首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Larval and adult life stages are described for Contortylenchus brevicomi (Massey) Rühm parasitizing a Mississippi population of Dendroctonus frontalis, the southern pine beetle. Fourth-stage larvae and free-living adult females of this species are identified and described for the first time. The life cycle of C. brevicomi can be reconstructed from this study. The adult female nematode lays eggs in a mature beetle. Larval development progresses within the hemocoel until fourth-stage larvae exit the host. Mating occurs in beetle galleries and only females enter an immature beetle host.  相似文献   

2.
The DD-136 strain of Neoaplectana carpocapsae Weiser (Steinernematidae) after spray application to pine bark in 0.1% Formalin plus wetting agent entered pine bark beetle tunnels and killed 44% of the brood and adults of Dendroctonus frontalis Zimmermann at 18 and 26 C, 60% relative hummidity and at ambient temperatures and humidities.  相似文献   

3.
Phoretic mites of bark beetles are classic examples of commensal ectosymbionts. However, many such mites appear to have mutualisms with fungi that could themselves interact with beetles. We tested for indirect effects of phoretic mites on Dendroctonus frontalis, which attacks and kills pine trees in North America. Tarsonemus mites are known to carry ascospores of Ophiostoma minus, which tends to outcompete the mutualistic fungi carried by D. frontalis. Experimental additions and removals of mites from beetles demonstrated that Tarsonemus propagate O. minus in beetle oviposition galleries. Furthermore, the abundance of Tarsonemus and O. minus tended to covary in nature. These results verified a strong mutualism between Tarsonemus and O. minus. Results also indicated that O. minus is an antagonist of D. frontalis: beetle larvae seldom survived in the presence of O. minus (compared to 83% survival elsewhere). Apparently, this is an indirect result of O. minus outcompeting the two species of mycangial fungi that are critical to beetle nutrition. Thus, Tarsonemus mites close a loop of species interactions that includes a commensalism (mites and beetles), a mutualism (mites and O. minus), asymmetric competition (O. minus and mycangial fungi), and another mutualism (mycangial fungi and beetles). This interaction system produces negative feedback that could contribute to the endogenous population dynamics of D. frontalis. Reproductive rate of Tarsonemus was more temperature‐sensitive than beetle generation time (which constrains the time for mite reproduction within a tree). This differential temperature sensitivity produces a narrow range of temperatures (centred at 27°C) in which mite reproduction per D. frontalis generation can attain its maximum of 100 mites/beetle. Consequently, seasonal oscillations in temperature are predicted to produce oscillations in the D. frontalis community, and climatic differences between regions could influence the community to dampen or exacerbate the cyclical outbreak dynamics of D. frontalis.  相似文献   

4.
Feedback from community interactions involving mutualisms are a rarely explored mechanism for generating complex population dynamics. We examined the effects of two linked mutualisms on the population dynamics of a beetle that exhibits outbreak dynamics. One mutualism involves an obligate association between the bark beetle, Dendroctonus frontalis and two mycangial fungi. The second mutualism involves Tarsonemus mites that are phoretic on D. frontalis (“commensal”), and a blue-staining fungus, Ophiostoma minus. The presence of O. minus reduces beetle larval survival (“antagonistic”) by outcompeting beetle-mutualistic fungi within trees yet supports mite populations by acting as a nutritional mutualist. These linked interactions potentially create an interaction system with the form of an endogenous negative feedback loop. We address four hypotheses: (1) Direct negative feedback: Beetles directly increase the abundance of O. minus, which reduces per capita reproduction of beetles. (2) Indirect negative feedback: Beetles indirectly increase mite abundance, which increases O. minus, which decreases beetle reproduction. (3) The effect of O. minus on beetles depends on mites, but mite abundance is independent of beetle abundance. (4) The effect of O. minus on beetles is independent of beetle and mite abundance. High Tarsonemus and O. minus abundances were strongly correlated with the decline and eventual local extinction of beetle populations. Manipulation experiments revealed strong negative effects of O. minus on beetles, but falsified the hypothesis that horizontal transmission of O. minus generates negative feedback. Surveys of beetle populations revealed that reproductive rates of Tarsonemus, O. minus, and beetles covaried in a manner consistent with strong indirect interactions between organisms. Co-occurrence of mutualisms embedded within a community may have stabilizing effects if both mutualisms limit each other. However, delays and/or non-linearities in the interaction systems may result in large population fluctuations. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

