首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lobster tail and leg lactate dehydrogenases (LDH) have been characterized kinetically. The four binding sites for reduced coenzyme have been shown to be equivalent for the enzyme purified from lobster tail muscle. For the reduced form of 3-acetyl pyridineadenine dinucleotide, the Ka = 1.4 × 107 M?1 S?1. The activity of the enzyme purified from the tail muscle is severely inhibited (90%) by high levels of pyruvate (10 mm) when assayed for pyruvate reductase activity at 11 °C; the reductase activity measured using the enzyme from the walking leg muscle was not inhibited by these high levels of pyruvate. Evidence is presented which indicates that the LDH from the tail muscle of the East Coast lobster forms an abortive ternary complex (enzyme-NAD+-pyruvate) which accounts for these inhibitory kinetics. The data suggest that the LDH from the tail muscles of the invertebrate lobster represents a “kinetic” heart-type l-specific LDH and that from the walking legs, a “kinetic” muscle-type l-specific LDH.  相似文献   

3.
J M Storey  K B Storey 《Cryobiology》1982,19(2):185-194
The kinetic properties of cytoplasmic glycerol-3-P dehydrogenase from the third instar larva of the gall fly, Eurosta solidaginis, were studied with emphasis on temperature effects on the enzyme and the regulation of enzyme activity during the synthesis of the cryoprotectant, glycerol. Isoelectrofocusing revealed one major and two minor forms of the enzyme with no alteration in the pI's or relative activities of the forms in larvae acclimated to 24 versus ?30 °C. Kinetic properties of the enzyme were also the same in larvae acclimated to high and low temperatures. Arrhenius plots were linear over a 30 to 0 °C range with an activation energy of 12,630 ± 185 cal/mol and a Q10 of 2.16. The Km for dihydroxyacetone-P was constant, at 50 μM, between 30 and 10 °C but increased by 75% at 0 °C; this increase may be a factor in the cessation of glycerol synthesis which occurs below 5 °C in this species. The Km(NADH), by contrast, was higher (5–6 μM) at 30 °C but decreased (3 μM) at lower temperatures. In the reverse direction, Km's were 340 μM for glycerol-3-P and 12 μM for NAD+. Effects of most inhibitors (of the forward reaction), glycerol-3-P (Ki = 2.4 mM), NAD+ (Ki = 0.2 mM), ATP, Mg·ATP, and Pi, were unaltered by assay temperature but ADP effects were potentiated by low temperature while citrate inhibition was greatest at high temperatures. Glycerol and sorbitol, which accumulate as cryoprotectants in E. solidaginis, had no significant effects on kinetic constants at any temperature but decreased the Vmax activity of the enzyme. Thermal inactivation studies showed an increased thermal stability of the larval enzyme compared to the homologous enzyme from rabbit muscle while added polyols stabilized enzyme activity, decreasing the rate of enzyme inactivation at 50 °C.  相似文献   

4.
《Insect Biochemistry》1991,21(5):457-465
Musca domestica larval midgut display in cells and luminal contents a proteolytic activity with a pH optimum of 3.0–3.5. This activity is abolished by pepstatin and is insensitive to soybean trypsin inhibitor and to sulfhydryl proteinase inhibitors. The acid proteinase occurs in multiple forms with Mr values in the range 40,000–80,000 and with pI values of about 5.5. The proteinase inactivates at 60°C according to apparent first-order kinetics and Lineweaver-Burk plots of its activity against albumin concentration are rectilinear, suggesting that the multiple forms have similar properties. The proteinase reacts slowly with diazoacetylnorleucine plus CuSO4, is stable in alkaline media, is inhibited by dithiothreitol, hydrolyses hemoglobin better than albumin and is virtually not active upon synthetic substrates for pepsin. These properties are similar to those of cathepsin D. The specific activity of the acid proteinase determined by titration with pepstatin is 680 units/mg of proteinase and the KD of the pepstatin-proteinase complex is 1.5 nM at 30°C. The acid proteinase occurs mainly in midgut subcellular fractions characterized by a high specific activity of molybdate-inhibited acid phosphatase and a large number of secretory-like vesicles. It is proposed that the M. domestica midgut acid proteinase is a cathepsin D-like proteinase evolved to function in luminal contents. The lack of ATP activation of the midgut enzyme supports this hypothesis, since ATP is thought to regulate cathepsin D-proteolysis inside lysosomes.  相似文献   

