首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Myeloid leukaemia factor 1 (MLF1) binds to 14-3-3 adapter proteins by a sequence surrounding Ser34 with the functional consequences of this interaction largely unknown. We present here the high-resolution crystal structure of this binding motif [MLF1(29-42)pSer34] in complex with 14-3-3ε and analyse the interaction with isothermal titration calorimetry. Fragment-based ligand discovery employing crystals of the binary 14-3-3ε/MLF1(29-42)pSer34 complex was used to identify a molecule that binds to the interface rim of the two proteins, potentially representing the starting point for the development of a small molecule that stabilizes the MLF1/14-3-3 protein-protein interaction. Such a compound might be used as a chemical biology tool to further analyse the 14-3-3/MLF1 interaction without the use of genetic methods. Database Structural data are available in the Protein Data Bank under the accession number(s) 3UAL [14-3-3ε/MLF1(29-42)pSer34 complex] and 3UBW [14-3-3ε/MLF1(29-42)pSer34/3-pyrrolidinol complex] Structured digital abstract ? 14-3-3 epsilon?and?MLF1?bind?by?x-ray crystallography?(View interaction) ? 14-3-3 epsilon?and?MLF1?bind?by?isothermal titration calorimetry?(View Interaction:?1,?2).  相似文献   

3.
Expression and post-translational modification of barley 14-3-3 isoforms, 14-3-3A, 14-3-3B and 14-3-3C, were investigated using isoform-specific antibodies. Although all three isoforms were shown to be present in the cytosolic, the nuclear and the microsomal cell fractions, differences in post-translational modification were identified for the different cell fractions. Germination-related modifications of 14-3-3 proteins were observed in the cytosol and the microsomal fraction, but not in the nucleus. In vitro proteolytic cleavage of 14-3-3 proteins using trypsin suggests that for 14-3-3A this change was caused by proteolytic cleavage of the unconserved C-terminal region.  相似文献   

4.
A polyclonal antibody was raised against a Toxoplasma gondii 14-3-3-gluthatione S-transferase fusion protein obtained by cloning a 14-3-3 cDNA sequence determined from the T. gondii database. This antibody specifically recognized T. gondii 14-3-3 without any cross-reaction with mammalian proteins. Immunofluorescence microscopy studies of the tachyzoites or the T. gondii-infected cells suggested cytosolic and membranous localizations of 14-3-3 protein. Different subcellular fractions were prepared for electrophoresis analysis and immunodetection. 14-3-3 proteins were found in the cytosol, the membrane fraction and Triton X-100-resistant membranes. Two 14-3-3 isoforms were detected. The major one was mainly cytoplasmic and to a lesser extent membrane-associated, whereas the minor isoform was associated with the detergent-resistant lipid rafts.  相似文献   

5.
A yeast two-hybrid screen was conducted to identify binding partners of Mlf1, an oncoprotein recently identified in a translocation with nucleophosmin that causes acute myeloid leukemia. Two proteins isolated in this screen were 14-3-3zeta and a novel adaptor, Madm. Mlf1 contains a classic RSXSXP sequence for 14-3-3 binding and is associated with 14-3-3zeta via this phosphorylated motif. Madm co-immunoprecipitated with Mlf1 and co-localized in the cytoplasm. In addition, Madm recruited a serine kinase, which phosphorylated both Madm and Mlf1 including the RSXSXP motif. In contrast to wild-type Mlf1, the oncogenic fusion protein nucleophosmin (NPM)-MLF1 did not bind 14-3-3zeta, had altered Madm binding, and localized exclusively in the nucleus. Ectopic expression of Madm in M1 myeloid cells suppressed cytokine-induced differentiation unlike Mlf1, which promotes maturation. Because the Mlf1 binding region of Madm and its own dimerization domain overlapped, the levels of Madm and Mlf1 may affect complex formation and regulate differentiation. In summary, this study has identified two partner proteins of Mlf1 that may influence its subcellular localization and biological function.  相似文献   

6.
7.
8.
Maintenance of telomeres is implicated in chromosome stabilization and cell immortalization. Telomerase, which catalyzes de novo synthesis of telomeres, is activated in germ cells and most cancers. Telomerase activity is regulated by gene expression for its catalytic subunit, TERT, whereas several lines of evidence have suggested a post-translational regulation of telomerase activity. Here we identify the 14-3-3 signaling proteins as human TERT (hTERT)-binding partners. A dominant-negative 14-3-3 redistributed hTERT, which was normally predominant in the nucleus, into the cytoplasm. Consistent with this observation, hTERT-3A, a mutant that could not bind 14-3-3, was localized into the cytoplasm. Leptomycin B, an inhibitor of CRM1/exportin 1-mediated nuclear export, or disruption of a nuclear export signal (NES)-like motif located just upstream of the 14-3-3 binding site in hTERT impaired the cytoplasmic localization of hTERT. Compared with wild-type hTERT, hTERT-3A increased its association with CRM1. 14-3-3 binding was not required for telomerase activity either in vitro or in cell extracts. These observations suggest that 14-3-3 enhances nuclear localization of TERT by inhibiting the CRM1 binding to the TERT NES-like motif.  相似文献   