5.
Climate change and the outbreak ranges of two North American bark beetles   总被引:2,自引:0,他引:2  
Abstract
  • 1 One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large‐scale disturbances to pine forests in the south‐eastern and western United States, respectively.
  • 2 Our objective was to investigate potential range shifts under climate change of outbreak areas for both bark beetle species and the areas of occurrence of the forest types susceptible to them.
  • 3 To project range changes, we used discriminant function models that incorporated climatic variables. Models to project bark beetle ranges employed changed forest distributions as well as changes in climatic variables.
  • 4 Projected outbreak areas for southern pine beetle increased with higher temperatures and generally shifted northward, as did the distributions of the southern pine forests.
  • 5 Projected outbreak areas for mountain pine beetle decreased with increasing temperature and shifted toward higher elevation. That trend was mirrored in the projected distributions of pine forests in the region of the western U.S. encompassed by the study.
  • 6 Projected outbreak areas for the two bark beetle species and the area of occurrence of western pine forests increased with more precipitation and decreased with less precipitation, whereas the area of occurrence of southern pine forests decreased slightly with increasing precipitation.
  • 7 Predicted shifts of outbreak ranges for both bark beetle species followed general expectations for the effects of global climate change and reflected the underlying long‐term distributional shifts of their host forests.
  相似文献   

6.
Intrasex response of two males at the gallery of an attractive female included ‘rivalry’ stridulation that was distinct in certain acoustic properties from chirps evoked by the female attractant. With the southern pine beetle, Dendroctonus frontalis, comparison of chirps evoked by natural and synthetic chemostimulus confirmed that myrtenol is part of the female attractant, that verbenone is multifunctional according to its concentration, and that endo-brevicomin has a rivalry function as well as its anti-aggregative effect. Considerable acoustic specificity was apparent in tested chirps of three bark beetles.  相似文献   

7.
Infestations of Dendroctonus frontalisZimm. are often observed to enlarge continuously by the colonization of new hosts in a pattern similar to a forest fire. This pattern of infestation growth presents unique problems in quantitatively estimating populations of D. frontalis. Beetle populations on each infested tree in an infestation go through five processes: attack, oviposition, reemergence, survivorship, and emergence. These processes, which have been described mathematically in the literature, each take several days for completion. In order to follow the distribution and abundance of D. frontalis throughout the course of development of a spot, we need a daily estimate of the number of beetles involved in each process on every tree. Since it is not practical to sample each tree daily, we developed a procedure whereby quantitative estimation procedures for within-tree populations were used in combination with the mathematical models for the life processes to produce a daily record of the number of adults successfully attacking trees, the number of eggs oviposited, the number of beetles reemerging, number of beetles surviving within the trees, and the number of beetles emerging. These daily estimates were then summarized for all trees in the spot for the duration of the infestation. The daily record of populations of D. frontalis, used with information on infestation geometry, were suggested to be of value in describing and elucidating several important facets of population dynamics including dispersal patterns within infestations, between tree beetle loss (mortality), and time lags among the various population processes. The information reported can be used to develop simulation models of population dynamics or to validate existing models.  相似文献   

8.
Frequent bark beetle outbreaks cause biome-scale impacts in boreal and temperate forests worldwide. Despite frequent interceptions at ports of entry, the most aggressive bark beetle species of Ips and Dendroctonus in North America and Eurasia have failed to establish outside their original home continents. Our experiments showed that Ips typographus can breed in six North American spruce species: Engelmann spruce, white spruce¸ Sitka spruce, Lutz spruce, black spruce and red spruce. This suggests that differences between the Eurasian historical host and North American spruce species are not an insurmountable barrier to establishment of this tree-killing species in North America. However, slightly diminished quality of offspring beetles emerged from the North American spruces could reduce the chance of establishment through an Allee effect. The probabilistic nature of invasion dynamics suggests that successful establishments can occur when the import practice allows frequent arrivals of non-indigenous bark beetles (increased propagule load). Model simulations of hypothetical interactions of Dendroctonus rufipennis and I. typographus indicated that inter-species facilitations could result in more frequent and severe outbreaks than those caused by I. typographus alone. The potential effects of such new dynamics on coniferous ecosystems may be dramatic and extensive, including major shifts in forest structure and species composition, increased carbon emissions and stream flow, direct and indirect impacts on wildlife and invertebrate communities, and loss of biodiversity.  相似文献   

