首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toll-like receptors and their role in animal reproduction   总被引:1,自引:0,他引:1  
Toll-like receptors (TLRs) are evolutionarily conserved innate immune receptors that recognize pathogen specific molecular pattern (PAMPs) in an efficient, non-self-reactive manner and initiate specific immune signaling that culminates in triggering antigen-specific adaptive responses. Different TLR genes in domestic animal species have been characterized and accumulating evidence from recent studies indicates an extended role for TLR signaling in reproductive physiology. In females, TLRs have been implicated in the regulation of ovulation, fertilization, gestation and parturition, as well as in pathological conditions such as endometritis and mastitis. In males, TLRs play a role in steroidogenesis and spermatogenesis. Use of TLR agonists has also been shown to be effective in the treatment of certain reproductive tract infections. Moreover, gene polymorphisms in TLRs have been associated with mastitis providing evidence that TLRs can potentially be exploited as markers in future breeding programs. The aim of this review is to provide a comprehensive treatise on role of TLRs in male and female reproductive physiology and associated pathology in domestic livestock.  相似文献   

2.
Lung carcinoma is one of the leading causes of death worldwide. It is a non-immunogenic cancer, resistant to immune surveillance. Toll-like receptors (TLRs) connect the innate to the adaptive immune system. Given that cancerous cells evade the immune system, the activation of TLRs could represent a potential target for cancer therapy. The induction of Th1-like and cytotoxic immunity by TLR signalling could lead to tumour cell death, resulting in tumour regression or arrest. However, basic research and clinical trials revealed that the activation of specific TLRs, such as TLR2, TLR4 and TLR9, do not have any anti-tumour activity in lung carcinoma. Increasing evidence suggests that TLRs are important regulators of tumour biology; however, little is known about their function in lung cancer. Thus, in order to develop new therapeutic approaches, further studies are needed to understand the connection between TLRs and lung cancer progression. This review focuses on the potential mechanisms by which TLR ligands can facilitate or not lung cancer and lung metastases establishment/progression.  相似文献   

3.
The recent discovery of a novel, membrane localized progestin receptor (mPR) unrelated to the classical progesterone receptor (PR) in fishes and its subsequent identification in mammals suggests a potential mediator of non-traditional progestin actions, particularly in tissues where PR is absent. While early studies on mPR focused on final oocyte maturation in fishes, more current studies have examined mPRs in multiple mammalian systems in both reproductive and non-reproductive tissues as well as in diseased tissues. Here we review the current data on mPR in mammalian systems including male and female reproductive tracts, liver, neuroendocrine tissues, the immune system and breast and ovarian cancer. We also provide new data demonstrating mPR expression in the RAW 264.7 immune cell line and bone marrow-derived macrophages as well as mPR expression and downstream gene regulation in ovarian cancer cells.  相似文献   

4.
Toll-like receptors: a family of pattern-recognition receptors in mammals   总被引:2,自引:0,他引:2  
Armant MA  Fenton MJ 《Genome biology》2002,3(8):reviews301-6
The innate immune system uses a variety of germline-encoded pattern-recognition receptors that recognize conserved microbial structures or pathogen-associated molecular patterns, such as those that occur in the bacterial cell-wall components peptidoglycan and lipopolysaccharide. Recent studies have highlighted the importance of Toll-like receptors (TLRs) as a family of pattern-recognition receptors in mammals that can discriminate between chemically diverse classes of microbial products. First identified on the basis of sequence similarity with the Drosophila protein Toll, TLRs are members of an ancient superfamily of proteins, which includes related proteins in invertebrates and plants. TLRs activate innate immune defense reactions, such as the release of inflammatory cytokines, but increasing evidence supports an additional critical role for TLRs in orchestrating the development of adaptive immune responses. The sequence similarity between the intracellular domains of the TLRs and the mammalian interleukin-1 and interleukin-18 cytokine receptors reflects the use of a common intracellular signal-transduction cascade triggered by these receptor classes. But more recent findings have demonstrated that there are in fact TLR-specific signaling pathways and cellular responses. Thus, TLRs function as sentinels of the mammalian immune system that can discriminate between diverse pathogen-associated molecular patterns and then elicit pathogen-specific cellular immune responses.  相似文献   

