首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
T. Sota 《Population Ecology》2002,44(3):0145-0156
 In the evolutionary process of an animal lineage, interactions in secondary contacts of differentiated populations and introgressive hybridization may play an important role. In the Japanese islands, the carabid subgenus Ohomopterus (genus Carabus) exhibits a marked differentiation in body size and genital morphology. Although geographical differentiation is apparent, two or three species usually coexist at many localities. Their reproductive isolation relies on body size differences, chemical cues for mate recognition, and a species-specific genital lock-and-key system. However, these isolation mechanisms are not always effective enough to prevent interspecific hybridization. An initial assessment of the species-level phylogeny with mitochondrial gene sequences revealed that the gene genealogy is highly inconsistent with the morphology-based taxonomy. A comparison of mitochondrial and nuclear gene genealogies showed that these are strongly incongruent with each other, while the nuclear gene genealogy is more consistent with traditional taxonomy, indicating the repeated occurrence of introgression of mitochondria across species. Here, two different cases of mitochondrial introgression among Ohomopterus species are described in detail, one for parapatric species and the other for sympatric species. First, mitochondrial haplotypes and sequences were studied in Carabus insulicola and three taxa parapatric with C. insulicola, at least two of which hybridize with C. insulicola naturally. Among the four species studied, directional introgressions of mitochondria across boundary zones were detected. Second, in the Mt. Kongo area in central Honshu, which harbors five species, introgression of mitochondria among four out of the five species was detected, despite the apparent absence of on-going natural hybridization. These inferred cases of mitochondrial introgression indicate that species interactions through hybridization could have played an important role at various stages in the evolution of Ohomopterus. Received: April 12, 2002 / Accepted: October 17, 2002 Acknowledgments I am grateful to Alfried P. Vogler for a long-lasting collaboration in the molecular phylogenetic study of Ohomopterus. R. Ishikawa, K. Kubota, M. Ujiie, Y. Takami, and F. Kusumoto have also collaborated at various stages of this study. Thanks are also due to K. Miyashita, T. Funakoshi, H. Fujimoto, T. Dejima, Y. Nagahata, T. Miyagawa, K. Yodoe, H. Kadowaki, S. Nakamine, Y. Oka, H. Tanaka, T. Tanabe, K. Kusakari, and T. Okumura for their care of specimens. Supported by grants-in-aid from the Japan Society for the Promotion of Science (Nos. 09640748, 11304056).  相似文献   

2.
The shapes and lengths of copulatory pieces and vaginal appendices of the carabid beetle subgenus Ohomopterus (genus Carabus) vary among species. In Japan, the species in the group with a medium body size (C. yaconinus, C. iwawakianus, C. maiyasanus, C. uenoi, C. arrowianus, C. esakii, and C. insulicola) are usually allopatric or parapatric, except at Mt Kongosan, where C. uenoi, C. iwawakianus, and C. yaconinus are sympatrically distributed. The degree of premating isolation by mate preference was high between sympatric populations, irrespective of the genetic distance between them. However, premating isolation was absent between parapatric populations. The degree of premating isolation for allopatric populations spanned a wide range of isolation values. Thus, mate discrimination by males seems to have evolved mostly between sympatric pairs. These results suggest two hypotheses. First, premating isolation has evolved through reinforcement or through reproductive character displacement after sympatric contact. Second, premating isolation has evolved in allopatry, and as a result of premating isolation, the species can coexist in sympatry. We also examined the degree of mechanical isolation between C. uenoi and C. iwawakianus (a sympatric pair), which have a very large difference in the length of the copulatory piece. The insertion success was low and only one female produced viable offspring among 15 crosses; however, death in females due to copulation was rare. For sympatric matings between C. uenoi and C. iwawakianus, a large difference in the genital size might reduce the gene flow with small mating costs. Gene flow that was significantly reduced by genital difference might cause either the evolution of premating isolation through reinforcement/reproductive character displacement or through the maintenance of a high degree of premating isolation following sympatric contact. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 87 , 145–154.  相似文献   

