from BHK cells abolishes PrP binding and internalization. Our results show that LRP/LR acts as the receptor for cellular PrP on the surface of mammalian cells.  相似文献   

10.
11.
Prion diseases are fatal neurodegenerative disorders, and the conformational conversion of normal cellular prion protein (PrP(C)) into its pathogenic, amyloidogenic isoform (PrP(Sc)) is the essential event in the pathogenesis of these diseases. Lactoferrin (LF) is a cationic iron-binding glycoprotein belonging to the transferrin (TF) family, which accumulates in the amyloid deposits in the brain in neurodegenerative disorders, such as Alzheimer's disease and Pick's disease. In the present study, we have examined the effects of LF on PrP(Sc) formation by using cell culture models. Bovine LF inhibited PrP(Sc) accumulation in scrapie-infected cells in a time- and dose-dependent manner, whereas TF was not inhibitory. Bioassays of LF-treated cells demonstrated prolonged incubation periods compared with non-treated cells indicating a reduction of prion infectivity. LF mediated the cell surface retention of PrP(C) by diminishing its internalization and was capable of interacting with PrP(C) in addition to PrP(Sc). Furthermore, LF partially inhibited the formation of protease-resistant PrP as determined by the protein misfolding cyclic amplification assay. Our results suggest that LF has multifunctional antiprion activities.  相似文献   

12.
The prion protein (PrP) in a living cell is associated with cellular membranes. However, all previous biophysical studies with the recombinant prion protein have been performed in an aqueous solution. To determine the effect of a membrane environment on the conformational structure of PrP, we studied the interaction of the recombinant human prion protein with model lipid membranes. The protein was found to bind to acidic lipid-containing membrane vesicles. This interaction is pH-dependent and becomes particularly strong under acidic conditions. Spectroscopic data show that membrane binding of PrP results in a significant ordering of the N-terminal part of the molecule. The folded C-terminal domain, on the other hand, becomes destabilized upon binding to the membrane surface, especially at low pH. Overall, these results show that the conformational structure and stability of the recombinant human PrP in a membrane environment are substantially different from those of the free protein in solution. These observations have important implications for understanding the mechanism of the conversion between the normal (PrP(C)) and pathogenic (PrP(Sc)) forms of prion protein.  相似文献   

13.
The conversion of cellular prion protein (PrP(C)) to the disease-associated misfolded isoform (PrP(Sc)) is an essential process for prion replication. This structural conversion can be modelled in protein misfolding cyclic amplification (PMCA) reactions in which PrP(Sc) is inoculated into healthy hamster brain homogenate, followed by cycles of incubation and sonication. In serial transmission PMCA experiments it has recently been shown that the protease-resistant PrP obtained in vitro (PrPres) is generated by an autocatalytic mechanism. Here, serial transmission PMCA experiments were compared with serial transmission reactions lacking the sonication steps. We achieved approximately 200,000-fold PrPres amplification by PMCA. In contrast, although initial amplification was comparable to PMCA reactions, PrPres levels quickly dropped below detection limit when samples were not subjected to ultrasound. These results indicate that aggregate breakage is essential for efficient autocatalytic amplification of misfolded prion protein and suggest an important role of aggregate breakage in prion propagation.  相似文献   

14.
The central role of the prion protein (PrP) in a family of fatal neurodegenerate diseases has garnered considerable research interest over the past two decades. Moreover, the role of PrP in neuronal development, as well as its apparent role in metal homeostasis, is increasingly of interest. The host-encoded form of the prion protein (PrP(C)) binds multiple copper atoms via its N-terminal domain and can influence brain copper and iron levels. The importance of PrP(C) to the regulation of brain metal homeostasis and metal distribution, however, is not fully understood. We therefore employed synchrotron-based X-ray fluorescence imaging to map the level and distributions of several key metals in the brains of mice that express different levels of PrP(C). Brain sections from wild-type, prion gene knockout (Prnp(-/-)) and PrP(C) over-expressing mice revealed striking variation in the levels of iron, copper, and even zinc in specific brain regions as a function of PrP(C) expression. Our results indicate that one important function of PrP(C) may be to regulate the amount and distribution of specific metals within the central nervous system. This raises the possibility that PrP(C) levels, or its activity, might regulate the progression of diseases in which altered metal homeostasis is thought to play a pathogenic role such as Alzheimer's, Parkinson's and Wilson's diseases and disorders such as hemochromatosis.  相似文献   

15.
Production of cattle lacking prion protein   总被引:14,自引:0,他引:14  
Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrP(C), such as PrP(BSE) in bovine spongiform encephalopathy (BSE) in cattle and PrP(CJD) in Creutzfeldt-Jakob disease (CJD) in humans. Disruption of PrP(C) expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities. However, the impact of ablating PrP(C) function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrP(C)-deficient cattle produced by a sequential gene-targeting system. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification. PrP(C)-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins.  相似文献   