9.
Detailed investigation of the within-tree population system of Dendroctonus frontalisZimmermann has resulted in a large data base consisting of abundance estimates for various life stages. This data base was used to construct histograms for transformed estimates and several life stage indices. Histograms were also constructed for transformed values of adult residence time, brood development time, and several host-tree characteristics. Probability and cumulative density functions of the Weibull distribution were fitted, in tandem, to the scaled frequencies and interval means for each histogram. The inverse cumulative function is known, and with a uniform random number generator, allows the selection of random deviates from each distribution. This technique can be used for generating initial (starting) values in D. frontalis population models.  相似文献   

10.
Predation and bark beetle dynamics   总被引:4,自引:0,他引:4  
John D. Reeve 《Oecologia》1997,112(1):48-54
Bark beetle populations may undergo dramatic fluctuations and are often important pests in coniferous forests. Their dynamics are thought to be primarily driven by factors affecting the resistance of the host tree to attack, i.e., bottom-up forces, while natural enemies are usually assigned a minor role in these systems. I present behavioral experiments that suggest that the clerid beetle Thanasimus dubius may be an important source of mortality for the bark beetle Dendroctonus frontalis during attack of the host tree, and determine the nature of the functional response of T. dubius under conditions close to natural. I also examine the numerical response of T. dubius to large-scale fluctuations in D. frontalis density, and the relationship between bark beetle population trends and predator density, and find that beetle populations tend to decline when predator densities are high. Combined with the effects of clerid larvae on bark beetle broods, these results suggest that top-down forces generated by natural enemies could also be an important component of bark beetle dynamics. The implications of these results for bark beetle dynamics are discussed in relation to the prolonged life-cycle of clerid beetles. Received: 23 January 1997 / Accepted: 5 April 1997  相似文献   

11.
1 The emergence pattern of Thanasimus dubius (F.) (Coleoptera: Cleridae), a common predator of the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), was studied under field conditions across different seasons. A simple statistical model was then developed to characterize the emergence data, using the truncated geometric distribution. Data are also presented on the mortality of T. dubius eggs at various temperatures and humidities in an effort to explain certain aspects of emergence behaviour. 2 Emergence of T. dubius from a given tree usually occurred in several discrete episodes across a two‐year period, with most individuals emerging in spring or autumn. Almost no emergence occurred in July and August, which may be an adaptation to avoid high temperature mortality. Emergence patterns appeared similar across seasons, with the time of year serving mainly to shift the pattern through time. 3 Cycles in D. frontalis abundance may be the result of delayed density dependence generated by its natural enemy complex. The predator T. dubius is likely to be an important component of this delayed density dependence, because of its lengthy development time and apparent impact on D. frontalis.  相似文献   

12.
Nitrogen-fixingEnterobacter agglomerans andEnterobacter spp. were consistently isolated from the bark beetleDendroctonus terebrans. Large populations of nitrogen-fixing bacteria were found with the beetle, although no in situ acetylene reduction was demonstrated. The constant occurrence of nitrogenfixing bacteria withD. terebrans suggests a symbiotic relationship. Nitrogen-fixing bacteria were also isolated from the bark beetlesDendroctonus frontalis andIps avulsus.Mention of trade names is not an endorsement by the U.S. Department of Agriculture.  相似文献   

13.
The southern pine beetle (Dendroctonus frontalis) and western pine beetle (Dendroctonus brevicomis) cause significant mortality to pines in the southern and western United States. The effectiveness of commercial lures at capturing these bark beetles in Arizona has not been tested and may vary from other regions of their distribution. We conducted experiments using baited Lindgren funnel traps to investigate (i) if D. frontalis is more attracted to the standard commercial lure for D. brevicomis (frontalin + exo‐brevicomin + myrcene) than the D. frontalis lure (frontalin + terpene blend), (ii) whether replacement of myrcene with α‐pinene changes trap catches of Dendroctonus and associated insects, and (iii) whether the attraction to these lures varies across the geographical range of ponderosa pine forests throughout Arizona. In 2005, we tested various combinations of frontalin, exo‐brevicomin, myrcene and α‐pinene to D. frontalis, D. brevicomis and associated species. Dendroctonus frontalis, D. brevicomis and the predator Temnochila chlorodia were most attracted to lures with exo‐brevicomin. The replacement of the myrcene component with α‐pinene in the D. brevicomis lure resulted in the capture of twice as many bark beetles and Elacatis beetles. However, T. chlorodia did not differentiate between monoterpenes. In 2006, traps were set up in 11 locations around Arizona to test the relative attraction of lure combinations. In 9 out 11 locations, the D. brevicomis lure with α‐pinene was more attractive than the lure with myrcene or a terpene blend. These results suggest that the D. brevicomis lure with α‐pinene rather than myrcene is more effective lure to capture D. brevicomis and D. frontalis in Arizona. However, geographical variation in attractiveness to lures is evident even within this region of the beetles’ distributions. Differential attraction of Dendroctonus and their predators to these lures suggests potential use in field trapping and control programmes.  相似文献   