3.
Secondary contact between incipient species and selection against maladaptive hybridization can drive reinforcement between populations in contact and result in reproductive character displacement (RCD). Resultant divergence in mating traits within a species may generate downstream reproductive isolation between populations with displaced and non-displaced traits, referred to as the cascade reinforcement hypothesis. We examined this hypothesis using three allopatric populations of the ground beetle Carabus maiyasanus with a genital lock-and-key system. This species shows RCD in male and female genital morphologies in populations in contact with the sister species C. iwawakianus. In a reciprocal mating experiment using three allopatric populations with differences in male and female genital sizes, insemination failure increased as the difference in genital size increased. Based on the reproductive isolation index, insemination failure was the major postmating-prezygotic isolation barrier, at least in one population pair with comparable total isolation to those of other species pairs. By contrast, there was only incomplete premating isolation among populations. These results suggest that RCD in genital morphologies drives incipient allopatric speciation, supporting the cascade reinforcement hypothesis. These findings provide insight into the roles of interspecific interactions and subsequent trait diversification in speciation processes.  相似文献   

4.
Although male polymorphisms occur widely in nature and have received considerable recent attention from studies of alternative mating strategies, male genital polymorphisms are less well known. Here, we describe a dimorphism in the orientation of the male genitalic complex of the praying mantid genus Ciulfina. Populations of Ciulfina species vary in the proportion of males with dextral (right‐oriented) and sinistral (left‐oriented) genitalia, ranging from directional asymmetry (single orientation only) to apparent antisymmetry (equal proportions of both orientations). The proportion of dextral males varied between species (C. baldersoni: 46%; C. rentzi: 24%; C. klassi: 100%; C. biseriata: 83%) and between populations. We used elliptic Fourier analysis to quantify shape and size variation between the genitalia of dextral and sinistral males and determined that the two forms were mirror images of one another in two species. We found that the level of mechanical reproductive isolation between heterospecific populations of opposite genital orientation was no greater than that between heterospecific populations with the same orientation or of mixed orientation. Genital orientation therefore did not influence premating isolation between these species, despite complete postmating isolation. The geographic proximity of populations to heterospecifics also showed no particular pattern with respect to genital orientation. These results suggest that reversible trait asymmetry in Ciulfina is not driven by reproductive isolation, and add to the growing evidence against the species isolation hypothesis for rapid genital evolution. J. Morphol. 271:1176–1184, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
The question asked was why male genitalic structures have diverged in three syntopic species of Macrodactylus beetles. Four hypotheses were evaluated: 1. The ways in which male genitalia mesh with internal female structures indicate that selection for species isolation via mechanical exclusion (“lock and key”) is unlikely to explain the genitalic differences. 2. The specific mate recognition hypothesis also clearly fails to explain genitalic differences due to the implausibility of postulated environmental effects on genitalia, and lack of postulated coevolution of male and female morphologies. 3. Selection for species isolation via differences in genitalic stimulation (sensory lock and key) is unlikely due to relatively infrequent cross-specific pair formation and intromission in the field, and “excessive” numbers of species-specific genitalic structures and male courtship behavior patterns which nevertheless occasionally fail. It also fails to explain the frequent failure of intraspecific copulations to result in sperm transfer. This hypothesis cannot, however, be rejected as confidently as the previous hypotheses. 4. Conditions under which sexual selection by cryptic female choice could take place are common. Females frequently exercise their ability to prevent sperm transfer by conspecific males even after intromission has occurred, and females generally mate repeatedly, probably with different males. Males behave as if cryptic female choice is occurring, courting assiduously while their genitalia are within the female. Sexual selection by female choice could thus contribute to the divergence in genitalic structures.  相似文献   

6.
The rapid divergence of genital morphology is well studied in the context of sexual selection and speciation; however, little is known about the developmental mechanisms underlying divergence in genitalia. Ground beetles in the subgenus Ohomopterus genus Carabus have species‐specific genitalia that show coevolutionary divergence between the sexes. In this study, using X‐ray microcomputed tomography, we examined the morphogenesis of male and female genitalia in two closely related Ohomopterus species with divergent genital morphologies. The morphogenetic processes generating the male and female genitalia at the pupal stage were qualitatively similar in the two species. The male aedeagus and internal sac and female bursa copulatrix were partially formed at pupation and developed gradually thereafter. The species‐specific genital parts, male copulatory piece, and female vaginal appendix differed in the timing and rate of development. The relatively long copulatory piece of Carabus maiyasanus began to develop earlier, but subsequent rates of growth were similar in the two species. The timing of the formation of the vaginal appendix and initial growth rates were similar, but subsequent rapid growth led to a longer vaginal appendix in C. maiyasanus. Thus, substantial interspecific differences in the size of genital parts were mediated by different underlying developmental mechanisms between the sexes (i.e., a shift in the developmental schedule in males and a change in growth rate in females). These results revealed the spatio–temporal dynamics of species‐specific genital structure development, providing a novel platform for evo–devo studies of the diversification of genital morphologies.  相似文献   

