首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under phosphate starvation conditions, Escherichia coli can utilize sn‐glycerol‐3‐phosphate (G3P) and G3P diesters as phosphate source when transported by an ATP binding cassette importer composed of the periplasmic binding protein, UgpB, the transmembrane subunits, UgpA and UgpE, and a homodimer of the nucleotide binding subunit, UgpC. The current knowledge on the Ugp transporter is solely based on genetic evidence and transport assays using intact cells. Thus, we set out to characterize its properties at the level of purified protein components. UgpB was demonstrated to bind G3P and glycerophosphocholine with dissociation constants of 0.68 ± 0.02 μM and 5.1 ± 0.3 μM, respectively, while glycerol‐2‐phosphate (G2P) is not a substrate. The crystal structure of UgpB in complex with G3P was solved at 1.8 Å resolution and revealed the interaction with two tryptophan residues as key to the preferential binding of linear G3P in contrast to the branched G2P. Mutational analysis validated the crucial role of Trp‐169 for G3P binding. The purified UgpAEC2 complex displayed UgpB/G3P‐stimulated ATPase activity in proteoliposomes that was neither inhibited by phosphate nor by the signal transducing protein PhoU or the phosphodiesterase UgpQ. Furthermore, a hybrid transporter composed of MalFG–UgpC could be functionally reconstituted while a UgpAE–MalK complex was unstable.  相似文献   

2.
The ATP-binding-cassette (ABC) protein LacK of Agro-bacterium radiobacter displays high sequence similarity to the MalK subunit of the Salmonella typhimurium maltose-transport system (MalFGK2). We have used LacK as a tool to identify sites of interaction of MalK with the membrane-integral components MalF and MalG. Small amounts of LacK, resulting from the expression of the plasmid-borne lacK gene, proved to be sufficient for partial restoration of growth of a malK strain of S. typhimurium on maltose. LacK failed to substitute for MalK in regulating the expression of maltose-inducible genes but the hybrid complex MalFGLacK2 was sensitive to inducer exclusion. The lacK gene also complemented a ugpC mutant of Escherichia coli to growth on sn -glycerol-3-phosphate as the phosphate source. Partially purified LacK exhibited a spontaneous ATPase activity comparable to that of MalK. A MalK'–'LacK chimeric protein was isolated (by in vivo recombination) in which the N-terminal 140 amino acids of MalK are fused to residues 141–363 of LacK. The protein substituted for MalK in maltose transport considerably better than LacK. Furthermore, random mutagenesis of the plasmid-borne lacK gene yielded three clones that were superior to wild-type lacK in complementing a malK mutation. Single mutations (V114M or L123F) substantially improved the growth of a malK strain on maltose, whereas a double mutation (L123F, S295N) resulted in growth and transport rates that were indistinguishable from those obtained with MalK. In contrast, the introduction of the single change S295N into LacK had no effect but combination with the V114M mutation led to a further twofold increase in transport activity. These results indicate that a putative helical domain in MalK, encompassing residues 89–140, is crucial for a functional, high-affinity interaction with MalF and MalG.  相似文献   

3.
The ATP binding cassette (ABC-) transporter mediating the uptake of maltose/maltodextrins in Escherichia coli/Salmonella enterica serovar Typhimurium is one of the best characterized systems and serves as a model for studying the molecular mechanism by which ABC importers exert their functions. The transporter is composed of a periplasmic maltose binding protein (MalE), and a membrane-bound complex (MalFGK(2)), comprising the pore-forming hydrophobic subunits, MalF and MalG, and two copies of the ABC subunit, MalK. We report on the isolation of suppressor mutations within malFG that partially restore transport of a maltose-negative mutant carrying the malK809 allele (MalKQ140K). The mutation affects the conserved LSGGQ motif that is involved in ATP binding. Three out of four suppressor mutations map in periplasmic loops P2 and P1 respectively of MalFG. Cross-linking data revealed proximity of these regions to MalE. In particular, as demonstrated in vitro and in vivo, Gly-13 of substrate-free and substrate-loaded MalE is in close contact to Pro-78 of MalG. These data suggest that MalE is permanently in close contact to MalG-P1 via its N-terminal domain. Together, our results are interpreted in favour of the notion that substrate availability is communicated from MalE to the MalK dimer via extracytoplasmic loops of MalFG, and are discussed with respect to a current transport model.  相似文献   

