首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic Resonance Spectroscopy affords the possibility of assessing in vivo the thermodynamic status of living tissues. The main thermodynamic variables relevant for the knowledge of the health of living tissues are: ΔG of ATP hydrolysis and cytosolic [ADP], the latter as calculated from the apparent equilibrium constant of the creatine kinase reaction. In this study we assessed the stoichiometric equilibrium constant of the creatine kinase reaction by in vitro 31P NMR measurements and computer calculations resulting to be: logKCK=8.00±0.07 at T=310 K and ionic strength I=0.25 M. This value refers to the equilibrium:
PCr2−+ADP3−+H+=Cr+ATP4−  相似文献   

2.
The relationships between pHi (intracellular pH) and phosphate compounds were evaluated by nuclear magnetic resonance (NMR) in normo-, hypo-, and hypercapnia, obtained by changing fractional inspired concentration of CO2 in dogs anesthetized with 0.75% isoflurane and 66% N2O. Phosphocreatine (PCr) fell by 2.02 mM and Pi (inorganic phosphate) rose by 1.92 mM due to pHi shift from 7.10 to 6.83 during hypercapnia. The stoichiometric coefficient was 1.05 (r2 = 0.78) on log PCr/Cr against pHi, showing minimum change of ADP/ATP and equilibrium of creatine kinase in the pH range of 6.7 to 7.25. [ADP] varied from 21.6 +/- 4.1 microM in control (pHi = 7.10) to 26.8 +/- 6.3 microM in hypercapnia (pHi = 6.83) and 24.0 +/- 6.8 microM in hypocapnia (pHi = 7.17). ATP/ADP X Pi decreased from 66.4 +/- 17.1 mM-1 during normocapnia to 25.8 +/- 6.3 mM-1 in hypercapnia. The ADP values are near the in vitro Km; thus ADP is the main controller. The velocity of oxidative metabolism (V) in relation to its maximum (Vmax) as calculated by a steady-state Michaelis-Menten formulation is approximately 50% in normocapnia. In acidosis (pH 6.7) and alkalosis (pH 7.25), V/Vmax is 10% higher than the normocapnic brain. This increase of V/Vmax is required to maintain cellular homeostasis of energy metabolism in the face of either inhibition at extremes of pH or higher ATPase activity.  相似文献   

3.
A mathematical model of the compartmentalized energy transfer in cardiac cells is described and used for interpretation of novel experimental data obtained by using phosphorus NMR for determination of the energy fluxes in the isolated hearts of transgenic mice with knocked out creatine kinase isoenzymes. These experiments were designed to study the meaning and importance of compartmentation of creatine kinase isoenzymes in the cells in vivo. The model was constructed to describe quantitatively the processes of energy production, transfer, utilization, and feedback between these processes. It describes the production of ATP in mitochondrial matrix space by ATP synthase, use of this ATP for phosphocreatine production in the mitochondrial creatine kinase reaction coupled to the adenine nucleotide translocation, diffusional exchange of metabolites in the cytoplasmic space, and use of phosphocreatine for resynthesis of ATP in the myoplasmic creatine kinase reaction. It accounts also for the recently discovered phenomenon of restricted diffusion of adenine nucleotides through mitochondrial outer membrane porin pores (VDAC). Practically all parameters of the model were determined experimentally. The analysis of energy fluxes between different cellular compartments shows that in all cellular compartments of working heart cells the creatine kinase reaction is far from equilibrium in the systolic phase of the contraction cycle and approaches equilibrium only in cytoplasm and only in the end-diastolic phase of the contraction cycle.Experimental determination of the relationship between energy fluxes by a 31P-NMR saturation transfer method and workload in isolated and perfused heart of transgenic mice deficient in MM isoenzyme of the creatine kinase, MM -/- showed that in the hearts from wild mice, containing all creatine kinase isoenzymes, the energy fluxes determined increased 3-4 times with elevation of the workload. By contrast, in the hearts in which only the mitochondrial creatine kinase was active, the energy fluxes became practically independent of the workload in spite of the preservation of 26% of normal creatine kinase activity. These results cannot be explained on the basis of the conventional near-equilibrium theory of creatine kinase in the cells, which excludes any difference between creatine kinase isoenzymes. However, these apparently paradoxical experimental results are quantitatively described by a mathematical model of the compartmentalized energy transfer based on the steady state kinetics of coupled creatine kinase reactions, compartmentation of creatine kinase isoenzymes in the cells, and the kinetics of ATP production and utilization reactions. The use of this model shows that: (1) in the wild type heart cells a major part of energy is transported out of mitochondria via phosphocreatine, which is used for complete regeneration of ATP locally in the myofibrils - this is the quantitative estimate for PCr pathway; (2) however, in the absence of MM-creatine kinase in the myofibrils in transgenic mice the contraction results in a very rapid rise of ADP in cytoplasmic space, that reverses the mitochondrial creatine kinase reaction in the direction of ATP production. In this way, because of increasing concentrations of cytoplasmic ADP, mitochondrial creatine kinase is switched off functionally due to the absence of its counterpart in PCr pathway, MM-creatine kinase. This may explain why the creatine kinase flux becomes practically independent from the workload in the hearts of transgenic mouse without MM-CK. Thus, the analysis of the results of studies of hearts of creatine kinase-deficient transgenic mice, based on the use of a mathematical model of compartmentalized energy transfer, show that in the PCr pathway of intracellular energy transport two isoenzymes of creatine kinase always function in a coordinated manner out of equilibrium, in the steady state, and disturbances in functioning of one of them inevitably result in the disturbances of the other component of the PCr pathway. In the latter case, energy is transferred from mitochondria to myofibrils by alternative metabolic pathways, probably involving adenylate kinase or other systems.  相似文献   

