首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Key message

Twenty-seven QTLs were identified for rice seed vigor, in which 16 were novel QTLs. Fifteen elite parental combinations were designed for improving seed vigor in rice.

Abstract

Seed vigor is closely related to direct seeding in rice (Oryza sativa L.). Previous quantitative trait locus (QTL) studies for seed vigor were mainly derived from bi-parental segregating populations and no report from natural populations. In this study, association mapping for seed vigor was performed on a selected sample of 540 rice cultivars (419 from China and 121 from Vietnam). Population structure was estimated on the basis of 262 simple sequence repeat (SSR) markers. Seed vigor was evaluated by root length (RL), shoot length (SL) and shoot dry weight in 2011 and 2012. Abundant phenotypic and genetic diversities were found in the studied population. The population was divided into seven subpopulations, and the levels of linkage disequilibrium (LD) ranged from 10 to 80 cM. We identified 27 marker–trait associations involving 18 SSR markers for three traits. According to phenotypic effects for alleles of the detected QTLs, elite alleles were mined. These elite alleles could be used to design parental combinations and the expected results would be obtained by pyramiding or substituting the elite alleles per QTL (apart from possible epistatic effects). Our results demonstrate that association mapping can complement and enhance previous QTL information for marker-assisted selection and breeding by design.  相似文献   

4.
Identification of alleles responsible for opaque2 modifiers (Opm) influencing tryptophan content in finger millet is a major aim for further improvement of the quality of the locally adapted finger millet germplasm. Since there is little genome sequence information available, comparative genomics plays a very important role in identification of genes/quantitative trait loci (QTLs) linked to the Opm genes using simple sequence repeat (SSR) markers. In the present study, a total of 74 genic SSRs were developed and then used for genetic diversity and population structure analysis of a global collection of 190 finger millet genotypes. The 74 SSRs yielded 133 scorable alleles and the polymorphism information content values varied from 0.186 to 0.707, with an average of 0.408. The gene diversity was in the range of 0.208–0.752, with an average of 0.501. The SSRs developed from the aspartate kinase2 gene of the lysine pathway showed more polymorphism than the other candidate genes. The 74 genic SSR loci grouped the 190 finger millet genotypes into three major clusters based on their tryptophan content, using both phylogenetic clustering and population structure analysis by STRUCTURE software. Association mapping for Opm was done using 120 (74 genic and 46 genomic) SSR loci for identification of QTLs linked to Opm influencing tryptophan content, and found two QTLs for tryptophan and one QTL for protein content. The QTLs for tryptophan content were associated with the genic marker OM5 at a P value of 0.009 and explained 11 % of phenotypic variance (R 2). The OM5 marker was designed from the 27-kDa γ-zein gene of Opm, which influences the tryptophan content to a large extent, whereas the genomic marker FM8 was linked at a P value of 0.004 and explained 9 % of R 2. The QTLs for protein content were associated with the genic SSR marker FMO2EST1, which was designed from the RISBZ1 gene of rice and was linked at a P value of 0.002 and explained 9 % of R 2. The 220-bp allele of SSR locus OM5 was found to be present mostly in the high tryptophan-containing genotypes such as exotic genotypes, and among the Indian genotypes it was present in NW Himalayan genotypes. The markers linked to the QTLs for Opm found in the present study can be further used for cloning of the full-length gene, for fine mapping and in the marker-assisted breeding programmes for introgression of alleles into locally well-adapted germplasm.  相似文献   