14.
Past conservation initiatives and rapidly decreasing human populations in modern Japan have contributed to population recoveries of Sika deer (Cervus nippon), wild boar (Sus scrofa), and Japanese macaque (Macaca fuscata) throughout the country. Ironically, however, these recoveries have not always received a favorable reception, because these mammals can also be agricultural pests. To open public debate on the recoveries, based on a thorough understanding of their multifaceted roles in sustaining the local ecosystem, we evaluated the initial stage ripple effects caused by the mammalian population recovery on the community assembly of dung beetles, which are keystone decomposer organisms in terrestrial ecosystems. For the evaluation, we conducted manipulative snapshot experiments, using camera and pitfall traps, for mammal and dung beetle assemblages, respectively, in four different mountain ranges within the heavy snow areas of northern Japan, where the recovery of three mammal populations was at an early stage. The current findings implied that, although the feces of every recovering mammal species could provide valuable resources for most beetles, the ripple effects from the mammal population recoveries were subject to hysteresis of the local ecosystem, i.e., catastrophic shifts in ecosystems originating from the historical background of regional mammal defaunation. In particular, the abundance of tunnelers that could benefit from positive ripple effects decreased with an increase in past disturbances, which resulted in emptier forests, i.e., an ecosystem with fewer large mammals. The findings suggested that recovering populations of large mammals do not always contribute to the restoration of the original dung beetle communities, at least initially.  相似文献   

15.
Experiments showed that larvae and adults of the bark beetles Dendroctonus terebrans and Dendroctonus frontalis are capable of metabolizing α-pinene, a component of the oleoresin of their host Pinus taeda, to produce large quantities of oxidation products such as trans-verbenol, whereas the pupae do not. The results suggest that the pupae conjugate some form of the terpene molecule with an unknown compound and this conjugate is later metabolized by the young adult to yield the previously identified oxidation products found in emergent beetles. Only adult males of D. frontalis produced large quantities of the ketone verbenone. This compound was not detectable in the hindguts until after the adult maturation period and its production by emergent males could be related to the exposure of the pupae to α-pinene vapours. D. frontalis males are also capable of producing verbenone from α-pinene taken up in the adult stage. It is suggested that the production of verbenone by the males represents a specialization in the evolution of chemical communication in bark beetles. On the basis of this and earlier work, it is considered likely that other terpenes are metabolized in the same manner and that the same or a very similar system of terpene metabolism exists in other Dendroctonus species and closely related genera.  相似文献   

16.
Yuceer, C, Hsu, C.‐Y., Erbilgin, N and Klepzig, K.D. 2011. Ultrastructure of the mycangium of the southern pine beetle, Dendroctonus frontalis (Coleoptera: Curculionidae, Scolytinae): complex morphology for complex interactions. —Acta Zoologica (Stockholm) 92 : 216–224. The southern pine beetle (SPB) (Dendroctonus frontalis Zimmermann) is the most economically important pest of southern pine forests. Beetles carry fungal cells within specialised cuticular structures, called mycangia. Little is known about the mycangia ultrastructure or function. We used cryo‐fracturing and scanning electron microscopy to examine the ultrastructural features of SPB mycangia and surrounding tissues. Mycangia, one on each side of anterior portion of the prothorax, are terminated on the dorsal side at a ‘mycangial bridge’. This sclerotised mycangial bridge does not appear to provide a passage between the two mycangia, suggesting that each mycangium functions independently. Mycangia are surrounded by abundant tracheoles connecting the structures to the outside via openings within the prothorax. Previously unknown pits overlying the mycangial gland cells were also observed in both the inner wall and anterior fold of prothorax. We hypothesise that these openings and pits may play roles in determining which fungi enter, and grow within, the mycangium.  相似文献   