5.
Malate dehydrogenase (MDH) catalyzes the conversion of NAD+ and malate to NADH and oxaloacetate in the citric acid cycle. Eukaryotes have one MDH isozyme that is imported into the mitochondria and one in the cytoplasm. We overexpressed and purified Caenorhabditis elegans cytoplasmic MDH-1 and mitochondrial MDH-2 in E. coli. Our goal was to compare the kinetic and structural properties of these enzymes because C. elegans can survive adverse environmental conditions, such as lack of food and elevated temperatures. In steady-state enzyme kinetics assays, we measured KM values for oxaloacetate of 54 and 52 μM and KM values for NADH of 61 and 107 μM for MDH-1 and MDH-2, respectively. We partially purified endogenous MDH-1 and MDH-2 from a mixed population of worms and separated them using anion exchange chromatography. Both endogenous enzymes had a KM for oxaloacetate similar to that of the corresponding recombinant enzyme. Recombinant MDH-1 and MDH-2 had maximum activity at 40 °C and 35 °C, respectively. In a thermotolerance assay, MDH-1 was much more thermostable than MDH-2. Protein homology modeling predicted that MDH-1 had more intersubunit salt-bridges than mammalian MDH1 enzymes, and these ionic interactions may contribute to its thermostability. In contrast, the MDH-2 homology model predicted fewer intersubunit ionic interactions compared to mammalian MDH2 enzymes. These results suggest that the increased stability of MDH-1 may facilitate its ability to remain active in adverse environmental conditions. In contrast, MDH-2 may use other strategies, such as protein binding partners, to function under similar conditions.  相似文献   

6.
1. Glucosyltransferase activity is present in hepatopancreas of Homarus americanus. The enzyme appears to have a specific requirement for UDP-glucose, and ADP-, CDP- or GDP-glucose do not substitute for it. The activity is mainly microsomal, exhibits a pH optimum at 7.9–8.1, and its apparent Km values are 2 mM and 0.3 mM for UDP-glucose and p-nitrophenol respectively. Microsomal glucosyltransferase activity increases with increasing temperature up to 45°.2. Hepatopancreas possesses a very active sulfotransferase which utilizes 3′-phosphoadenosine-5′-phosphosulfate for sulfoconjugation of p-nitrophenol. The activity is associated chiefly with the soluble fraction and amounts to about 16 nmoles/mg protein/30 min.3. No detectable glucuronidation of p-nitrophenol occurred when preparations of hepatopancreas fortified with UDP-glucuronic acid were incubated with p-nitrophenol.  相似文献   

7.
Two major hexokinases (ATP: d-hexose 6-phosphotransferases, EC 2.7.1.1) have been identified in tissues of Homarus americanus (lobster) and separated from each other by DEAE-cellulose ion-exchange chromatography and by polyacrylamide gel electrophoresis. The molecular weight of each, determined by gel filtration, is about 50 000.Hexokinase II, named for its column elution order, resembles hexokinase isozymes I and II of vertebrates. Km values jfor glucose, mannose and fructose are 0.08, 0.13 and 6.7 mM, respectively. It is strongly inhibited by the reaction products, ADP and glucose-6-P (Ki = 0.8 mM).Hexokinase I appears to be different from any animal hexokinase previously described. It has a high affinity for mannose and fructose and low affinity for glucose. Km values are 6, 0.07 and 1.2 mM and relative maximum rates 100, 520 and 1070 for glucose, mannose and fructose, respectively. Hexokinase I is not inhibited by physiological concentrations of ATP nor by glucose-6-P, mannose-6-P or fructose-6-P even at high concentrations. Both enzymes occur in muscle at about 10% of the concentration found in the hepatopancreas.The use of Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase (d-glucose-6-phosphate: NADP+ 1-oxidoreductase, EC 1.1.1.49), with NAD as cofactor, is recommended for measuring hexokinases in crude tissue preparations to avoid the variable further reduction of nucleotide caused by the action of 6-phosphogluconate dehydrogenase when NADP is used with yeast glucose-6-phosphate dehydrogenase.  相似文献   