4.
The observed equilibrium constants (Kobs) of the creatine kinase (EC 2.7.3.2), myokinase (EC 2.7.4.3), glucose-6-phosphatase (EC 3.1.3.9), and fructose-1,6-diphosphatase (EC 3.1.3.11) reactions have been determined at 38 degrees C, pH 7.0, ionic strength 0.25, and varying free magnesium concentrations. The equilibrium constant (KCK) for the creatine kinase reaction defined as: KCK = [sigma ATP] [sigma creatine] divided by ([sigma ADP] [sigma creatine-P] [H+]) was measured at 0.25 ionic strength and 38 degrees C and was shown to vary with free [Mg2+]. The value was found to be 3.78 x 10(8) M-1 at free [Mg2+] = 0 and 1.66 x 10(9) M-1 at free [Mg2+] = 10(-3) M. Therefore, at pH 7.0, the value of Kobs, defined as Kobs = KCK[H+] = [sigma ATP] [sigma creatine] divided by ([sigma ADP] [sigma creatine-P] was 37.8 at free [Mg2+] = 0 and 166 at free [Mg2+] = 10(-3) M. The Kobs value for the myokinase reaction, 2 sigma ADP equilibrium sigma AMP + sigma ATP, was found to vary with free [Mg2+], being 0.391 at free [Mg2+] = 0 and 1.05 at free [Mg2+] = 10(-3) M. Taking the standard state of water to have activity equal to 1, the Kobs of glucose-6-P hydrolysis, sigma glucose-6-P + H2O equilibrium sigma glucose + sigma Pi, was found not to vary with free [Mg2+], being 110 M at both free [Mg2+] = 0 and free [Mg2+] = 10(-3) M. The Kobs of fructose-1,6-P2 hydrolysis, sigma fructose-1,6-P2 equilibrium sigma fructose-6-P + sigma Pi, was found to vary with free [Mg2+], being 272 M at free [Mg2+] = 0 and 174 M at free [Mg2+] = 0.89 x 10(-3) M.  相似文献   

5.
Changes in the energy state of tissues in spontaneously hypertensive rats]   总被引:1,自引:0,他引:1  
The contents of adenine nucleotides (ATP, ADP, AMP), phosphocreatine (PCr) and creatine (Cr) in the heart, skeletal muscle, liver and spleen in spontaneously hypertensive (SHR) and normotensive (WKY) rats. The ATP/ADP ratio in cardiac tissue was lower in SHR compared with WKY, while myocardial contents of adenine nucleotides, PCr and Cr did not differ significantly between the groups. A lower ATP/ADP ratio in the skeletal muscle SHR of was accompanied by a reduction of PCr content comparing with these indices in WKY rats. The liver and spleen of SHR exhibited lower ATP contents and higher ADP and AMP levels compared with those ones in WKY rats, despite of the close values of adenine nucleotide pools (sigma AN = ATP + ADP + AMP). This redistribution of tissue adenine nucleotides was corresponded to lower energy charges (EC = (ATP + 0.5 ADP)/sigma AN) and ATP/ADP ratios in SHR group. The reduction of the energy state of tissues in SHR rats increased in the following rank: heart > skeletal muscle > liver > spleen, thus, reflecting progressive decrease of intensity of oxidative metabolism. The results suggest changes in the balance of rates of ATP formation and hydrolysis occur at the system level in primary hypertension. Probably, consequences of such rearrangement in energy metabolism are functional disturbances of plasma membrane and sacroplasmic reticulum well-documented in a number of experimental and clinical studies.  相似文献   