9.
We have extended our previous yeast two-hybrid findings to show that 14-3-3beta also interacts with the insulin-like growth factor I receptor (IGFIR) in mammalian cells overexpressing both proteins and that the interaction involves serine 1283 and is dependent on receptor activation. Treatment of cells with the phorbol ester PMA stimulates the interaction of 14-3-3beta with the IGFIR in the absence of receptor tyrosine phosphorylation, suggesting that receptor activation leads to activation of an endogenous protein kinase that catalyzes the phosphorylation of serine 1283. To investigate the role of 14-3-3 proteins in IGF signal transduction, IGFIR structure-function studies were performed. Mutation of serine 1283 alone (S1283A) (a mutation that decreases but does not abolish the interaction of the IGFIR with 14-3-3) did not affect anchorage-independent growth of NIH 3T3 fibroblasts overexpressing the mutant receptor. However, the simultaneous mutation of this residue and the truncation of the C-terminal 27 residues of the receptor (Delta1310/S1283A) abolished the interaction of the receptor with 14-3-3 and reversed the enhanced colony formation observed with the IGFIR truncation mutation alone (Delta1310). The difference between the Delta1310 and Delta1310/S1283A transfectants in the soft agar assay was confirmed by tumorigenesis experiments. These findings suggest that 14-3-3 proteins interact with the IGFIR in vivo and that this interaction may play a role in a transformation pathway signaled by the IGFIR.  相似文献   

10.
Muslin AJ  Xing H 《Cellular signalling》2000,12(11-12):703-709
14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic, and nutrient-sensing pathways. 14-3-3 proteins act by binding to partner proteins, and this binding often leads to the altered subcellular localization of the partner. 14-3-3 proteins promote the cytoplasmic localization of many binding partners, including the pro-apoptotic protein BAD and the cell cycle regulatory phosphatase Cdc25C, but they can also promote the nuclear localization of other partners, such as the catalytic subunit of telomerase (TERT). In some cases, 14-3-3 binding has no effect on the subcellular localization of a partner. 14-3-3 may affect the localization of a protein by interfering with the function of a nearby targeting sequence, such as a nuclear localization sequence (NLS) or a nuclear export sequence (NES), on the binding partner.  相似文献   

11.
A polyclonal antibody was raised against a recombinant Chlamydomonas 14-3-3-beta-galactosidase (beta-Gal) fusion protein and characterized for its epitope specificity towards the corresponding Chlamydomonas 14-3-3 protein by scan-peptide analysis. This antibody recognized four Chlamydomonas polypeptides with apparent molecular masses 32, 30, 27, and 24 kDa, which also reacted with the antiserum depleted of anti-(Escherichia coli beta-Gal) IgG, but not with the corresponding preimmune serum or the antiserum preincubated with purified 14-3-3 proteins. Western-blot analyses performed with the antibody depleted of anti-(beta-Gal) IgG revealed that more or less pronounced levels of 14-3-3 proteins were present in all subcellular fractions of Chlamydomonas reinhardtii except the nuclei. The highest levels of 14-3-3 protein were observed in the cytosol and microsomal fraction. The 30-kDa isoform was predominant in the cytosol, whereas the 27-kDa isoform was prevalent in the microsomes. When microsomal membranes were separated by sucrose-density-gradient centrifugation, Western-blot analysis revealed distinct patterns of 14-3-3 isoforms in the endoplasmic reticulum, dictyosome, and plasma membrane fractions identified by marker enzyme activities. These findings indicate that the four 14-3-3 proteins of C. reinhardtii differentially interact with endoplasmic reticulum, dictyosomes, and plasma membrane.  相似文献   

12.
In extracellular fluids the insulin-like growth factors (IGFs) are bound to specific binding proteins (IGBPs). The genes for two members of this protein family have been mapped, the IGBP1 gene to human chromosomal region 7p14-p12 and the IGBP2 gene to region 2q33-q34. In this study, somatic cell hybrid analysis indicated that IGBP3 is also located on chromosome 7. Pulsed-field gel electrophoresis was used to demonstrate the close physical linkage between IGBP1 and IGBP3. Overlapping cosmid clones encompassing these genes were isolated, and restriction endonuclease mapping showed that the genes are arranged in a tail-to-tail fashion separated by 20 kb of DNA. Further characterization of the IGBP1 DNA sequence disclosed a duplication of the intron 3-exon 4 junction within the third intron. In addition, we report RFLPs for ApaLI and TaqI in the IGBP1 locus.  相似文献   