8.
Abstract

The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the bovine and porcine pancreatic secretory trypsin inhibitor (Kazal-type inhibitor, PSTI) to human leukocyte elastase has been investigated. At pH8.0, values of the apparent thermodynamic parameters for human leukocyte elastase: Kazal-type inhibitor complex formation are: bovine PSTT – Ka = 6.3 × 104M?1, δ5G° = -26.9kJ/mol, δH° = +11.7kJ/mol, and δS° = +1.3 × 102 entropy units; porcine PSTI –Ka = 7.0 × 103M?1,δG° = -21.5kJ/mol, δH° = +13.0kJ/mol, and δS° = +1.2 × 102 entropy units (values of Ka δG° and δS° were obtained at 21.0°C; values of δH° were temperature independent over the range (between 5.0°C and 45.0°C) explored). On increasing the pH from 4.5 to 9.5, values of Ka for bovine and porcine PSTI binding to human leukocyte elastase increase thus reflecting the acidic pK-shift of the His57 catalytic residue from ?7.0, in the free enzyme, to ?5.1, in the serine proteinase: inhibitor complexes. Thermodynamics of bovine and porcine PSTI binding to human leukocyte elastase has been analyzed in parallel with that of related serine (pro)enzyme/Kazal-type inhibitor systems. Considering the known molecular models, the observed binding behaviour of bovine and porcine PSTI to human leukocyte elastase was related to the inferred stereochemistry of the serine proteinase/inhibitor contact region(s).  相似文献   

9.
The mechanism of lactic acid oxidation in the tail muscles of Homarus americanus was studied. In solutions of intermediate ionic strength (0.55) time-course progress curves for lactic acid oxidation as catalyzed by lactate dehydrogenase exhibited a lag period. Evidence is presented which indicates that the lactate dehydrogenase found in the tail muscles of the lobster exists in two distinct physical and kinetic forms. The equilibrium of these forms is dependent upon the ionic strength of the reaction mixture. In low ionic strength solutions, the enzyme exists as a tetrameric species with an apparent Km for lactic acid of 1.1 m; in high ionic strength solutions, the enzyme exists as a dimer and the corresponding Km is 0.028 m. At intermediate ionic strengths, an equilibrium between the two physical and kinetic species exists which is modulated by the NADH mole-fraction ([NADH][NADH + NAD+]) and, in turn, this modulation results in sigmoidal time-course progress curves. The role of this enzyme is discussed as affected by in vivo ionic strength, temperature and levels of oxidized and reduced nicotine adenine dinucleotides.  相似文献   

10.
Summary Putrescine-oxidase activity was found in fetal bovine serum (FBS) with a pH optimum of 8.0 and in adult bovine serum (ABS) with a pH optimum of 9.8. The crude FBS enzyme had a KM for putrescine of 2.58×10−6 m and a Vmax of 0.53 nmol per hr per 50 μl serum. Aminoguanidine competitively inhibited the enzyme with a KI of 1.8×10−8 m. Spermidine and spermine proved competitive inhibitors of putrescine for both the FBS and the crude ABS putrescine oxidases. The Vmax for the ABS putrescine oxidase was 2.10 nmol per hr per 50 μl serum, and the KM for putrescine, 50.3×10−6 m. The K1 of the ABS putrescine oxidase for aminoguanidine was 41×10−6 m. On the basis of both the KM and KI values, the adult serum enzyme, at its optimal pH of 9.8, bound spermidine and spermine more avidly than the smaller putrescine and aminoguanidine; whereas the FBS enzyme, at pH 8.0, bound aminoguanidine and putrescine more tightly than the larger polyamines. Each of the enzymes retained over 80% of its activity after heating at 56°C for 30 min. Applications of these data to the study of polyamines in tissue culture and to the purification of diamine oxidases are discussed. This work was supported in part by a grant from the Cystic Fibrosis Foundation.  相似文献   

11.
Bovine liver arginase (EC 3.5.3.1) was encapsulated within nylon membrane microcapsules by the process of interfacial polymerization. The effect of microencapsulation on the properties of arginase was investigated. The Km, pH optimum and temperature stability at 37°C of arginase, were not significantly altered. The microencapsulated enzyme was much less stable at temperatures between 50 and 70°C than the free enzyme. Native arginase was inactivated by exposure to proteolytic enzymes, whereas microencapsulated arginase was much more resistant to proteolysis. A preliminary investigation of the effectiveness of the microencapsulated enzyme against the L1210 murine leukaemia in vivo has been made.  相似文献   

12.
Tb3+, a fluorescent trivalent cation with physicochemical properties similar to Ca2+, binds to peripheral nerve membrane vesicles prepared from the walking leg nerve bundle of the lobster (Homarus americanus). Saturable binding is measured for at least two classes of binding site. Bound Tb3+ can be displaced by other cations in the order: Ca2+ > Mg2+ = Zn2+ > NH4+. The binding of Tb3+ to the lower affinity site (KD(app) = 6.0 μM) is inhibitable by Na+, Mg2+ and Ca2+, whereas the higher affinity site (KD(app) = 2.2 μM) is only sensitive to Ca2+. Using this spectral probe the role of Ca2+ in peripheral nerve membrane function can be investigated.  相似文献   