5.
While the Toll-like receptors (TLRs) are responsible for the recognition and response to pathogen ligands, increasing evidence suggests that the family of five cytosolic Toll/IL-1 receptor (TIR) adaptor proteins also play a crucial role in the specificity of the response. Genetic studies in mice, and increasingly in human polymorphic populations, have given us a greater understanding the role these adaptors play in orchestrating and coordinating the multifaceted immune response to multiple exogenous threats. Importantly, with growing evidence of the critical role TLRs play in responses to host danger signals and autoimmune disease, a more comprehensive understanding and appreciation of the role these adaptors play in disease progression may provide future targets for therapeutic intervention in human disease. Importantly, growing evidence supports the concept of pathway specific and inflammatory control by a better understanding of how these adaptors interact with other signalling mediators, where they localise within the cell and the inflammatory programs they initiate as a way of manipulating immune responses. This review deals with our current understanding of these TIR-containing adaptor proteins and how mutagenesis of specific residues and domains has increased our knowledge of their function in TLR immune responses.  相似文献   

6.
7.
Abstract

Toll-like receptors (TLRs), evolutionarily conserved innate, are expressed in a wide variety of tissues and cell types, and they play key role in the innate immune system. Gene mutation is an important factor associated with some diseases risk and gene polymorphism of TLRs can influence their function to take part in the physiological process in the body. Chronic kidney disease causes high morbidity and mortality, and renal transplantation provides the optimal treatment for people with end-stage renal disease. Innate immune takes a most important role in renal transplantation. There are some studies reporting that TLRs gene polymorphism takes an important role in the renal transplantation. However, no review summed up the role of TLRs gene polymorphism in renal transplantation. The literatures were searched extensively and this review was performed to review the role of TLRs gene polymorphism in renal transplantation.  相似文献   

8.
The Fas/FasL system has been suggested to play an important role in the establishment of immune privilege status for tumors by inducing Fas-mediated apoptosis in tumor-specific lymphocytes. However, the role of cell-surface expressed FasL in tumor cell protection has recently become controversial. Our laboratory has focused on the study of the role of the Fas/FasL system in the normal tissue remodeling of the female reproductive tract and in immune-privileged organs. Our studies have demonstrated a connection between sex hormones and the regulation of the Fas/FasL pathway in immune and reproductive cells. More recently, we have investigated the resistance of tumor cells to Fas-mediated apoptosis. We have also characterized a new form of FasL, different from the classical membranal form, which is secreted by ovarian cancer cells. In this review we describe the main techniques used in these studies.  相似文献   

9.
This review is focused on studies of vitamin E in immunity and reproductive performance in pigs. There are reports that vitamin E can have a positive effect on some parameters of the immune system in pigs. The optimal level of vitamin E needed to improve the immune system has not been determined because of several factors such as the composition of the diet, feed consumption, the rate of animal growth and living conditions or stress. Moreover, the way of action of vitamin E in enhancing immunity is still unclear but according to reports it may have antioxidant properties as well as an immunomodulator effect. In several studies, an increase in litter size and a reduction of preweaning piglet mortality have resulted from increasing dietary vitamin E intake during gestation or by intramuscular injection of vitamin E and/or selenium. However, according to reports, the positive effect of vitamin E on reproductive performance remains unclear due to the low number of animals used in most experiments.  相似文献   

10.

Background  

The human endometrium is an important site for contact between the host and pathogens ascending the reproductive tract, and thus plays an important role in female reproductive tract immunity. Previous work in our laboratory has suggested that Toll-like receptors (TLRs) are involved in endometrial epithelial recognition of pathogens and that ligation of endometrial TLRs results in the production of cytokines and chemokines important for both immune and reproductive functions of the endometrium. We have also demonstrated cyclic regulation of TLR3 mRNA and protein expression in human endometrium, suggesting that steroid hormones might play a role in the expression and function of TLR3. In this study, the effects of 17beta-estradiol (E2) and progesterone (P) on TLR3 expression and function in endometrial cell lines were investigated.  相似文献   