6.
Sahlin K  Harris RC 《Amino acids》2011,40(5):1363-1367
The classical role of PCr is seen as a reservoir of high-energy phosphates defending cellular ATP levels under anaerobic conditions, high rates of energy transfer or rapid fluctuations in energy requirement. Although the high concentration of PCr in glycolytic fast-twitch fibers supports the role of PCr as a buffer of ATP, the primary importance of the creatine kinase (CK) reaction may in fact be to counteract large increases in ADP, which could otherwise inhibit cellular ATPase-mediated systems. A primary role for CK in the maintenance of ADP homeostasis may explain why, in many conditions, there is an inverse relationship between PCr and muscle contractility but not between ATP and muscle contractility. The high rate of ATP hydrolysis during muscle contraction combined with restricted diffusion of ADP suggests that ADP concentration increases transiently during the contraction phase (ADP spikes) and that these are synchronized with the contraction. The presence of CK, structurally bound in close vicinity to the sites of ATP utilization, will reduce the amplitude and duration of the ADP spikes through PCr-mediated phosphotransfer. When PCr is reduced, the efficiency of CK as an ATP buffer will be reduced and the changes in ADP will become more prominent. The presence of ADP spikes is supported by the finding that other processes known to be activated by ADP (i.e. AMP deamination and glycolysis) are stimulated during exercise but not during anoxia, despite the same low global energy state. Breakdown of PCr is driven by increases in ADP above that depicted by the CK equilibrium and the current method to calculate ADPfree from the CK reaction in a contracting muscle is therefore questionable.  相似文献   

7.
The alpha beta-methylene analogues of ATP and ADP, [alpha beta CH2]ATP and [alpha beta CH2]ADP, are substrates for creatine kinase. However, the rate of the phosphoryl transfer reaction catalysed is about 10(-5)-times lower than that with normal ATP. The affinities of the analogues (especially [alpha beta CH2]ADP) for the enzyme are lower than those of the normal substrates. The equilibrium constant at 25 degrees C, measured using 31P NMR, for the reaction Mg[alpha beta CH2]ATP + creatine in equilibrium Mg[alpha beta CH2]ADP + phosphocreatine + H+ is 2.2 X 10(-12) M compared with a value of 2.5 X 10(-10) M for the same reaction with the normal substrates, corresponding to a difference in delta G0 values of 11.7 kJ X mol-1. It follows that delta G0 for the hydrolysis of the terminal phosphate group of Mg[alpha beta CH2]ATP is less favourable by 11.7 kJ X mol-1 than that for MgATP.  相似文献   

8.
The relationship between the apparent equilibrium constant of creatine kinase and intracellular pH was evaluated in CHO and murine FSaII tumor cells. The apparent equilibrium constant, K' = [ATP][Cr]/[ADP][PCr], was determined from acid extracts at variable pH. Intracellular pH (pHi) was determined from the intracellular/extracellular distribution of the weak acid 5,5-dimethyl-2,4-oxazolidinedione. Over the intracellular pH range of 7.2 to 6.1, K' increased by a factor of approximately 10. Intracellular pH was related to the apparent equilibrium constant by the equation pHi = -log K' + log K, where the value of the constant log (log[K'/H+]) was 8.09. Over the same pH range, the concentration of phosphocreatine decreased with pH. Essentially identical results were obtained in CHO and FSaII tumor cells. The similar apparent equilibrium constants in CHO and FSaII cells suggest that assessment of the creatine kinase metabolites will be useful not only for determination of cell energy status but also for the determination of intracellular pH. This information may be useful for the design of therapeutic strategies which are influenced by pH or energy status such as hyperthermia, and drugs which are weak acids or bases, including hypoxic cell radiosensitizers.  相似文献   