16.
Conversion of the cellular prion protein (PrP(C)) into the abnormal scrapie isoform (PrP(Sc)) is the hallmark of prion diseases, which are fatal and transmissible neurodegenerative disorders. ER-retained anti-prion recombinant single-chain Fv fragments have been proved to be an effective tool for inhibition of PrP(C) trafficking to the cell surface and antagonize PrP(Sc) formation and infectivity. In the present study, we have generated the secreted version of 8H4 intrabody (Sec-8H4) in order to compel PrP(C) outside the cells. The stable expression of the Sec-8H4 intrabodies induces proteasome degradation of endogenous prion protein but does not influence its glycosylation profile and maturation. Moreover, we found a dramatic diverting of PrP(C) traffic from its vesicular secretion and, most importantly, a total inhibition of PrP(Sc) accumulation in NGF-differentiated Sec-8H4 PC12 cells. These results confirm that perturbing the intracellular traffic of endogenous PrP(C) is an effective strategy to inhibit PrP(Sc) accumulation and provide convincing evidences for application of intracellular antibodies in prion diseases.  相似文献   

17.
Prion diseases are characterized by the conversion of the cellular prion protein (PrP(C)) to a disease-specific aggregated isoform (PrP(Sc)). We have shown that Mn(2+) ions amplify aggregation, whereas Cu(2+) has an inhibitory effect. To characterize Mn(2+)-induced aggregates, we used cross-correlation analysis as well as scanning for intensely fluorescent targets in an SDS-dependent aggregation assay with fluorescently labeled PrP. We found that the effect of Mn(2+) was mainly due to the association of preformed PrP oligomers to larger aggregates, rapidly reversible by EDTA, and independent of the histidine-dependent copper-binding sites of PrP, suggesting that Mn(2+) induces reversible intermolecular binding. In contrast, the inhibitory effect of Cu(2+) required binding to histidine-containing binding sites, indicating that binding of copper affects the structure of PrP(C) which in turn modifies the susceptibility to manganese and the ability to aggregate. These findings suggest that copper and manganese may also affect prion propagation in vivo.  相似文献   

18.
A key molecular event in prion diseases is the conversion of cellular prion protein (PrP(c)) into an abnormal misfolded conformer (PrP(sc)). The PrP(c) N-terminal domain plays a central role in PrP(c) functions and in prion propagation. Because mammalian PrP(c) is found as a full-length and N-terminally truncated form, we examined the presence and amount of PrP(c) C-terminal fragment in the brain of different species. We found important variations between primates and rodents. In addition, our data show that the PrP(c) fragment is present in detergent-resistant raft domains, a membrane domain of critical importance for PrP(c) functions and its conversion into PrP(sc).  相似文献   

19.
Doppel (Dpl) is the first described homologue of the prion protein, the main constituent of the agent responsible for prion diseases. The cellular prion protein (PrP(C)) is predominantly present in the central nervous system. Although its role is not yet completely clarified, PrP(C) seems to be involved in Cu(2+) recycling from synaptic clefts and in preventing neuronal oxidative damage. Conversely, Dpl is expressed in heart and testis and has been shown to regulate male fertility by intervening in gametogenesis and sperm-egg interactions. Therefore, despite a high sequence homology and a similar three-dimensional fold, the functions of PrP(C) and Dpl appear unrelated. Here we show by electron paramagnetic resonance and fluorescence spectroscopy that the in vitro binding of copper(II) to human recombinant Dpl occurs with a different pattern from that observed for recombinant PrP. At physiological pH values, two copper(II)-binding sites with different affinities were found in Dpl. At lower pH values, two additional copper(II)-binding sites can be identified as follows: one complex is present only at pH 4, and the other is observed in the pH range 5-6. As derived from the electron paramagnetic resonance characteristics, all Dpl-copper(II) complexes have a different coordination sphere from those present in PrP. Furthermore, in contrast to the effect shown previously for PrP(C), addition of Cu(2+) to Dpl-expressing cells does not cause Dpl internalization. These results suggest that binding of the ion to PrP(C) and Dpl may contribute to the different functional roles ascribed to these highly homologous proteins.  相似文献   

20.
The N-terminal region of the prion protein PrP(C) contains a series of octapeptide repeats. This region has been implicated in the binding of divalent metal ions, particularly copper. PrP(C) has been suggested to be involved in copper transport and metabolism and in cell defense mechanisms against oxidative insult, possibly through the regulation of the intracellular CuZn superoxide dismutase activity (CuZn-SOD) or a SOD-like activity of PrP(C) itself. However, up to now the link between PrP(C) expression and copper metabolism or SOD activity has still to be formally established; particularly because conflicting results have been obtained in vivo. In this study, we report a link between PrP(C), copper binding, and resistance to oxidative stress. Radioactive copper ((64)Cu) was used at a physiological concentration to demonstrate that binding of copper to the outer plasma cell membrane is related to the level of PrP(C) expression in a cell line expressing a doxycycline-inducible murine PrP(C) gene. Cellular PIPLC pretreatment indicated that PrP(C) was not involved in copper delivery at physiological concentrations. We also demonstrated that murine PrP(C) expression increases several antioxidant enzyme activities and glutathione levels. Prion protein may be a stress sensor sensitive to copper and able to initiate, following copper binding, a signal transduction process acting on the antioxidant systems to improve cell defenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号