11.
In mammals, proopiomelanocortin-related peptides are involved in reproductive processes both at the hypothalamo-pituitary and ovarian levels. Using immunocytochemical, biochemical and physiological "in vitro" studies, we provide here evidence for a diffuse POMC-related opioid system in the frog Rana esculenta. Ovarian beta-endorphin (beta-EP) is expressed in thecal cells and changes during the reproductive cycle in an inverse relationship with follicular development. Seasonal changes in the ovary are different to those in the brain or in the pituitary. The ratio of acetylated vs native beta-EP in the ovary also changes over the reproductive period, affecting the biological activity of the peptide. During both the reproductive spring period and the summer post-reproductive phase pMol amounts of beta-EP stimulate follicular androgen secretion in vitro, in a naloxone-reversible way. In either period, an inhibition of estradiol, possibly mediated via other factors, is the result of opioid action. In conclusion, these data demonstrate for the first time the widespread presence of beta-EP-related peptides in the frog Rana esculenta. Both immunocytochemical and biochemical evidence, as well as in vitro responses, support a physiological role for beta-EP in ovarian seasonality during the reproductive cycle of this amphibian.  相似文献   

12.
Increase in success of cancer treatment with advancement in the screening, prognosis and diagnosis protocols have significantly improved the rate of cancer survivorship. With the declining cancer mortality, however, the cancer survivors are also subjected to the adverse consequences of chemotherapy, particularly in the female reproductive system. Recent studies have shown the sensitivity of the ovarian tissue to the chemotherapeutic drugs-induced toxicity. Several in vitro and in vivo studies have assessed the toxic effects of chemotherapeutic drugs. The most frequently used chemotherapeutic drugs such as doxorubicin, cyclophosphamide, cisplatin and paclitaxel have been reported to cause ovarian damage, diminution of follicular pool reserve, premature ovarian failure and early menopause, resulting into declining fertility potential among females. The chemotherapy often employs combination of drug regimen to increase the efficacy of the treatment. However, the literature mostly consists of clinical data regarding the gonadotoxicity caused by anticancer drugs but there lacks the understanding of toxicity mechanism. Therefore, understanding of the different toxicity mechanisms will be helpful in development of possible therapeutic interventions for preservation of declining female fertility among cancer survivors. The current review comprehends the underlying mechanisms of female reproductive toxicity induced by the most commonly used chemotherapeutic drugs. In addition, the review also summarizes the recent findings related to the use of various protectants to diminish or at least in managing the toxicity induced by different chemotherapeutic drugs in females.  相似文献   

13.
Since its first splash 30 years ago, the use of the zebrafish model has been extended from a tool for genetic dissection of early vertebrate development to the functional interrogation of organogenesis and disease processes such as infection and cancer. In particular, there is recent and growing attention in the scientific community directed at the immune systems of zebrafish. This development is based on the ability to image cell movements and organogenesis in an entire vertebrate organism, complemented by increasing recognition that zebrafish and vertebrate immunity have many aspects in common. Here, we review zebrafish immunity with a particular focus on recent studies that exploit the unique genetic and in vivo imaging advantages available for this organism. These unique advantages are driving forward our study of vertebrate immunity in general, with important consequences for the understanding of mammalian immune function and its role in disease pathogenesis.  相似文献   

14.
Recent evidence highlighted the role of Toll-like receptors (TLRs) as key recognition structures of the innate immune system. The activation of TLRs initiates the production of inflammatory cytokines, chemokines, tissue destructive enzymes, and type I interferons. In addition, TLR signalling plays an important role in the activation and direction of the adaptive immune system by the upregulation of costimulatory molecules of antigen presenting cells. Considering the important role of TLR signalling as a critical link between innate and adaptive immunity it has been proposed that a dysregulation in TLR signalling might be associated with autoimmunity. In this review, recent studies on TLR signal transduction pathways activated by corresponding ligands are summarized and evidence for a possible role of TLR signalling in the pathogenesis of rheumatoid arthritis is discussed.  相似文献   

15.
《Cellular signalling》2014,26(11):2350-2357
Breast cancer is one of the leading causes of mortality in the females. Intensive efforts have been made to understand the molecular mechanisms of pathogenesis of breast cancer. The physiological conditions that lead to tumorigenesis including breast cancer are not well understood. Toll like receptors (TLRs) are essential components of innate immune system that protect the host against bacterial and viral infection. The emerging evidences suggest that TLRs are activated through pathogen associated molecular patterns (PAMPs) as well as endogenous molecules, which lead to the activation of inflammatory pathways. This leads to increased levels of several pro-inflammatory cytokines and chemokines mounting inflammation. Several evidences support the view that chronic inflammation can lead to cancerous condition. Inflammation aids in tumor progression and metastasis. Association of inflammation with breast cancer is emerging. TLR mediated activation of NF-κB and IRF is an essential link connecting inflammation to cancer. The recent reports provide several evidences, which suggest the important role of TLRs in breast cancer pathogenesis and recurrence. The current review focuses on emerging studies suggesting the strong linkages of TLR mediated regulation of inflammation during breast cancer and its metastasis emphasizing the initiation of the systematic study.  相似文献   