13.
Two esteroproteolytic enzymes (A and D) have been isolated from the mouse submaxillary gland and shown to be pure by ultracentrifugation, immunoelectrophoresis, acrylamide-gel electrophoresis, and amino acid analyses. The enzymes have molecular weights of approximately 30,000 and are structurally and antigenically related. Narrow pH optima between 7.5 and 8.0 are exhibited by both enzymes. The “pK1's” are between 6.0 and 6.5 and the “pK2's” are near 9.0. A marked preference for arginine-containing esters is shown by both enzymes. The maximum specific activity of enzyme A on p-tosylarginine methyl ester (TAME) at pH 8 was 2500–3000 μm min?1 mg?1 and for enzyme D, 400–600 μm min?1 mg?1. With TAME as substrate, the Km for enzyme A was 8 × 10?4m at 25 °C and 6 × 10?4m at 37 °C. For D, Km was 3 × 10?4 at 25 °C and 2 × 10?4m at 37 °C.An apparent activation of enzyme D by tosylarginine (TA), a product of TAME hydrolysis, and all α-amino acids examined was due to removal of an inhibitor by chelation. This effect could be duplicated by 8-hydroxyquinoline and diethyldithiocarbamate but not by EDTA. Enzyme A was not affected by these substances to any remarkable extent. Several divalent ions proved to be potent inhibitors of enzyme D. Both enzymes are inactivated by the active site reagents diisopropyl phosphofluoridate and tosyllysine chloromethylketone but much less rapidly than is trypsin. Nitrophenyl-4-guanidionobenzoate reacts with a burst of nitrophenol liberation but with a rapid continuing hydrolysis. One active site per molecule is indicated. Enzyme D is inactivated by urea, reversibly at 10 m and with maximal permanent losses at 6 m. Autolysis of the unfolded form by the native enzyme when they coexist at intermediate urea concentrations appears to occur.Identity of enzyme D and the epithelial growth factor binding protein is demonstrated.  相似文献   

14.
3-Methylcrotonyl-CoA carboxylase (MCase), an enzyme of the leucine oxidation pathway, was highly purified from bovine kidney. The native enzyme has an approximate molecular weight of 835,000 as measured from exclusion limits by polyacrylamide gel electrophoresis at pH 7.3. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated two subunits, identified as a biotin-free subunit (A subunit; Mr = 61,000) and a biotin-containing subunit (B subunit; Mr = 73,500). The biotin content of the enzyme was 1 mol/ 157,000 g protein, consistent with an AB protomeric structure for the enzyme. The isoelectric point of the enzyme was found to be 5.4. Maximal MCase activity was found at pH 8 and 38 °C in the presence of Mg2+ and an activating monovalent cation such as K+. Kinetic constants (Km values) for the enzyme substrates were: 3-methylcrotonyl-CoA, 75 μm; ATP, 82 μm; HCO3?, 1.8 mm. Certain acyl-CoA derivatives, including crotonyl-CoA, (2Z)-3-ethylcrotonyl-CoA, and acetoacetyl-CoA, were also substrates for the enzyme. Some data on inhibition of the enzyme by acyl-CoA derivatives, and sulfhydryl- and arginyl-reagents, are presented.  相似文献   

15.
Biosynthetic thiolases (EC 2.3.1.9) are key enzymes in the branched catabolism of diverse clostridia as their activity and regulation influence the production of organic acids and solvents. In Clostridium butyricum, they are also involved in the production of hydrogen as a sustainable and environmentally benign energy source. In this study, the gene coding for thiolase from C. butyricum DSM 10702 was cloned by genome walking. It was found to consist of 1179 bp coding for a protein with 393 amino acids and a deduced molecular weight of 41.4 kDa. The enzyme was fused to an N-terminal his-tag, expressed in Escherichia coli, purified to near homogeneity and characterised for biochemical and kinetic properties. Gel filtration chromatography revealed that the catalytically active enzyme consists of a homotetramer. The enzyme showed a KM of ~32 μM towards acetoacetyl-CoA and of ~21 μM towards CoASH at 30 °C and pH 8.0. Claisen condensation of acetyl-CoA by thiolase was analysed in a coupled enzyme assay, where β-hydroxybutyryl-CoA dehydrogenase was applied catalysing the subsequent NADH-dependant reduction of the formed condensation product acetoacetyl-CoA. For this purpose the latter enzyme was cloned from C. butyricum DSM 10702 and recombinantly expressed in E. coli. The KM of thiolase towards acetyl-CoA was ~674 μM at 30 °C and pH 7.5. Acetyl-CoA condensation was inhibited even at micromolar concentrations of CoASH indicating that CoASH has an important regulatory function in vivo.  相似文献   