9.
The significance of a phosphocreatine (PCr) shuttle in the energy transport of motile spermatozoa (Tombes, R. M., and B. M. Shapiro, 1985, Cell, 41:325-334) has been tested by a quantitative analysis of motility. Computer-assisted analysis of stroboscopic photomicrographs of live sea urchin spermatozoa whose creatine kinase has been specifically inhibited by fluorodinitrobenzene reveals that motility is impaired due to a progressive damping of bending waves as they propagate along the flagellum. This lesion, which has been defined as attenuation and can be quantified, is repaired when these spermatozoa are demembranated and reactivated to swim with ATP. The implication that attenuation is due to the inhibition of energy transport via a PCr shuttle resulting in the decrease of ATP and accumulation of inhibitory levels of ADP distally has been supported by calculating sperm PCr and ATP levels resulting from diffusion along the flagellum. The specific alterations of motility seen with creatine kinase inhibition and their reversal with ATP are as expected from the model and provide strong support for the PCr shuttle in high energy phosphate transport.  相似文献   

10.
Phosphocreatine production catalyzed by a cytosolic fraction from cardiac muscle containing all glycolytic enzymes and creatine kinase in a soluble form has been studied in the presence of creatine, adenine nucleotides and different glycolytic intermediates as substrates. Glycolytic depletion of glucose, fructose 1,6-bis(phosphate) and phosphoenolpyruvate to lactate was coupled to efficient phosphocreatine production. The molar ratio of phosphocreatine to lactate produced was close to 2.0 when fructose 1,6-bis(phosphate) was used as substrate and 1.0 with phosphoenolpyruvate. In these processes the creatine kinase reaction was not the rate-limiting step: the mass action ratio of the creatine kinase reaction was very close to its equilibrium value and the maximal rate of the forward creatine kinase reaction exceeded that of glycolytic flux by about 6-fold when fructose 1,6-bis(phosphate) was used as a substrate. Therefore, the creatine kinase raction was continuously in the state of quasiequilibrium and the efficient synthesis of phosphocreatine observed is a result of constant removal of ADP by the glycolytic system at an almost unchanged level of ATP ([ATP] ? [ADP]), this leading to a continuous shift of the creatine kinase equilibrium position.When phosphocreatine was added initially at concentrations of 5–15 mM the rate of the coupled creatine kinase and glycolytic reactions was very significantly inhibited due to a sharp decrease in the steady-state concentration of ADP. Therefore, under conditions of effective phosphocreatine production in heart mitochondria, which maintain a high phosphocreatine: creatine ratio in the myoplasm in vivo, the glycolytic flux may be suppressed due to limited availability of ADP restricted by the creatine kinase system. The possible physiological role of the control of the glycolytic flux by the creatine kinase system is discussed.  相似文献   

11.
A probability approach was used to describe mitochondrial respiration in the presence of substrates, ATP, ADP, Cr and PCr. Respiring mitochondria were considered as a three-component system, including: 1) oxidative phosphorylation reactions which provide stable ATP and ADP concentrations in the mitochondrial matrix; 2) adenine nucleotide translocase provides exchange transfer of matrix adenine nucleotides for those from outside, supplied from medium and by creatine kinase; 3) creatine kinase, starting these reactions when activated by the substrates from medium. The specific feature of this system is close proximity of creatine kinase and translocase molecules. This results in high probability of direct activations of translocase by creatine kinase-derived ADP or ATP without their leak into the medium. In turn, the activated translocase with the same high probability directly provides creatine kinase with matrix-derived ATP or ADP. The catalytic complexes of creatine kinase formed with ATP from matrix together with those formed from medium ATP provide activation of the forward creatine kinase reaction coupled to translocase activation. Simultaneously the catalytic complexes of creatine kinase formed with ADP from matrix together with those formed from medium ADP provide activation of the reverse creatine kinase reaction coupled to translocase activation. The considered probabilities were arranged into a mathermatical model. The model satisfactorily simulates the available experimental data by several groups of investigators. The results allow to consider the observed kinetic and thermodynamic iriegularities in behavior of structurally bound creatine kinase as a direct consequence of its tight coupling to translocase.  相似文献   