5.
The tuberous stem of kohlrabi is an important quantitative trait, which affects its yield and quality. Genetic control of this trait has not yet been unveiled. To identify the QTLs controlling stem swelling of kohlrabi, a BC1 population of 92 plants was developed from a cross of broccoli DH line GCP04 and kohlrabi var. Seine. A wide range of variation in tuberous stem diameter was observed among the mapping populations. We constructed a genetic map of nine linkage groups (LGs) with different types of markers, spanning a total length of 913.5 cM with an average marker distance of 7.55 cM. Four significant QTLs for radial enlargement of kohlrabi stem, namely, REnBo1, REnBo2, REnBo3, and REnBo4 were detected on C02, C03, C05, and C09, respectively, and accounted for the phenotypic variation of 59% for the stem diameter and 55% for the qualitative grading of tuberous stem in classes. Then, we confirmed the stability of identified QTLs using BC1S1 populations derived from the BC1 plants having heterozygous alleles at the target QTL and homozygous kohlrabi alleles at the remaining QTLs. REnBo1and REnBo2 using 128 plants of BC168S1 and 94 plants of BC143S1, respectively, and REnBo3 and REnBo4 using 152 plants of BC157S1 were detected at the same positions as the respective QTLs of the BC1 population. Confirmation of QTLs in two successive generations indicates that the QTLs are persistent. The QTLs obtained in this study could be useful in marker-assisted selection of kohlrabi breeding, and to understand the genetic mechanisms of stem swelling and storage organ development in kohlrabi and other Brassica species.  相似文献   

6.
虞志飞  闫喜武  张跃环  杨霏  杨凤  张国范 《生态学报》2012,32(15):4673-4681
为查明年龄结构对菲律宾蛤仔同一群体内遗传多样的影响,采用14个SSR分子标记对大连石河不同年龄段的野生蛤仔进行了检测。结果表明:不同年龄段(1龄-Age1、2龄-Age2、3龄-Age3)蛤仔均维持着较高的遗传多样性。根据POPGENE 1.31和SPSS16.0统计分析显示,位点Rp-11、Rp-12、Rp-19对3个年龄段蛤仔的等位基因数差异极显著(P<0.01);位点Rp-20、Rp-24、Rp-27、Rp-30对其差异显著(P<0.05);剩余7个位点表现为差异不显著(P>0.05)。在平均水平上,每位点等位基因数目Na为4.3095,有效等位基因数目Ne为2.3729,多态位点百分数P(%)为14。观察杂合度和期望杂合度都比较高,观察杂合度平均为Ho=0.2335,期望杂合度平均为He=0.5140。而且,Ne和He随年龄的变化表现出Age2>Age3>Age1的趋势。各年龄段蛤仔——Age1、Age2、Age3的平均观察杂合度(Ho)和平均期望杂合度(He)分别为0.2357、0.2546、0.2159和0.4951、0.5286、0.5184。Age2的遗传多样性指数高于Age1及Age3,遗传分化相对较低。其中,Age1与Age3蛤仔遗传距离最小,D为0.0195,即变异很小;而Age1与Age2遗传距离较大,D为0.0437,变化范围不大(0.0195—0.0437)。从遗传一致度的数值上看了3个年龄段蛤仔的遗传相似程度很大,平均为0.9655。Age1与Age3遗传相似程度高达0.9807,而Age1与Age2相似程度较小为0.9572。说明不同年龄段蛤仔相似程度非常高。根据不同年龄段蛤仔的遗传距离,采用UPGMA平均聚类方法对其进行聚类可知,Age3与Age1蛤仔间遗传距离较小,与Age2蛤仔差异较大。通过对等位基因频率进行卡方检验发现,随着年龄结构的变化,部分基因基因频率减小;同时随着年龄的增长,有部分等位基因得到了纯化。大连群体蛤仔总的遗传分化较低,其遗传分化指数Fst为0.0248(Fst<0.05),遗传分化系数为0.02,说明总的遗传变异中有2%来自于不同年龄段的蛤仔之间。遗传距离和遗传一致度均值分别为0.035和0.9655,基因流(Nm=9.8238)相对流畅,进一步表明年龄结构对蛤仔种群内遗传分化的影响较小。  相似文献   