16.
Cathespin L (EC 3.4.22.15) and cathepsin H (EC 3.4.22.16) have been purified from brain cortex to apparent homogeneity by a simultaneous procedure involving acid extraction of homogenate at pH 4.2, ammonium sulfate fractionation (30–80%), chromatography on pepstatin-Sepharose, CM-Sephadex C-50, DEAE-Sephadex A-50, phenyl- and concanavalin A-Sepharose and isoelectric focusing. Cathepsin L and cathepsin H were assayed in the presence of dithiothreitol and Na2EDTA (2 mM each) with Z-Phe-Arg-NHMec (pH 5.5) and Lys-NNa (pH 6.5) respectively. Cathepsin L consists of 2 polypeptide chains with Mr 25 000 and 5 000, Mr of cathepsin H is 28 000. Cathepsin L exists in brain tissue in two multiple forms with pI values 5.7 and 5.9, pI of cathepsin H is 6.8. Substrate specificity of these thiol proteinases was tested with proteins (pyridoxyl-hemoglobin, azocasein) and low Mr naphthylamide and methylcoumarylamide substrates: Lys-NNa, Arg-NNa, Dz-Arg-NNa, Z-Arg-Arg-NNaOMe, Z-Phe-Arg-NHMec, Z-Phe, Val-Arg-NHMec, Z-Gly-Gly-Arg-NHMec. Z-Phe-Arg-NHMec is the best substrate for cathepsin L (KM=5 M, Kcat=21 s–1), Arg-NNa—for cathepsin H (KM=0.1 mM, Kcat=1.93 s–1), being endoaminopeptidase cathepsin H also hydrolyses Bz-Arg-NNa (KM=0.7 mM, Kcat=1.3 s–1). Both proteinases are inhibited by traditional inhibitors of cysteine proteinases and E-64, but leupeptin turned to be more effective inhibitor of cathepsin L (Ki=2.4 nM) than of cathepsin H (Ki=9.2 M), the latter enzyme being sensitive to puromycin and benzethonium chloride as well. Z-Phe-Phe-CHN2 and Z-Phe-Ala-CHN2 are potent irreversible inhibitors of brain cathepsin L with K2nd 150 000 and 137 000 M–1 s–1 respectively. Properties of the enzymes from human and bovine brain are similar.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

17.
The enzymatic lignocellulosic biomass conversion into value-added products requires the use of enzyme-rich cocktails, including β-glucosidases that hydrolyze cellobiose and cellooligosaccharides to glucose. During hydrolysis occurs accumulation of monomers causing inhibition of some enzymes; thus, glucose/xylose tolerant β-glucosidases could overcome this drawback. The search of new tolerant enzymes showing additional properties, such as high activity, wide-pH range, and thermal stability is very relevant to improve the bioprocess. We describe a novel β-glucosidase GH1 from the thermophilic Anoxybacillus thermarum (BgAt), which stood out by the robustness combination of great glucose/xylose tolerance, thermal stability, and high Vmax. The recombinant his-tagged-BgAt was overexpressed in Escherichia coli, was purified in one step, showed a high glucose/xylose tolerance, and activity stimulation (presence of 0.4 M glucose/1.0 M xylose). The optimal activity was at 65 °C - pH 7.0. BgAt presented an extraordinary temperature stability (48 h – 50 °C), and pH stability (5.5–8.0). The novel enzyme showed outstanding Vmax values compared to other β-glucosidases. Using p-nitrophenyl-β-d-glucopyranoside as substrate the values were Vmax (7614 U/mg), and KM (0.360 mM). These values suffer a displacement in Vmax to 14,026 U/mg (glucose), 14,886 U/mg (xylose), and KM 0.877 mM (glucose), and 1.410 mM (xylose).  相似文献   