4.
The maltose/maltodextrin transport system of Escherichia coli/Salmonella, composed of periplasmic maltose‐binding protein, MalE, the pore‐forming subunits MalF and MalG, and a homodimer of the nucleotide‐binding subunit, MalK, serves as a model for canonical ATP‐binding cassette importers in general. The wealth of knowledge accumulated on the maltose transporter in more than three decades by genetic, molecular genetic and biochemical means was complemented more recently by crystal structures of the isolated MalK dimer and of two conformational states of the full transporter. Here, we summarize insights into the transport mechanism provided by these structures and draw the reader's attention to experimental tools by which the dynamics of the transporter can be studied during substrate translocation. A transport model is presented that integrates currently available biochemical, biophysical and structural data. We also present the state of knowledge on regulatory functions of the maltose transporter associated with the C‐terminal domain of MalK. Finally, we will address the application of coarse‐grained modelling to visualize the progression of the conformational changes of an ABC transporter with special emphasis on the maltose system, which can provide a model platform for testing and validating the bioinformatic tools.  相似文献   

5.
The maltose ATP-binding cassette (ABC) transporter of Salmonella typhimurium is composed of a membrane-associated complex (MalFGK(2)) and a periplasmic substrate binding protein. To further elucidate protein-protein interactions between the subunits, we have studied the dissociation and reassembly of the MalFGK(2) complex at the level of purified components in proteoliposomes. First, we optimized the yield in purified complex protein by taking advantage of a newly constructed expression plasmid that carries the malK, malF and malG genes in tandem orientation. Incorporated in proteoliposomes, the complex exhibited maltose binding protein/maltose-dependent ATPase activity with a V(max) of 1.25 micromol P(i)/min/mg and a K(m) of 0.1 mM. ATPase activity was sensitive to vanadate and enzyme IIA(Glc), a component of the enterobacterial glucose transport system. The proteoliposomes displayed maltose transport activity with an initial rate of 61 nmol/min/mg. Treatment of proteoliposomes with 6.6 M urea resulted in the release of medium-exposed MalK subunits concomitant with the complete loss of ATPase activity. By adding increasing amounts of purified MalK to urea-treated proteoliposomes, about 50% of vanadate-sensitive ATPase activity relative to the control could be recovered. Furthermore, the phenotype of MalKQ140K that exhibits ATPase activity in solution but not when associated with MalFG was confirmed by reassembly with MalK-depleted proteoliposomes.  相似文献   

6.
MalFGK2 is an ATP‐binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose‐binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide‐binding subunits (MalK dimer). This MBP‐stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose‐bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi‐open MalK dimer. Maltose‐bound MBP promotes the transition to the semi‐open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi‐open MalK2 conformation by maltose‐bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi‐open conformation, from which it can proceed to hydrolyze ATP.  相似文献   

7.
We have isolated a hybrid gene, composed of the first 455 nucleotides of hisP and nucleotides 275-1107 of malK, the genes coding for the nucleotide-binding components of the high-affinity transport systems for histidine and maltose in Salmonella typhimurium, respectively. The fusion had occurred by recombination within 11 homologous base pairs located between the two DNA fragments. In the chimeric protein peptidic motifs A and B, proposed to be part of the nucleotide-binding fold, originate from HisP and MalK, respectively. Plasmid pES42-39, harbouring the hybrid gene, was shown to complement only a malK mutation but failed to complement a hisP deletion mutation. The chimeric protein was identified by immunoblotting as a protein with an apparent molecular mass of 49kDa. Removal of the C-terminal 77 amino acid residues from the chimeric protein resulted in the loss of function in transport. In contrast, 51 amino acid residues could be removed from the C-terminus of wild-type MalK without any effect. Upon overproduction the chimeric protein, as wild-type MalK, inhibited expression of the malB regulon. However, both truncated proteins, when overproduced, did not exhibit this activity. Based on these results, a tentative model of the functional domains of MalK is presented.  相似文献   