7.
Wide adoption of direct-seeded rice practices has been hindered by poorly leveled fields, heavy rainfall and poor drainage, which cause accumulation of water in the fields shortly after sowing, leading to poor crop establishment. This is due to the inability of most rice varieties to germinate and reach the water surface under complete submergence. Hence, tolerance of anaerobic conditions during germination is an essential trait for direct-seeded rice cultivation in both rainfed and irrigated ecosystems. A QTL study was conducted to unravel the genetic basis of tolerance of anaerobic conditions during germination using a population derived from a cross between IR42, a susceptible variety, and Ma-Zhan Red, a tolerant landrace from China. Phenotypic data was collected based on the survival rates of the seedlings at 21 days after sowing of dry seeds under 10 cm of water. QTL analysis of the mapping population consisting of 175 F2:3 families genotyped with 118 SSR markers identified six significant QTLs on chromosomes 2, 5, 6, and 7, and in all cases the tolerant alleles were contributed by Ma-Zhan Red. The largest QTL on chromosome 7, having a LOD score of 14.5 and an R 2 of 31.7 %, was confirmed using a BC2F3 population. The QTLs detected in this study provide promising targets for further genetic characterization and for use in marker-assisted selection to rapidly develop varieties with improved tolerance to anaerobic condition during germination. Ultimately, this trait can be combined with other abiotic stress tolerance QTLs to provide resilient varieties for direct-seeded systems.  相似文献   

8.
Sorghum downy mildew caused by Peronosclerospora sorghi is a major disease of maize and resistance is under the control of polygenes which necessitated identification of quantitative-trait loci (QTLs) for initiating marker-assisted introgression of resistant QTLs in elite susceptible inbred lines. In the present study, QTLs for sorghum downy mildew (SDM) resistance in maize were identified based on cosegregation with linked simple sequence repeats in 185 F2 progeny from a cross between susceptible (CM500-19) and resistant (MAI105) parents. F3 families were screened in the National Sorghum Downy Mildew Screening Nursery during 2010 and 2011. High heritability was observed for the disease reaction. The final map generated using 87 SSR markers had 10 linkage groups, spanning a length of 1210.3 cM. Although, we used only 87 SSR markers for mapping, the per cent of genome within 20 cM to the nearest marker was 88.5. Three putative QTLs for SDM resistance were located on chromosomes 3 (bin 3.01), 6 (bin 6.01) and 2 (bin 2.02) using composite interval mapping. The locus on chromosome 3 had a major effect and explained up to 12.6% of the phenotypic variation. The other two QTLs on chromosomes 6 and 2 had minor effects with phenotypic variation of 7.1 and 2%. The three QTLs appeared to have additive effects on resistance. The QTLs on chromosomes 3 and 6 were successfully used in the marker-assisted selection programme for introgression of resistance to SDM in eight susceptible maize lines.  相似文献   

9.
An earlier study identified quantitative trait loci (QTLs) lb4, lb5b, and lb11b for quantitative resistance to Phytophthora infestans (late blight) in a backcross population derived from crossing susceptible cultivated tomato (Lycopersicon esculentum) with resistant L. hirsutum. The QTLs were located in intervals spanning 28–47 cM. Subsequently, near-isogenic lines (NILs) were developed for lb4, lb5b, and lb11b by marker-assisted backcrossing to L. esculentum. Sub-NILs containing overlapping L. hirsutum segments across each QTL region were selected and used to validate the QTL effects, fine-map QTLs, and evaluate potential linkage drag between resistance QTLs and QTLs for horticultural traits. The NILs and sub-NILs were evaluated for disease resistance and eight horticultural traits at three field locations. Resistance QTLs were detected in all three sets of NIL lines, confirming the BC1 mapping results. Lb4 mapped near TG609, and between TG182 and CT194, on chromosome 4, a 6.9-cM interval; lb5b mapped to an 8.8-cM interval between TG69a and TG413 on chromosome 5, with the most likely position near TG23; and lb11b mapped to a 15.1-cM interval on chromosome 11 between TG194 and TG400, with the peak centered between CT182 and TG147. Most QTLs for horticultural traits were identified in intervals adjacent to those containing the late blight resistance QTLs. Fine mapping of these QTLs permits the use of marker-assisted selection for the precise introgression of L. hirsutum segments containing late blight resistance alleles separately from those containing deleterious alleles at horticulturally important QTLs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by D.B. Neale  相似文献   