7.
Sasabe M  Takami Y  Sota T 《Molecular ecology》2010,19(23):5231-5239
Animals with internal fertilization often exhibit marked diversification in genital morphology among closely related species. However, our knowledge of the genetic architecture underlying genital evolution is still limited. We constructed genetic linkage maps and analysed quantitative trait loci (QTL) for F2 hybrids of two closely related species of the carabid beetles Carabus (Ohomopterus) iwawakianus and C. (O.) maiyasanus, which show matching male and female genital shapes within species, but marked differences in genital morphologies between species. The linkage maps comprised both amplified fragment length polymorphism and microsatellite markers. Composite interval mapping to detect QTL for three traits of male copulatory piece (length, width, weight) and two traits for female vaginal appendix (length, width) resulted in the detection of one to five significant QTL for each trait. The QTL explained large proportions of phenotypic variance. Thus, the interspecific difference in the genital morphologies appeared to be determined by relatively small numbers of genes with large genetic effects. QTL of different traits for the same or different sexes co‐occurred on five of eight linkage groups with significant QTL; in particular, three QTL for different male and female genital traits occurred almost at the same position. Each of the male genital traits showed uniform signs of additive genetic effects, suggesting that directional selection has led to species‐specific morphologies. However, the signs of additive genetic effects in each female genital trait were not uniform, suggesting that coevolution between sexes is not necessarily concerted. This result requires further assessment because the sample size of F2 females was small.  相似文献   

8.
Genitalia diversity in insects continues to fuel investigation of the function and evolution of these dynamic structures. Whereas most studies have focused on variation in male genitalia, an increasing number of studies on female genitalia have uncovered comparable diversity among females, but often at a much finer morphological scale. In this study, we analysed the function and evolution of male and female genitalia in Phyllophaga scarab beetles, a group in which both sexes exhibit genitalic diversity. To document the interaction between male and female structures during mating, we dissected flash‐frozen mating pairs from three Phyllophaga species and investigated fine‐scale morphology using SEM. We then reconstructed ancestral character states using a species tree inferred from mitochondrial and nuclear loci to elucidate and compare the evolutionary history of male and female genitalia. Our dissections revealed an interlocking mechanism of the female pubic process and male parameres that appears to improve the mechanical fit of the copulatory position. The comparative analyses, however, did not support coevolution of male and female structures and showed more erratic evolution of the female genitalia relative to males. By studying a group that exhibits obvious female genitalic diversity, we were able to demonstrate the relevance of female reproductive morphology in studies of male genital diversity.  相似文献   

9.
Sexual selection can facilitate divergent evolution of traits related to mating and consequently promote speciation. Theoretically, independent operation of sexual selection in different populations can lead to divergence of sexual traits among populations and result in allopatric speciation. Here, we show that divergent evolution in sexual morphology affecting mating compatibility (body size and genital morphologies) and speciation have occurred in a lineage of millipedes, the Parafontaria tonominea species complex. In this millipede group, male and female body and genital sizes exhibit marked, correlated divergence among populations, and the diverged morphologies result in mechanical reproductive isolation between sympatric species. The morphological divergence occurred among populations independently and without any correlation with climatic variables, although matching between sexes has been maintained, suggesting that morphological divergence was not a by-product of climatic adaptation. The diverged populations underwent restricted dispersal and secondary contact without hybridization. The extent of morphological difference between sympatric species is variable, as is diversity among allopatric populations; consequently, the species complex appears to contain many species. This millipede case suggests that sexual selection does contribute to species richness via morphological diversification when a lineage of organisms consists of highly divided populations owing to limited dispersal.  相似文献   

10.
Male–male competition over fertilization can select for harmful male genital structures that reduce the fitness of their mates, if the structures increase the male's fertilization success. During secondary contact between two allopatrically formed, closely related species, harmful male genitalia may also reduce the fitness of heterospecific females given interspecific copulation. We performed a laboratory experiment to determine whether the extent of genital spine exaggeration in Callosobruchus chinensis males affects the fitness of C. maculatus females by injuring their reproductive organs. We found that males with more exaggerated genital spines were more likely to injure the females via interspecific copulation and that the genital injury translated into fecundity loss. Thus, as predicted, reproductive interference by C. chinensis males on C. maculatus females is mediated by exaggeration of the genital spine, which is the evolutionary consequence of intraspecific male–male competition. Harmful male traits, such as genital spines, might generally affect the extent of interaction between closely related species.  相似文献   