16.
The environment in which a breeding female lives prior to conception and during the early stages of her pregnancy has striking effects on oocytes developing in the ovarian follicle and on early embryos in the reproductive tract. Of the various environmental factors known to affect oocyte and embryo development, altered nutrition during this critical period has been particularly well studied. Alterations in the quantity of food consumed or the composition of the diet imposed solely during the pre-mating period affect oocyte maturity, blastocyst yield, prenatal survival and the number of offspring born alive. Importantly, nutrition at this time also affects the quality of embryos and resultant offspring, with increasing evidence from a variety of species showing that peri-conception nutrition can alter behaviour, cardiovascular function and reproductive function throughout post-natal life. In livestock species, it is important to devise nutritional strategies that improve reproductive efficiency and the quality of offspring but that do not add to the environmental footprint of the production system and which recognize likely changes in feedstuff availability arising from predicted changes in climate.  相似文献   

17.
Abstract

Toll-like receptors (TLRs), evolutionarily conserved innate, play important roles in the development of autoimmunity. TLRs proteins are localized on the cell surface or in endosomes and play critical roles in innate immune responses against different pathogens. Aberrant stimulation of the innate immune system through intracellular TLRs may lead to hyperactive immune responses and contribute to the pathogenesis of hepatocellular carcinoma (HCC). HCC is the seventh most common cancer and the third leading cause of cancer deaths worldwide, and innate immune takes a most important role in HCC. There was no review to sum up the role of TLRs gene polymorphism in HCC. This review was performed to sum up the role of TLRs gene polymorphism in HCC.  相似文献   

18.
Abstract

Lung cancer is a leading cause of death world-wide and the long-term survival rate for patients with lung cancer is one of the lowest for any cancer. Toll-like receptors (TLRs), evolutionarily conserved innate, are expressed in a wide variety of tissues and cell types, and they play key role in the innate immune system. TLRs have been found to be expressed by some kinds of tumor cells. However, what is the biological function of TLRs on tumor cells and whether human lung cancer cells can express TLRs remain to be fully understood. This review was performed to sum up the role of TLRs in lung cancer.  相似文献   

19.
Toll-like receptors (TLRs) are present in the ovaries and reproductive tract of various mammals. The biological function of TLR during ovulation is one of the main contents in the research of reproductive immunology. In this study, we found that messenger RNA levels of TLR1–TLR10 in granulosa cells were different, and TLRs and high mobility group box 1 (HMGB1) in granulosa cells of large follicles were significantly higher than those of small and middle follicles. Coimmunoprecipitation results showed that HMGB1 interacts with TLR2 in granulosa cells, especially large follicles. The result of immunohistochemistry showed that TLRs and HMGB1 were present in granulosa cell layer of ovarian follicles. We also found 25 mIU/ml follicle-stimulating hormone (FSH) significantly upregulated the expression of TLRs and HMGB1. These results suggest that TLR2/4 and HMGB1 in granulosa cells may be involved in the ovarian innate immune and ovarian follicular maturation, regulated by FSH. However, further research of the function and mechanisms of TLRs and HMGB1 in granulosa cells are needed.  相似文献   

20.
How an animal performs in its natural environment ultimately plays a key role in its reproductive success. While a number of studies have investigated how selection acts on performance-related traits, far fewer studies have examined the mechanisms responsible for variation in performance. Among mechanisms, variable morphology has received the most attention. Although physiological traits have received less attention, they are intrinsically related to performance and ultimately to reproductive success. We present a framework whereby investigators can link some basic physiological functions with organismal performance and ultimately with reproductive success. We propose that performance and ultimately reproductive success are strongly influenced by hormones, immune functions, and energetics. We further argue that no physiological function can be considered in isolation and thus our model emphasizes interactions and trade-offs both within each physiological function as well as among them. Some of the most commonly studied trade-offs are between reproduction and immune functions, with energetics as one of the key common currencies for these trade-offs. From an evolutionary perspective, the largest gaps in our knowledge lie in how these interactions and trade-offs influence reproductive success. We believe that a full understanding of how hormones, immune functions, and energetics influence performance traits related to reproduction and, ultimately, lifetime reproductive success requires recognition of the complex relationships, interactions, and trade-offs among these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号