10.
Seed quality QTLs identified in a molecular map of early maturing soybean   总被引:23,自引:0,他引:23  
This study identified QTLs influencing seed quality characters in a cross of two early maturing soybean (Glycine max [L.] Merr.) cultivars (Ma.Belle and Proto) adapted to the short growing seasons of Central Europe. A molecular linkage map was constructed by using 113 SSR, 6 RAPD and 1 RFLP markers segregating in 82 individuals of an F2 population. The map consists of 23 linkage groups and corresponds wellto previously published soybean maps. Using phenotypic data of the F2-derived lines grown in five environments, four markers for protein content, three for oil content and eight for seed weight were identified. Four from fifteen seed quality QTL-regions identified in the present study were also found by other authors. Markers associated with seed weight QTLs were consistent across all environments and proved to have effects large enough to be useful in a marker-assisted breeding program, whereas protein and oil QTLs showed environmental interactions. Received: 9 October 2000 / Accepted: 26 February 2001  相似文献   

11.
Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize   总被引:3,自引:0,他引:3  
 Cultivars with quantitative resistance are widely used to control Setosphaeria turcica (Luttrell) Leonard & Suggs, the causal organism of northern corn leaf blight (NCLB). Here the effectiveness of quantitative trait loci (QTLs) for NCLB resistance was investigated over the course of host plant development in inoculated field trials. A population of 194–256 F2:3 lines derived from a cross between a susceptible Italian (Lo951) and a highly resistant African inbred line (CML202) was tested in three environments in Kenya. The traits assessed were the incubation period (IP), the percentage disease severity (DS 1 to 5, taken biweekly), and the area under the disease progress curve (AUDPC). Considering all resistance traits and environments, a total of 19 putative QTLs were detected by composite interval mapping using a linkage map with 110 RFLP markers. In the combined analysis across environments, nine QTLs were significant (LOD >3.0) for DS 3, recorded around flowering time, explaining 71% of the genotypic variance. Four of these nine QTLs displayed significant (P<0.05) QTL×environment (QTL×E) interaction. Most QTLs were already significant in the juvenile stage (IP) and became less effective after flowering. Across environments, three QTLs conditioned adult-plant resistance, in the sense that they were only significant after flowering. Six QTL alleles on chromosomes 2, 4, 5, 8, and 9 of CML202 should be useful for marker-assisted backcrossing. Received: 24 August 1998 / Accepted: 29 September 1998  相似文献   

12.
In this study, primer pairs of 15 microsatellite markers associated with sex determination of tilapia were selected and amplified in Wami tilapia, Oreochromis urolepis hornorum. While one marker, UNH168, on linkage group 3 (LG3) was associated (P < 0.001) with the phenotypic sex in the experimental population, nine genotypes were detected in both sexes. Only 99-bp allele was detected in the female samples, while 141, 149 and 157-bp alleles were present in both male and female samples. UNH168 was localized by fluorescence in situ hybridization (FISH) on the long arm of the largest tilapia chromosome pair (chromosome 1, equivalent to LG3). This sex-linked microsatellite marker could potentially be used for marker-assisted selection in tilapia breeding programmes to produce monosex male tilapia.  相似文献   