13.
p27(Kip1) (p27), a CDK inhibitor, migrates into the nucleus, where it controls cyclin-CDK complex activity for proper cell cycle progression. We report here that the classical bipartite-type basic amino-acid cluster and the two downstream amino acids of the C-terminal region of p27 function as a nuclear localization signal (NLS) for its full nuclear import activity. Importin alpha3 and alpha5, but not alpha1, transported p27 into the nucleus in conjunction with importin beta, as evidenced by an in vitro transport assay. It is known that Akt phosphorylates Thr 157 of p27 and this reduces the nuclear import activity of p27. Using a pull-down experiment, 14-3-3 was identified as the Thr157-phosphorylated p27NLS-binding protein. Although importin alpha5 bound to Thr157-phosphorylated p27NLS, 14-3-3 competed with importin alpha5 for binding to it. Thus, 14-3-3 sequestered phosphorylated p27NLS from importin alpha binding, resulting in cytoplasmic localization of NLS-phosphorylated p27. These findings indicate that 14-3-3 suppresses importin alpha/beta-dependent nuclear localization of Thr157-phosphorylated p27, suggesting implications for cell cycle disorder in Akt-activated cancer cells.  相似文献   

14.
The density and composition of cell surface proteins are major determinants for cellular functions. Regulation of cell surface molecules occurs at several levels, including the efficiency of surface transport, and is therefore of great interest. As the major phosphoprotein-binding modules, 14-3-3 proteins are known for their crucial roles in a wide range of cellular activities, including the subcellular localization of target proteins. Accumulating evidence suggests a role for 14-3-3 in surface transport of membrane proteins, in which 14-3-3 binding reduces endoplasmic reticulum (ER) localization, thereby promoting surface expression of membrane proteins. Here, we focus on recent evidence of 14-3-3-mediated surface transport and discuss the possible molecular mechanisms.  相似文献   

15.
Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins are regulatory phosphorserine/threonine binding proteins involved in the control of diverse cellular events, including cell cycle checkpoint and apoptosis signaling. hEXO1 is regulated by post-translation Ser/Thr phosphorylation in a yet not fully clarified manner, but evidently three phosphorylation sites are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding experiments reveal weak affinity of the more selective isoform 14-3-3σ but both 14-3-3 isoforms η and σ significantly stimulate hEXO1 activity, indicating that these regulatory proteins exert a common regulation mode on hEXO1. Results demonstrate that binding involves the phosphorable amino acid S746 in hEXO1 and most likely a second unidentified binding motif. 14-3-3 associations do not appear to directly influence hEXO1 in vitro nuclease activity or in vitro DNA replication initiation. Moreover, specific phosphorylation variants, including hEXO1 S746A, are efficiently imported to the nucleus; to associate with PCNA in distinct replication foci and respond to DNA double strand breaks (DSBs), indicating that 14-3-3 binding does not involve regulating the subcellular distribution of hEXO1. Altogether, these results suggest that association may be related to regulation of hEXO1 availability during the DNA damage response to plausibly prevent extensive DNA resection at the damage site, as supported by recent studies.  相似文献   

16.
14-3-3 proteins modulate the plant inward rectifier K+ channel KAT1 heterologously expressed in Xenopus oocytes. Injection of recombinant plant 14-3-3 proteins into oocytes shifted the activation curve of KAT1 by +11 mV and increased the tau(on). KAT1 was also modulated by 14-3-3 proteins of Xenopus oocytes. Titration of the endogenous 14-3-3 proteins by injection of the peptide Raf 621p resulted in a strong decrease in KAT1 current (approximately 70% at -150 mV). The mutation K56E performed on plant protein 14-3-3 in a highly conserved recognition site prevented channel activation. Because the maximal conductance of KAT1 was unaffected by 14-3-3, we can exclude that they act by increasing the number of channels, thus ruling out any effect of these proteins on channel trafficking and/or insertion into the oocyte membrane. 14-3-3 proteins also increased KAT1 current in inside-out patches, suggesting a direct interaction with the channel. Direct interaction was confirmed by overlay experiments with radioactive 14-3-3 on oocyte membranes expressing KAT1.  相似文献   

17.
18.
Epidermal growth factor in human submandibular gland was localized at the subcellular level by means of an immunogold staining method. Labelling was observed in serous acini and ducts. In the acini, gold particles were found within secretory granules, indicating that the growth factor is released into the saliva through granule exocytosis. In the ductal system, the most intense reactivity was revealed in the principal cells of striated ducts. In these cells, an abundant population of small cytoplasmic vesicles was specifically stained. Immunoreactive vesicles were found both apically and basally, suggesting that ductal cells can release their products not only into the saliva but also into the interstitium.  相似文献   

19.
20.
The intracellular distribution of epidermal growth factor was investigated in human parotid gland by immunogold cytochemistry at the electron-microscopy level. Epidermal growth factor immunoreactivity was demonstrated in both acini and ducts. In acinar cells, secretory granules appeared moderately stained, clearly indicating that parotid gland contributes to salivary epidermal growth factor through granule exocytosis. In ductal cells, gold particles were found to decorate numerous cytoplasmic vesicles, particularly abundant in striated duct cells. Since epidermal growth factor reactive vesicles were seen not only at the cellular apex, but nearby lateral plasma membranes as well, it leads to the hypothesis that epidermal growth factor may be discharged both apically into the saliva, and basally into the interstitium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号