11.
Documenting natural hybrid systems builds our understanding of mate choice, reproductive isolation and speciation. The stick insect species Clitarchus hookeri and C. tepaki differ in their genital morphology and hybridize along a narrow peninsula in northern New Zealand. We utilize three lines of evidence to understand the role of premating isolation and species boundaries: (a) genetic differentiation using microsatellites and mitochondrial DNA; (b) variation in 3D surface topology of male claspers and 2D morphometrics of female opercular organs; and (c) behavioural reproductive isolation among parental and hybrid populations through mating crosses. The genetic data show introgression between the parental species and formation of a genetically variable hybrid swarm. Similarly, the male and female morphometric data show genital divergence between the parental species as well as increased variation within the hybrid populations. This genital divergence has not resulted in reproductive isolation between species, instead weak perimating isolation has enabled the formation of a hybrid swarm. Behavioural analysis demonstrates that the entire mating process influences the degree of reproductive isolation between species undergoing secondary contact. Mechanical isolation may appear strong, whereas perimating isolation is weak.  相似文献   

12.
The morphological differences in female genitalia within and between species are little studied and poorly understood, yet understanding patterns of variation in female genitalia can provide insights into mechanisms of genital evolution. The present study aimed to explore the patterns of intraspecific and interspecific variation in female genitalia in two sister taxa of watersnake (Nerodia sipedon and Nerodia fasciata) that have similar genital shape. We used a geometric morphometric (GM) approach to study variation in shape of the vagina between and within two sister species. We examined genital shape in female watersnakes ranging from small, sexually immature females to large reproductive females that had recently given birth. We found that shape variation of genitalia is strongly correlated with body size, where larger but not smaller females have a bifurcation in the vagina. However, we also found significant shape variation in the structure of the vagina between the two species, where N. fasciata has narrower genitalia with more prominent bifurcation, whereas N. sipedon has wider genitalia with less marked bifurcation. Using GM allowed us to detect significant differences in genital shape that were not apparent upon visual examination alone, suggesting that shape variation in female genitalia may be greater than previously assumed. Additional study of morphological differences in male reproductive organs for these species would help to determine whether there has been genital co‐evolution, and potentially mechanical reproductive isolation, in these two closely‐related and occasionally sympatric species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 183–191.  相似文献   

13.
As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci—hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)—to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species.  相似文献   

14.
Studying reproductive barriers between populations of the same species is critical to understand how speciation may proceed. Growing evidence suggests postmating, prezygotic (PMPZ) reproductive barriers play an important role in the evolution of early taxonomic divergence. However, the contribution of PMPZ isolation to speciation is typically studied between species in which barriers that maintain isolation may not be those that contributed to reduced gene flow between populations. Moreover, in internally fertilizing animals, PMPZ isolation is related to male ejaculate—female reproductive tract incompatibilities but few studies have examined how mating history of the sexes can affect the strength of PMPZ isolation and the extent to which PMPZ isolation is repeatable or restricted to particular interacting genotypes. We addressed these outstanding questions using multiple populations of Drosophila montana. We show a recurrent pattern of PMPZ isolation, with flies from one population exhibiting reproductive incompatibility in crosses with all three other populations, while those three populations were fully fertile with each other. Reproductive incompatibility is due to lack of fertilization and is asymmetrical, affecting female fitness more than males. There was no effect of male or female mating history on reproductive incompatibility, indicating that PMPZ isolation persists between populations. We found no evidence of variability in fertilization outcomes attributable to different female × male genotype interactions, and in combination with our other results, suggests that PMPZ isolation is not driven by idiosyncratic genotype × genotype interactions. Our results show PMPZ isolation as a strong, consistent barrier to gene flow early during speciation and suggest several targets of selection known to affect ejaculate‐female reproductive tract interactions within species that may cause this PMPZ isolation.  相似文献   

15.
Male genitalia are usually extremely divergent between closely related species, but relatively constant within one species. Here we examine the effect of temperature on the shape of the ventral branches, a male genital structure involved in reproductive isolation, in the sister species Drosophila santomea and Drosophila yakuba. We designed a semi‐automatic measurement machine learning pipeline that can reliably identify curvatures and landmarks based on manually digitized contours of the ventral branches. With this method, we observed that temperature does not affect ventral branches in D. yakuba but that in D. santomea ventral branches tend to morph into a D. yakuba‐like shape at lower temperature. We found that male genitalia structures involved in reproductive isolation can be relatively variable within one species and can resemble the shape of closely related species’ genitalia through plasticity to temperature. Our results suggest that reproductive isolation mechanisms can be dependent on the environmental context.  相似文献   