13.
为揭示河口埋栖性双壳贝类优势种类在水层——底栖系统中的生态耦合作用,利用生物沉积物捕集器和封闭式代谢瓶,于双台子河口现场研究了文蛤主要生理生态过程如生物沉积速率、耗氧率、排氨率和排磷率的季节变化。结果表明,文蛤的生物沉积速率、耗氧率、排氨率及排磷率均具有明显的季节变化:夏季最高,冬季最低。二龄及三龄文蛤个体的生物沉积速率周年变化分别为0.02—0.30 g-1个-1d-1、0.06—0.60 g-1个-1d-1;耗氧率变化分别为0.45—16.64 mg-1个-1d-1、1.03—30.51 mg-1个-1d-1;排氨率季节变化分别为0.001—0.14 mg-1个-1d-1、0.002—0.28 mg-1个-1d-1;排磷率季节变化分别为0.002—0.069 mg-1个-1d-1、0.003—0.16 mg-1个-1d-1。文蛤的生物沉积速率及呼吸排泄速率均受龄期制约:在同一季节,文蛤的单位个体生物沉积速率及呼吸和排泄速率均表现为二龄三龄。方差分析显示,季节、龄期及两者交互作用对文蛤生物沉积速率、耗氧率、排氨率及排磷率均有显著影响。基于不同季节双台子河口文蛤生物量(0.67个/m2、2.4 g/m2),估算出文蛤种群每年向该河口排放大约5321.90 t生物沉积物(干重)、1.43 t NH+4-N和0.93 t PO3-4-P,并且消耗大约221.59 t O2。研究结果表明,文蛤通过生物沉积及呼吸排泄作用,大大加强了双台子河口沉积物-水界面的物质交换通量,在双台子河口水层-底栖系统耦合作用中扮演着重要生态角色。  相似文献   

14.
Grain yield and associated agronomic traits are important factors in wheat (Triticum aestivum L.) improvement. Knowledge regarding the number, genomic location, and effect of quantitative trait loci (QTL) would facilitate marker-assisted selection and the development of cultivars with desirable characteristics. Our objectives were to identify QTLs directly and indirectly affecting grain yield expression. A population of 132 F12 recombinant inbred lines (RILs) was derived by single-seed descent from a cross between the Chinese facultative wheat Ning7840 and the US soft red winter wheat Clark. Phenotypic data were collected for 15 yield and other agronomic traits in the RILs and parental lines from three locations in Oklahoma from 2001 to 2003. Twenty-nine linkage groups, consisting of 363 AFLP and 47 SSR markers, were identified. Using composite interval mapping (CIM) analysis, 10, 16, 30, and 14 QTLs were detected for yield, yield components, plant adaptation (shattering and lodging resistance, heading date, and plant height), and spike morphology traits, respectively. The QTL effects ranged from 7 to 23%. Marker alleles from Clark were associated with a positive effect for the majority of QTLs for yield and yield components, but gene dispersion was the rule rather than the exception for this RIL population. Often, QTLs were detected in proximal positions for different traits. Consistent, co-localized QTLs were identified in linkage groups 1AL, 1B, 4B, 5A, 6A, and 7A, and less consistent but unique QTLs were identified on 2BL, 2BS, 2DL, and 6B. Results of this study provide a benchmark for future efforts on QTL identification for yield traits.  相似文献   

15.
Quantitative trait loci (QTLs) for resistance to the fungal pathogen Setosphaeria turcica, the cause of northern corn leaf blight (NCLB), were mapped in a population of 220 F3 families derived from a cross between two moderately resistant European inbred lines, D32 (dent) and D145 (flint). The population was genotyped with 87 RFLP and 7 SSR markers. Trials were conducted in the field in Switzerland, and in the greenhouse with selected F3 families in Germany. The F3 population segregated widely for resistance with transgression of the parents. By composite interval mapping, a total of 13 QTLs were detected with two disease ratings (0 and 3 weeks after flowering). Together these QTLs explained 48% and 62% of the phenotypic variation. Gene action at most QTLs was partially dominant. Eight out of the 13 QTL alleles for resistance were contributed by the more-resistant parent, D145. On chromosomes 3, 5 and 8, QTLs were located in the same chromosomal regions as QTLs in tropical and U.S. Corn Belt germplasm. Some QTLs affected NCLB, head smut and common rust at the same time, with alleles at these loci acting isodirectionally. Received: 25 January 1999 / Accepted: 20 Februar 1999  相似文献   