8.
The complex MalFGK2 hydrolyzes ATP and alternates between inward- and outward-facing conformations during maltose transport. It has been shown that ATP promotes closure of MalK2 and opening of MalFG toward the periplasm. Yet, why the transporter rests in a conformation facing the cytosol in the absence of nucleotide and how it returns to this state after hydrolysis of ATP is unknown. The membrane domain MalFG may be naturally stable in the inward-facing conformation, or the ABC domain may catalyze the transition. We address this question by analyzing the conformation of MalFG in nanodiscs and in proteoliposomes. We find that MalFG alone exists in an intermediate state until MalK binds and converts the membrane domain to the inward-facing state. We also find that MalK, if overly-bound to MalFG, blocks the transition of the transporter, whereas suppressor mutations that weaken this association restore transport. MalK therefore exploits hydrolysis of ATP to reverse the conformation of MalFG to the inward-facing conformation, a step essential for release of maltose in the cytosol.  相似文献   

9.
In Escherichia coli, interaction of a periplasmic maltose-binding protein with a membrane-associated ATP-binding cassette transporter stimulates ATP hydrolysis, resulting in translocation of maltose into the cell. The maltose transporter contains two transmembrane subunits, MalF and MalG, and two copies of a nucleotide-hydrolyzing subunit, MalK. Mutant transport complexes that function in the absence of binding protein are thought to be stabilized in an ATPase-active conformation. To probe the conformation of the nucleotide-binding site and to gain an understanding of the nature of the conformational changes that lead to activation, cysteine 40 within the Walker A motif of the MalK subunit was modified by the fluorophore 2-(4'-maleimidoanilino)naphthalene-6-sulfonic acid. Fluorescence differences indicated that residues involved in nucleotide binding were less accessible to aqueous solvent in the binding protein independent transporter than in the wild-type transporter. Similar differences in fluorescence were seen when a vanadate-trapped transition state conformation was compared with the ground state in the wild-type transporter. Our results and recent crystal structures are consistent with a model in which activation of ATPase activity is associated with conformational changes that bring the two MalK subunits closer together, completing the nucleotide-binding sites and burying ATP in the interface.  相似文献   

10.
When sn-glycerol-3-phosphate (G3P) is taken up exclusively by the pho regulon-dependent Ugp transport system, it can be used as the sole source of Pi but not as the sole source of carbon. We had previously suggested that the inability of G3P to be used as a carbon source under these conditions is due to trans inhibition of G3P uptake by internal Pi derived from the degradation of G3P (P. Brzoska, M. Rimmele, K. Brzostek, and W. Boos, J. Bacteriol. 176:15-20, 1994). Here we report 31P nuclear magnetic resonance measurements of intact cells after exposure to G3P as well as to Pi, using different mutants defective in pst (high-affinity Pi transport), ugp (pho-dependent G3P transport), glpT (glp-dependent G3P transport), and glpD (aerobic G3P dehydrogenase). When G3P was transported by the Ugp system and when metabolism of G3P was allowed (glpD+), Pi accumulated to about 13 to 19 mM. When G3P was taken up by the GlpT system, the preexisting internal Pi pool (whether low or high) did not change. Both systems were inversely controlled by internal Pi. Whereas the Ugp system was inhibited, the GlpT system was stimulated by elevated internal Pi.  相似文献   