12.
The concentrations of phosphorylcreatine (PCr), adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), inorganic phosphate (Pi), pyruvate and lactate were determined in freeze-clamped fast muscle samples from Oreochromis alcalicus grahami a fish adapted to extreme alkalinity (∼ pH 10·0) and high temperatures (Lake Magadi, Kenya). Specimens were analysed from both geothermally heated hotsprings (35–37°C) and from isolated cool pools (28°C) and from stocks acclimated to 20°C in the laboratory. The ratios of (ATP)/(ADP) and (ATP)/(ADP) (Pi) decreased with increasing body temperature consistent with an increase in glycolysis and tissue respiration rates, respectively. The apparent equilibrium constant of creatine kinase (KCK), (creatine) (ATP)/(phosphorylcreatine) (ADP) was found to decrease with increasing temperature: 20·2 (20°C), 13·9 (28°C), 8·0 (37°C). A near constant muscle and blood pH (or slight increase in alkalinity with higher temperatures) was found regardless of body temperature (Blood pH 7·64, 7·74, muscle pH 7·27, 7·51 at 20°C and 35°C, respectively). These results are consistent with an unusual pattern of acid-base regulation in this species.  相似文献   

13.
In vivo 31P-NMR saturation transfer measurements of the creatine kinase exchange flux in the direction creatine phosphate----ATP were made in the gastrocnemius muscle of rats at rest and during steady-state isometric twitch contraction at frequencies from 0.25 to 2 Hz. There was no correlation between creatine kinase exchange flux and either free [ADP] or oxygen consumption, both of which increase with stimulation frequency. The flux was found to be nearly constant over all conditions at about 16 mM X s-1, 10-times greater than the highest estimated ATP turnover in this study. The kinetic properties of skeletal muscle creatine kinase in vivo are similar to, but not completely predictable from, the equilibrium exchange fluxes measured on the isolated enzyme. These results are not consistent with strong functional coupling between ATP synthesis and mitochondrial creatine kinase.  相似文献   

14.
The effect of temperature, pH, and free [Mg(2+)] on the apparent equilibrium constant of pyruvate kinase (phosphoenol transphosphorylase) (EC ) was investigated. The apparent equilibrium constant, K', for the biochemical reaction P-enolpyruvate + ADP = ATP + Pyr was defined as K' = [ATP][Pyr]/[ADP][P-enolpyruvate], where each reactant represents the sum of all the ionic and metal complexed species in M. The K' at pH 7.0, 1.0 mm free Mg(2+) and I of 0.25 m was 3.89 x 10(4) (n = 8) at 25 degrees C. The standard apparent enthalpy (DeltaH' degrees ) for the biochemical reaction was -4.31 kJmol(-1) in the direction of ATP formation. The corresponding standard apparent entropy (DeltaS' degrees ) was +73.4 J K(-1) mol(-1). The DeltaH degrees and DeltaS degrees values for the reference reaction, P-enolpyruvate(3-) + ADP(3-) + H(+) = ATP(4-) + Pyr(1-), were -6.43 kJmol(-1) and +180 J K(-1) mol(-1), respectively (5 to 38 degrees C). We examined further the mass action ratio in rat heart and skeletal muscle at rest and found that the pyruvate kinase reaction in vivo was close to equilibrium i.e. within a factor of about 3 to 6 of K' in the direction of ATP at the same pH, free [Mg(2+)], and T. We conclude that the pyruvate kinase reaction may be reversed under some conditions in vivo, a finding that challenges the long held dogma that the reaction is displaced far from equilibrium.  相似文献   