16.
Mapping soybean aphid resistance genes in PI 567598B   总被引:1,自引:0,他引:1  
The soybean aphid (Aphis glycines Matsumura) has been a major pest of soybean [Glycine max (L.) Merr.] in North America since it was first reported in 2000. Our previous study revealed that the strong aphid resistance of plant introduction (PI) 567598B was controlled by two recessive genes. The objective of this study was to locate these two genes on the soybean genetic linkage map using molecular markers. A mapping population of 282 F4:5 lines derived from IA2070 × E06902 was evaluated for aphid resistance in a field trial in 2009 and a greenhouse trial in 2010. Two quantitative trait loci (QTLs) were identified using the composite and multiple interval mapping methods, and were mapped on chromosomes 7 (linkage group M) and 16 (linkage group J), respectively. E06902, a parent derived from PI 567598B, conferred resistance at both loci. In the 2010 greenhouse trial, each of the two QTLs explained over 30 % of the phenotypic variation. Significant epistatic interaction was also found between these two QTLs. However, in the 2009 field trial, only the QTL on chromosome 16 was found and it explained 56.1 % of the phenotypic variation. These two QTLs and their interaction were confirmed with another population consisting of 94 F2:5 lines in the 2008 and 2009 greenhouse trials. For both trials in the alternative population, these two loci explained about 50 and 80.4 % of the total phenotypic variation, respectively. Our study shows that soybean aphid isolate used in the 2009 field trial defeated the QTL found on chromosome 7. Presence of the QTL on chromosome 16 conferred soybean aphid resistance in all trials. The markers linked to the aphid-resistant QTLs in PI 567598B or its derived lines can be used in marker-assisted breeding for aphid resistance.  相似文献   

17.
 We report results from a breeding strategy designed to accumulate favorable QTL alleles for grain yield identified in the SteptoeבMorex’ (SM) barley germplasm. Two map lines (SM73 and SM145) from the original mapping population were selected based on their marker genotype and QTL structure. When crossed, these lines would be expected to produce progeny with most favorable QTL alleles. One hundred doubled haploid (DH) lines from the F1 hybrid of this cross were genotyped with ten RFLP markers and one morphological marker defining grain yield to monitor QTL segregation. A subset of 24 lines representing various combinations of putatively favorable and unfavorable QTL alleles, together with Steptoe, ‘Morex’, SM73, and SM145, were phenotyped for grain yield in five environments. Multiple regression procedures were used to explore phenotype and genotype relationships. Most target QTLs showed significant effects. However, significance and magnitude of QTL effects and favorable QTL allele phase varied across environments. All target QTLs showed significant QTL-by-environment interaction (QTL×E), and the QTL on chromosome 2 expressed alternative favorable QTL alleles in different environments. Digenic epistatic effects were also detected between some QTL loci. For traits such as grain yield, marker-assisted selection efforts may be better targeted at determining optimum combinations of QTL alleles rather than pyramiding alleles detected in a reference mapping population. Received: 2 June 1998 / Accepted: 17 September 1998  相似文献   