11.
12.
We have investigated conformational changes of the purified maltose ATP-binding cassette transporter (MalFGK(2)) upon binding of ATP. The transport complex is composed of a heterodimer of the hydrophobic subunits MalF and MalG constituting the translocation pore and of a homodimer of MalK, representing the ATP-hydrolyzing subunit. Substrate is delivered to the transporter in complex with periplasmic maltose-binding protein (MalE). Cross-linking experiments with a variant containing an A85C mutation within the Q-loop of each MalK monomer indicated an ATP-induced shortening of the distance between both monomers. Cross-linking caused a substantial inhibition of MalE-maltose-stimulated ATPase activity. We further demonstrated that a mutation affecting the "catalytic carboxylate" (E159Q) locks the MalK dimer in the closed state, whereas a transporter containing the "ABC signature" mutation Q140K permanently resides in the resting state. Cross-linking experiments with variants containing the A85C mutation combined with cysteine substitutions in the conserved EAA motifs of MalF and MalG, respectively, revealed close proximity of these residues in the resting state. The formation of a MalK-MalG heterodimer remained unchanged upon the addition of ATP, indicating that MalG-EAA moves along with MalK during dimer closure. In contrast, the yield of MalK-MalF dimers was substantially reduced. This might be taken as further evidence for asymmetric functions of both EAA motifs. Cross-linking also caused inhibition of ATPase activity, suggesting that transporter function requires conformational changes of both EAA motifs. Together, our data support ATP-driven MalK dimer closure and reopening as crucial steps in the translocation cycle of the intact maltose transporter and are discussed with respect to a current model.  相似文献   

13.
The nucleotide sequence of the ugp genes of Escherichia coli K-12, which encode a phosphate-limitation inducible uptake system for sn-glycerol-3-phosphate and glycerophosphoryl diesters, was determined. The genetic organization of the operon differed from previously published results. A single promoter, containing a putative pho box, was detected by S1-nuclease mapping. The promoter is followed by four open reading frames, designated ugpB, A, E and C, which encode a periplasmic binding protein, two hydrophobic membrane proteins and a protein that is likely to couple energy to the transport system, respectively. The sequences of the proteins contain the characteristics of several other binding protein-dependent transport systems, but they seem to be particularly closely related to the maltose system.  相似文献   

14.
The maltose transport system of Escherichia coli, a member of the ABC transport superfamily of proteins, consists of a periplasmic maltose binding protein and a membrane-associated translocation complex that contains two copies of the ATP-binding protein MalK. To examine the need for two nucleotide-binding domains in this transport complex, one of the two MalK subunits was inactivated by site-directed mutagenesis. Complexes with mutations in a single subunit were obtained by attaching a polyhistidine tag to the mutagenized version of MalK and by coexpressing both wild-type MalK and mutant (His)6MalK in the same cell. Hybrid complexes containing one mutant (His)6MalK subunit and one wild-type MalK subunit were separated from those containing two mutant (His)6MalK proteins based on differential affinities for a metal chelate column. Purified transport complexes were reconstituted into proteoliposome vesicles and assayed for maltose transport and ATPase activities. When a conserved lysine residue at position 42 that is involved in ATP binding was replaced with asparagine in both MalK subunits, maltose transport and ATPase activities were reduced to 1% of those of the wild type. When the mutation was present in only one of the two subunits, the complex had 6% of the wild-type activities. Replacement of a conserved histidine residue at position 192 in MalK with arginine generated similar results. It is clear from these results that two functional MalK proteins are required for transport activity and that the two nucleotide-binding domains do not function independently to catalyze transport.  相似文献   