16.
Quantifying and comparing the strengths of different reproductive barriers between diverging lineages is especially useful for determining the evolutionary mechanisms driving speciation. Etheostoma barrenense and Etheostoma zonale are closely related sympatric species of darters that are sexually dimorphic and exhibit clear differences in male nuptial coloration. Prior studies demonstrated that these species exhibit complete behavioral isolation, and that both intraspecific and interspecific variation in male coloration play a role in female choice, all consistent with speciation by sexual selection on male nuptial color. Remaining unclear, however, is whether behavioral isolation is the strongest reproductive barrier between these species or, alternatively, whether additional reproductive barriers are equally strong, which could implicate mechanisms other than sexual selection in speciation. Here, we compare the relative strengths of multiple reproductive barriers between the two focal species, measuring: (1) ecological isolation, (2) gametic incompatibility, (3) hybrid inviability, (4) conspecific sperm precedence, and comparing these measures to a previously estimated strength of behavioral isolation. We find that behavioral isolation is the strongest reproductive barrier measured to date and suggest it may be the only barrier that has evolved to completion. This result provides additional empirical evidence for speciation driven by sexual selection and provides insight into the maintenance of sympatric species in nature.  相似文献   

17.
18.
To identify factors leading to the correlated evolution of exaggerated male and female genitalia, we studied the effects of the variable dimensions of corresponding functional genital parts (male copulatory piece and female vaginal appendix) on copulatory performance in the polygamous carabid beetle Carabus (Ohomopterus) maiyasanus. We used mating pairs of individuals from two populations to increase the variances in genital dimensions and determined the copulation performance (insemination and spermatophore replacement, and copulation time) in single‐ and double‐mating situations. In single mating, insemination success was not affected by genital dimensions, although the copulation time was significantly shorter when the male aedeagus was longer. In the double‐mating experiment, insemination and replacement of spermatophores by the second male succeeded more frequently when the copulatory piece was shorter and the vaginal appendix was longer, and when the difference between the length of the copulatory piece and the vaginal appendix was smaller. Thus, a matching of the corresponding genital parts between the sexes increases the male's reproductive success in sperm competition, but elongation of the copulatory piece cannot be explained simply by the improvement in male reproductive success. We discuss possible factors for the elongation of genital parts in terms of sexual conflict and reproductive interference through interspecific copulation.  相似文献   

19.
Three species of the asteroid genus Patiriella occur sympatrically in New South Wales and the possibility for hybridization among them was examined through a series of cross-fertilization experiments. Patiriella calcar and P. gunnii are morphologically distinct as adults but indistinguishable as larvae. Patiriella exigua is morphologically distinct in both its adult and larval morphologies. The gametes of P. calcar and P. gunnii were reciprocally compatible: laboratory crosses between these species produced viable hybrid juveniles. In crosses between female P. calcar and male P. gunnii, most of the juveniles metamorphosed with an arm number intermediate between that of the parents, whereas crosses between female P. gunnii and male P. calcar produced juveniles with an arm number more similar to the maternal phenotype. Heterospecific crosses with P. exigua resulted in low fertilization rates, and viable hybrids were not produced. This species appears capable of self-fertilization. Because hybrids between P. calcar and P. gunnii were viable, neither gametic incompatibility nor hybrid inviability appears to ensure reproductive isolation between these species. Ecological or habitat segregation and temporal separation in breeding may isolate these species in the field. The results demonstrate that if gamete surface recognition molecules are involved in fertilization of P. calcar and P. gunnii, then they are not strongly species specific, at least at the sperm concentrations used in this study. Reproductive isolation between these species has evolved despite their gametic compatibility. In contrast, P. exigua is isolated from its congeners because of gametic incompatibility and several features characteristic of its reproduction and development. The implications of these findings for reproductive isolation and speciation of Patiriella and for the evolution of reproductive isolation in free-spawning marine organisms are discussed.  相似文献   

20.
Male seminal substances have been shown to induce oviposition and reduce female longevity in a number of species including the adzuki bean beetle Callosobruchus chinensis. Here the micro-injection of extracts of male reproductive tissues is used to determine the effect of male and female strain on female fecundity and longevity. Four strains of C. chinensis, known to differ in their propensity to remate were assayed. The results indicate that male and female strain both influence female fecundity and longevity. However, consistent patterns of response were not observed as revealed by a significant interaction between male and female strains. The evolutionary implications of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号