17.
Ché M. Elkin  Mary L. Reid 《Oikos》2010,119(7):1070-1080
We tested whether mountain pine beetles Dendroctonus ponderosae, an insect herbivore that exhibits outbreak population dynamics, modifies its habitat selection behaviour in response to density‐dependent environmental shifts. Using an individual‐based habitat selection model, we formulated predictions of how beetle population density will influence breeding habitat selectivity. Our model predicted that beetles should be more selective at intermediate densities than at low or high densities. The mechanisms influencing optimal selectivity differed between low and high density populations. In low density populations, breeding site availability was the primary factor affecting selectivity, whereas intraspecific competition and the reliability of habitat quality cues were important in high density populations. We tested our model predictions in natural populations that encompassed a range of beetle population densities. Our empirical findings supported the two key predictions from our model. First, habitat quality was more variable in high density populations. Second, individuals in high density populations were less selective compared to beetles from intermediate density populations. Our results demonstrate that beetles alter their habitat selection behaviour in response to density‐dependent shifts. We propose that the behavioural changes we identified may influence the rate at which beetle populations transition between density states.  相似文献   

18.
The southern pine beetle, Dendroctonus frontalis, is among the most important agents of ecological disturbance and economic loss in forests of the south-eastern United States. We combined physiological measurements of insect temperature responses with climatic analyses to test the role of temperature in determining the northern distribution limits of D. frontalis. Laboratory measurements of lower lethal temperatures and published records of mortality in wild populations indicated that air temperatures of ?16° should result in almost 100% mortality of D. frontalis. The distribution limits for D. frontalis approximate the isoline corresponding to an annual probability of 0.90 of reaching ≤?16 °C. Thus, D. frontalis have been found about as far north as they could possibly occur given winter temperature regimes. At latitudes from 39° N (southern Ohio) to 33° N (central Alabama), winter temperatures must exert high mortality on D. frontalis populations in at least one year out of ten. In contrast, we reject the hypotheses that summer temperatures or the distribution of host trees constrain the northern distribution of D. frontalis. Because of the short generation time of D. frontalis, its high dispersal abilities, and the cosmopolitan distribution of suitable host trees, changes in either the mean or variance of minimum annual temperatures could have almost immediate effects on regional patterns of beetle infestations. We estimate that an increase of 3 °C in minimum annual temperature could extend the northern distribution limits by 170 km. Increases or decreases in the variance of minimum annual temperatures would further relax climatic constraints on the northern distribution limits of D. frontalis. Results emphasize the ecological importance of spatial and temporal variability in minimum annual temperatures. The physiologically based models provide a tool for guiding land management decisions in forests and illustrate a general approach for predicting the regional effects of climatic patterns on the distribution of organisms.  相似文献   

19.
Field-collected Dendroctonus frontalis were reared in a controlled environment. Male-female beetle pairs retrieved from galleries 1, 2, or 5 wk after introduction into pine bolts were examined for nematode parasites. Data were obtained for each pair on gallery length, egg niche construction, egg viability, and progeny survival. In a separate study, beetle pairs were reared under laboratory conditions for 10 wk. The number of emerged adult progeny of each pair was recorded. Contortylenchus brevicomi, a nematode parasite, was found in 25% of all beetles that established galleries. After 2 and 3 wk, female beetles infected with the nematode had produced fewer eggs and shorter galleries than did uninfected females. Uninfected females mated with nematode-infected males showed similar trends, although the differences in the 2- and 3-wk tests were not significant. Progeny survival or egg viability was not affected by nematode parasitism of either parent beetle. Unikaryon minutum, a microsporidian parasite found in 65% of all colonizing beetles, had no effect on measured variables. The lower fecundity of beetles parasitized by C. brevicomi continued throughout the insect''s reproductive cycle. After 10 wk, nematode-infected beetle pairs produced fewer emerged adult progeny than did uninfected pairs.  相似文献   

20.
Litzow MA  Ciannelli L 《Ecology letters》2007,10(12):1124-1134
Understanding how climate regulates trophic control may help to elucidate the causes of transitions between alternate ecosystem states following climate regime shifts. We used a 34-year time series of the abundance of Pacific cod ( Gadus macrocephalus ) and five prey species to show that the nature of trophic control in a North Pacific ecosystem depends on climate state. Rapid warming in the 1970s caused an oscillation between bottom–up and top–down control. This shift to top–down control apparently contributed to the transition from an initial, prey-rich ecosystem state to the final, prey-poor state. However, top–down control could not be detected in the final state without reference to the initial state and transition period. Complete understanding of trophic control in ecosystems capable of transitions between alternate states may therefore require observations spanning more than one state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号