15.
Active accumulation of maltose and maltodextrins by Escherichia coli depends on an outer-membrane protein. LamB, a periplasmic maltose-binding protein (MalE, MBP) and three inner-membrane proteins, MalF, MalG and MalK. MalF and MalG are integral transmembrane proteins, while MalK is associated with the inner aspect of the cytoplasmic membrane via an interaction with MalG. Previously we have shown that MBP is essential for movement of maltose across the inner membrane. We have taken advantage of malF and malG mutants in which MBP interacts improperly with the membrane proteins. We describe the properties of malE mutations in which a proper interaction between MBP and defective MalF and MalG proteins has been restored. We found that these malE suppressor mutations are able to restore transport activity in an allele-specific manner. That is, a given malE mutation restores transport activity to different extents in different malF and malG mutants. Since both malF and malG mutations could be suppressed by allele-specific malE suppressors, we propose that, in wild-type bacteria, MBP interacts with sites on both MalF and MalG during active transport. The locations of different malE suppressor mutations indicate specific regions on MBP that are important for interacting with MalF and MalG.  相似文献   

16.
Escherichia coli accumulates malto-oligosaccharides by the maltose transport system, which is a member of the ATP-binding-cassette (ABC) superfamily of transport systems. The proteins of this system are LamB in the outer membrane, maltose-binding protein (MBP) in the periplasm, and the proteins of the inner membrane complex (MalFGK2), composed of one MalF, one MalG, and two MalK subunits. Substrate specificity is determined primarily by the periplasmic component, MBP. However, several studies of the maltose transport system as well as other members of the ABC transporter superfamily have suggested that the integral inner membrane components MalF and MalG may play an important role in determining the specificity of the system. We show here that residue L334 in the fifth transmembrane helix of MalF plays an important role in determining the substrate specificity of the system. A leucine-to-tryptophan alteration at this position (L334W) results in the ability to transport lactose in a saturable manner. This mutant requires functional MalK-ATPase activity and the presence of MBP, even though MBP is incapable of binding lactose. The requirement for MBP confirms that unliganded MBP interacts with the inner membrane MalFGK2 complex and that MBP plays a crucial role in triggering the transport process.  相似文献   

17.
The maltose ATP-binding cassette (ABC) transporter of Salmonella typhimurium is composed of a membrane-associated complex (MalFGK2) and a periplasmic substrate binding protein. To further elucidate protein-protein interactions between the subunits, we have studied the dissociation and reassembly of the MalFGK2 complex at the level of purified components in proteoliposomes. First, we optimized the yield in purified complex protein by taking advantage of a newly constructed expression plasmid that carries the malK, malF and malG genes in tandem orientation. Incorporated in proteoliposomes, the complex exhibited maltose binding protein/maltose-dependent ATPase activity with a Vmax of 1.25 μmol Pi/min/mg and a Km of 0.1 mM. ATPase activity was sensitive to vanadate and enzyme IIAGlc, a component of the enterobacterial glucose transport system. The proteoliposomes displayed maltose transport activity with an initial rate of 61 nmol/min/mg. Treatment of proteoliposomes with 6.6 M urea resulted in the release of medium-exposed MalK subunits concomitant with the complete loss of ATPase activity. By adding increasing amounts of purified MalK to urea-treated proteoliposomes, about 50% of vanadate-sensitive ATPase activity relative to the control could be recovered. Furthermore, the phenotype of MalKQ140K that exhibits ATPase activity in solution but not when associated with MalFG was confirmed by reassembly with MalK-depleted proteoliposomes.  相似文献   

18.
Two-dimensional gel electrophoresis of shock fluids of Escherichia coli K-12 revealed the presence of a periplasmic protein related to sn-glycerol-3-phosphate transport (GLPT) that is under the regulation of glpR, the regulatory gene of the glp regulon. Mutants selected for their resistance to phosphonomycin and found to be defective in sn-glycerol-3-phosphate transport either did not produce GLPT or produced it in reduced amounts. Other mutations exhibited no apparent effect of GLPT. Transductions of glpT+ nalA phage P1 into these mutants and selection for growth on sn-glycerol-3-phosphate revealed a 50% cotransduction frequency to nalA. Reversion of mutants taht did not produce GLPT to growth on sn-glycerol-3-phosphate resulted in strains that produce GLPT. This suggests a close relationship of GLPT to the glpT gene and to sn-glycerol-3-phosphate transport. Attempts to demonstrate binding activity of GLPT in crude shock fluid towards sn-glycerol-3-phosphate have failed so far. However, all shock fluids, independent of their GLPT content, exhibited an enzymatic activity that hydrolyzes under the conditions of the binding assay, 30 to 60% of the sn-glycerol-3-phosphate to glycerol and inorganic orthophosphate.  相似文献   