18.
《Insect Biochemistry》1991,21(2):165-176
A lysosomal aspartic protease with cathepsin D activity, from the mosquito, Aedes aegypti, was purified and characterized. Its isolation involved ammonium sulfate (30–50%) and acid (pH 2.5) precipitations of protein extracts from whole previtellogenic mosquitoes followed by cation exchange chromatography. Purity of the enzyme was monitored by SDS-PAGE and silver staining of the gels. The native molecular weight of the purified enzyme as determined by polyacrylamide gel electrophoresis under nondenaturing conditions was 80,000. SDS-PAGE resolved the enzyme into a single polypeptide with Mr = 40,000 suggesting that it exists as a homodimer in its non-denatured state. The pI of the purified enzyme was 5.4 as determined by isoelectric focusing gel electrophoresis. The purified enzyme exhibits properties characteristic of cathepsin D. It utilizes hemoglobin as a substrate and its activity is completely inhibited by pepstatin-A and 6M urea but not by 10 mM KCN. Optimal activity of the purified mosquito aspartic protease was obtained at pH 3.0 and 45°C. With hemoglobin as a substrate the enzyme had an apparent Km of 4.2 μ M. Polyclonal antibodies to the purified enzyme were raised in rabbits. The specificity of the antibodies to the enzyme was verified by immunoblot analysis of crude mosquito extracts and the enzyme separated by both non-denaturing and SDS-PAGE. Density gradient centrifugation of organelles followed by enzymatic and immunoblot analyses demonstrated the lysosomal nature of the purified enzyme. The N-terminal amino acid sequence of the purified mosquito lysosomal protease (19 amino acids) has 74% identity with N-terminal amino acid sequence of porcine and human cathepsins D.  相似文献   

19.
The α-carbonic anhydrase gene from Helicobacter pylori strain 26695 has been cloned and sequenced. The full-length protein appears to be toxic to Escherichia coli, so we prepared a modified form of the gene lacking a part that presumably encodes a cleavable signal peptide. This truncated gene could be expressed in E. coli yielding an active enzyme comprising 229 amino acid residues. The amino acid sequence shows 36% identity with that of the enzyme from Neisseria gonorrhoeae and 28% with that of human carbonic anhydrase II. The H. pylori enzyme was purified by sulfonamide affinity chromatography and its circular dichroism spectrum and denaturation profile in guanidine hydrochloride have been measured. Kinetic parameters for CO2 hydration catalyzed by the H. pylori enzyme at pH 8.9 and 25°C are kcat=2.4×105 s−1, KM=17 mM and kcat/KM=1.4×107 M−1 s−1. The pH dependence of kcat/KM fits with a simple titration curve with pKa=7.5. Thiocyanate yields an uncompetitive inhibition pattern at pH 9 indicating that the maximal rate of CO2 hydration is limited by proton transfer between a zinc-bound water molecule and the reaction medium in analogy to other forms of the enzyme. The 4-nitrophenyl acetate hydrolase activity of the H. pylori enzyme is quite low with an apparent catalytic second-order rate constant, kenz, of 24 M−1 s−1 at pH 8.8 and 25°C. However, with 2-nitrophenyl acetate as substrate a kenz value of 665 M−1 s−1 was obtained under similar conditions.  相似文献   

20.
A thermotolerant fungus identified as Aspergillus niveus was isolated from decomposing materials and it has produced excellent levels of hydrolytic enzymes that degrade plant cell walls. A. niveus germinated faster at 40 °C, presenting protein levels almost twofold higher than at 25 °C. The crude extract of the A. niveus culture was purified by diethylaminoethyl (DEAE)-cellulose, followed by Biogel P-100 column. Polygalacturonase (PG) is a glycoprotein with 37.7 % carbohydrate, molecular mass of 102.6 kDa, and isoelectric point of 5.4. The optimum temperature and pH were 50 °C and 4.0–6.5, respectively. The enzyme was stable at pH 3.0 to 9.0 for 24 h. The DEAE-cellulose derivative was about sixfold more stable at 60 °C than the free enzyme. Moreover, the monoaminoethyl-N-aminoethyl-agarose derivative was tenfold more stable than the free enzyme. PG was 232 % activated by Mn2+. The hydrolysis product of sodium polypectate corresponded at monogalacturonic acid, which classifies the enzyme as an exo-PG. The K m, V max, K cat, and K cat/K m values were 6.7 mg/ml, 230 U/mg, 393.3/s, and 58.7 mg/ml/s, respectively. The N-terminal amino acid sequence presented 80 % identity with PglB1, PglA2, and PglA3 putative exo-PG of Aspergillus fumigatus and an exo-PG Neosartorya fischeri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号