15.
High-pressure liquid-chromatography and microcalorimetry have been used to determine equilibrium constants and enthalpies of reaction for the disproportionation reaction of adenosine 5′-diphosphate (ADP) to adenosine 5′-triphosphate (ATP) andadenosine 5′-monophosphate (AMP). Adenylate kinase was used to catalyze this reaction. The measurements were carried out over the temperature range 286 to 311 K, at ionic strengths varying from 0.06 to 0.33 mol kg−1, over the pH range 6.04 to 8.87, and over the pMg range 2.22 to 7.16, where pMg = -log a(Mg2+). The equilibrium model developed by Goldberg and Tewari (see the previous paper in this issue) was used for the analysis of the measurements. Thus, for the reference reaction: 2 ADp3− (ao) AMp2− (ao)+ ATp (ao), K° = 0.225 ± 0.010, ΔG° = 3.70 +- 0.11 kJ mol −1, ΔH° = −1.5 ± 1. 5 kJ mol −1, °S ° = −17 ± 5 J mol−1 K−1, and ACPp°≈ = −46 J mo1l−1 K−1 at 298.15 K and 0.1 MPa. These results and the thermodynamic parameters for the auxiliary equilibria in solution have been used to model the thermodynamics of the disproportionation reaction over a wide range of temperature, pH, ionic strength, and magnesium ion morality. Under approximately physiological conditions (311.15 K, pH 6.94, [Mg2+] = 1.35 × 10−3 mol kg−1, and I = 0.23 mol kg−1) the apparent equilibrium constant (KA′ = m(ΣAMP)m(ΣATP)/[ m(ΣADP)]2) for the overall disproportionation reaction is equal to 0.93 ± 0.02. Thermodynamic data on the disproportionation reaction and literature values for this apparent equilibrium constant in human red blood cells are used to calculate a morality of 1.94 × 10−4 mol kg−1 for free magnesium ion in human red blood cells. The results are also discussed in relation to thermochemical cycles and compared with data on the hydrolysis of the guanosine phosphates.  相似文献   

16.
We describe a model of mitochondrial regulation in vivo which takes account of spatial diffusion of high-energy (ATP and phosphocreatine) and low-energy metabolites (ADP and creatine), their interconversion by creatine kinase (which is not assumed to be at equilibrium), and possible functional 'coupling' between the components of creatine kinase associated with the mitochondrial adenine nucleotide translocase and the myofibrillar ATPase. At high creatine kinase activity, the degree of functional coupling at either the mitochondrial or ATPase end has little effect on relationships between oxidative ATP synthesis rate and spatially-averaged metabolite concentrations. However, lowering the creatine kinase activity raises the mean steady state ADP and creatine concentrations, to a degree which depends on the degree of coupling. At high creatine kinase activity, the fraction of flow carried by ATP is small. Lowering the creatine kinase activity raises this fraction, especially when there is little functional coupling. All metabolites show small spatial gradients, more so at low cytosolic creatine kinase activity, and unless there is near-complete coupling, so does net creatine kinase flux. During workjump transitions, spatial-average responses exhibit near-exponential kinetics as expected, while concentration changes start at the ATPase end and propagate towards the mitochondrion, damped in time and space. (Mol Cell Biochem 174: 29–32, 1997)  相似文献   

17.
The subcellular fluxes of exchange of ATP and phosphocreatine (PCr) between mitochondria, cytosol, and ATPases were assessed by (31)P NMR spectroscopy to investigate the pathways of energy transfer in a steady state beating heart. Using a combined analysis of four protocols of inversion magnetization transfer associated with biochemical data, three different creatine kinase (CK) activities were resolved in the rat heart perfused in isovolumic control conditions: (i) a cytosolic CK functioning at equilibrium (forward, F(f) = PCr --> ATP, and reverse flux, F(r) = ATP --> PCr = 3.3 mm.s(-1)), (ii) a CK localized in the vicinity of ATPases (MM-CK bound isoform) favoring ATP synthesis (F(f) = 1.7 x F(r)), and (iii) a mitochondrial CK displaced toward PCr synthesis (F(f) = 0.3 and F(r) = 2.6 mm.s(-1)). This study thus provides the first experimental evidence that the energy is carried from mitochondria to ATPases by PCr (i.e. CK shuttle) in the whole heart. In contrast, a single CK functioning at equilibrium was sufficient to describe the data when ATP synthesis was partly inhibited by cyanide (0.15 mm). In this case, ATP was directly transferred from mitochondria to cytosol suggesting that cardiac activity modified energy transfer pathways. Bioenergetic implications of the localization and activity of enzymes within myocardial cells are discussed.  相似文献   