19.
The maltose regulon consists of several genes encoding proteins involved in the uptake and utilization of maltose and maltodextrins. Five proteins make up a periplasmic binding-protein-dependent active transport system. One of these proteins, MalK, contains an ATP-binding site and is thought to couple the hydrolysis of ATP to the accumulation of substrate. Beside its function in transport, MalK has two additional roles: (i) it negatively regulates mal regulon expression and (ii) it serves as the target for regulation of transport activity by enzyme IIIGlc of the phosphotransferase system. To determine whether the three functions of MalK are separable, we have isolated and characterized three classes of malK mutations. The first type (class I) exhibited constitutive mal gene expression but still allowed normal transport of maltose; the second type (class II) lacked the ability to transport maltose but retained the ability to repress the mal genes. Class I mutations were localized in the last third of the gene, at amino acids 267 (Trp to Gly) and 346 (Gly to Ser). Mutations of class II were found at the positions 137 (Gly to Ala), 140 (delta Gln Arg), and 158 (Asp to Asn). These mutations are near or within the region of MalK that exhibits extensive homology to the B site of an ATP-binding fold. In addition, site-directed mutagenesis was used to add or remove one amino acid in the A site of the ATP-binding fold. Plasmids carrying these mutations also behaved as class II mutants. The third class of malK mutations resulted in resistance to the enzyme IIIGlc-mediated inhibitory effects of alpha-methylglucoside. These mutations did not interfere with the regulatory function of MalK. One of these mutations (exchanging a serine at position 282 for leucine) is located in a short stretch of amino acids that exhibits homology to a sequence in the Escherichia coli Lac permease in which alpha-methylglucoside-resistant mutations have been found.  相似文献   

20.
Understanding the structure and function of the ATP-binding cassette (ABC) transporters is very important because defects in ABC transporters lie at the root of several serious diseases including cystic fibrosis. MalK, the ATP-binding cassette of the maltose transporter of Escherichia coli, is distinct from most other ATP-binding cassettes in that it contains an additional C-terminal regulatory domain. The published structure of a MalK dimer is elongated with C-terminal domains at opposite poles (Diederichs, K., Diez, J., Greller, G., Muller, C., Breed, J., Schnell, C., Vonrhein, C., Boos, W., and Welte, W. (2000) EMBO J. 19, 5951-5961). Some uncertainty exists as to whether the orientation of MalK in the dimer structure is correct. Superpositioning of the N-terminal domains of MalK onto the ATP-binding domains of an alternate ABC dimer, in which ATP is bound along the dimer interface between Walker A and LSGGQ motifs, places both N- and C-terminal domains of MalK along the dimer interface. Consistent with this model, a cysteine substitution at position 313 in the C-terminal domain of an otherwise cysteine-free MalK triggered disulfide bond formation between two MalK subunits in an intact maltose transporter. Disulfide bond formation did not inhibit the function of the transporter, suggesting that the C-terminal domains of MalK remain in close proximity throughout the transport cycle. Enzyme IIAglc still inhibited the ATPase activity of the disulfide-linked transporter indicating that the mechanism of inducer exclusion was unaffected. These data support a model for ATP hydrolysis in which the C-terminal domains of MalK remain in contact whereas the N-terminal domains of MalK open and close to allow nucleotide binding and dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号