18.
Jia L  Yan W  Zhu C  Agrama HA  Jackson A  Yeater K  Li X  Huang B  Hu B  McClung A  Wu D 《PloS one》2012,7(3):e32703
Sheath blight (ShB) caused by the soil-borne pathogen Rhizoctonia solani is one of the most devastating diseases in rice world-wide. Global attention has focused on examining individual mapping populations for quantitative trait loci (QTLs) for ShB resistance, but to date no study has taken advantage of association mapping to examine hundreds of lines for potentially novel QTLs. Our objective was to identify ShB QTLs via association mapping in rice using 217 sub-core entries from the USDA rice core collection, which were phenotyped with a micro-chamber screening method and genotyped with 155 genome-wide markers. Structure analysis divided the mapping panel into five groups, and model comparison revealed that PCA5 with genomic control was the best model for association mapping of ShB. Ten marker loci on seven chromosomes were significantly associated with response to the ShB pathogen. Among multiple alleles in each identified loci, the allele contributing the greatest effect to ShB resistance was named the putative resistant allele. Among 217 entries, entry GSOR 310389 contained the most putative resistant alleles, eight out of ten. The number of putative resistant alleles presented in an entry was highly and significantly correlated with the decrease of ShB rating (r = −0.535) or the increase of ShB resistance. Majority of the resistant entries that contained a large number of the putative resistant alleles belonged to indica, which is consistent with a general observation that most ShB resistant accessions are of indica origin. These findings demonstrate the potential to improve breeding efficiency by using marker-assisted selection to pyramid putative resistant alleles from various loci in a cultivar for enhanced ShB resistance in rice.  相似文献   

19.

Key message

QTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives.

Abstract

The molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BC3F2 and 12 corresponding BC3F2:3 and BC3F2:4 families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance. The QTL numbers detected for upper-half mean length (UHM), fiber uniformity index (UI), and short fiber content (SFC) were 19, 20, and 26 respectively. Twenty-three of the 65 QTLs could be detected at least twice near adjacent markers in the same family or near the same markers across different families/generations, and 32 QTLs were detected in both one-way variance analyses and mixed model-based composite interval mapping. G. mustelinum alleles increased UHM and UI and decreased SFC for five, one, and one QTLs, respectively. In addition to the main-effect QTLs, 17 epistatic QTLs were detected which helped to elucidate the genetic basis of cotton fiber length. Significant among-family genotypic effects were detected at 18, 16, and 16 loci for UHM, UI, and SFC, respectively. Six, two, and two loci showed genotype?×?family interaction for UHM, UI and SFC, respectively, illustrating complexities that might be faced in introgression of exotic germplasm into cultivated cotton. Co-location of many QTLs for UHM, UI, and SFC accounted for correlations among these traits, and selection of these QTLs may improve the three traits simultaneously. The simple sequence repeat (SSR) markers associated with G. mustelinum QTLs will assist breeders in transferring and maintaining valuable traits from this exotic source during cultivar development.
  相似文献   

20.
Slow rusting is considered a crucial component of durable resistance to wheat leaf rust caused by Puccinia triticina and is often expressed in the form of a prolonged latent period. Selection for a longer latent period is considered an effective approach to developing wheat cultivars with improved durable resistance to leaf rust. A recombinant inbred line (RIL) population derived from CI 13227 (long latent period) × Suwon 92 (short latent period) was phenotyped for latent period in two greenhouse experiments in separate years, and amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers were analyzed in the same population. Among the RILs, the frequency distribution for latent period was continuous, and latent period was highly correlated between years (r=0.94, P<0.0001). A quantitative trait locus (QTL) prolonging the latent period of P. triticina, designated as QLrlp.osu-2DS, explained 42.8% and 54.5% of the phenotypic and genetic variance in the two experiments, respectively. QLrlp.osu-2DS was mapped on the distal region of chromosome 2DS. Two other QTLs for latent period, QLrlp.osu-2B and QLrlp.osu-7BL, were localized on chromosome 2B and the long arm of chromosome 7B, respectively. Multiple regression analysis showed that these three QTLs collectively explained 58.0% and 73.8% of the phenotypic and genetic variance over two experiments, respectively. Fourteen RILs that carried all three alleles for long latent period at three AFLP loci flanking QLrlp.osu-2DS, QLrlp.osu-2B, and QLrlp.osu-7BL had a mean latent period of 12.5 days, whereas 13 RILs without any long-latent-period alleles at the corresponding loci had a mean latent period of 7.4 days. Three SSR markers closely linked to these QTLs have potential to be applied in marker-assisted selection for prolonged latent period in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号