18.
In this study the function of the two isoforms of creatine kinase (CK; EC 2.7.3.2) in myocardium is investigated. The 'phosphocreatine shuttle' hypothesis states that mitochondrial and cytosolic CK plays a pivotal role in the transport of high-energy phosphate (HEP) groups from mitochondria to myofibrils in contracting muscle. Temporal buffering of changes in ATP and ADP is another potential role of CK. With a mathematical model, we analyzed energy transport and damping of high peaks of ATP hydrolysis during the cardiac cycle. The analysis was based on multiscale data measured at the level of isolated enzymes, isolated mitochondria and on dynamic response times of oxidative phosphorylation measured at the whole heart level. Using 'sloppy modeling' ensemble simulations, we derived confidence intervals for predictions of the contributions by phosphocreatine (PCr) and ATP to the transfer of HEP from mitochondria to sites of ATP hydrolysis. Our calculations indicate that only 15±8% (mean±SD) of transcytosolic energy transport is carried by PCr, contradicting the PCr shuttle hypothesis. We also predicted temporal buffering capabilities of the CK isoforms protecting against high peaks of ATP hydrolysis (3750 μM*s(-1)) in myofibrils. CK inhibition by 98% in silico leads to an increase in amplitude of mitochondrial ATP synthesis pulsation from 215±23 to 566±31 μM*s(-1), while amplitudes of oscillations in cytosolic ADP concentration double from 77±11 to 146±1 μM. Our findings indicate that CK acts as a large bandwidth high-capacity temporal energy buffer maintaining cellular ATP homeostasis and reducing oscillations in mitochondrial metabolism. However, the contribution of CK to the transport of high-energy phosphate groups appears limited. Mitochondrial CK activity lowers cytosolic inorganic phosphate levels while cytosolic CK has the opposite effect.  相似文献   

19.
Recent human isolated muscle fiber studies suggest that phosphocreatine (PCr) and creatine (Cr) concentrations play a role in the regulation of mitochondrial respiration rate. To determine whether similar regulatory mechanisms are present in vivo, this study examined the relationship between skeletal muscle mitochondrial respiration rate and end-exercise PCr, Cr, PCr-to-Cr ratio (PCr/Cr), ADP, and pH by using (31)P-magnetic resonance spectroscopy in 16 men and women (36.9 +/- 4.6 yr). The initial PCr resynthesis rate and time constant (T(c)) were used as indicators of mitochondrial respiration after brief (10-12 s) and exhaustive (1-4 min) dynamic knee extension exercise performed in placebo and creatine-supplemented conditions. The results show that the initial PCr resynthesis rate has a strong relationship with end-exercise PCr, Cr, and PCr/Cr (r > 0.80, P < 0.001), a moderate relationship with end-exercise ADP (r = 0.77, P < 0.001), and no relationship with end-exercise pH (r = -0.14, P = 0.34). The PCr T(c) was not as strongly related to PCr, Cr, PCr/Cr, and ADP (r < 0.77, P < 0.001-0.18) and was significantly influenced by end-exercise pH (r = -0.43, P < 0.01). These findings suggest that end-exercise PCr and Cr should be taken into consideration when PCr recovery kinetics is used as an indicator of mitochondrial respiration and that the initial PCr resynthesis rate is a more reliable indicator of mitochondrial respiration compared with the PCr T(c).  相似文献   

20.
(1) 31P nuclear magnetic resonance was used to measure the creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts consuming oxygen at different rates and using either of two exogenous substrates (11 mM glucose or 5 mM acetate). (2) Fluxes in the direction of ATP synthesis were between 3.5–12-times the steady-state rates of ATP utilization (estimated from rates of O2-consumption), demonstrating that the reaction is sufficiently rapid to maintain the cytosolic reactants near their equilibrium concentrations. (3) Under all conditions studied, the cytosolic free [ADP] was primarily responsible for regulating the creatine kinase fluxes. The enzyme displayed a Km for cytosolic ADP of 35 μM and an apparent Vmax of 5.5 mM/s in the intact tissue. (4) Although the reaction is maintained in an overall steady-state, the measured ratio of the forward flux (ATP synthesis) to the reverse flux (phosphocreatine synthesis) was significantly greater than unity under some conditions. It is proposed that this discrepancy may be a consequence of participation of ATP in reactions other than the PCr /ag ATP or ATP /ag ADP + Pi interconversions specifically considered in the analysis. (5) The results support the view that creatine kinase functions primarily to maintain low cytosolic concentrations of ADP during transient periods in which energy utilization exceeds production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号