首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A transient reduction of cell coupling during reperfusion limits myocardial necrosis, but little is known about its arrhythmogenic effects during ischemia-reperfusion. Thus, we analyzed the effect of an extreme reduction in the number of gap junction channels or in their unitary conductance on ventricular arrhythmias during myocardial ischemia-reperfusion. Available gap junction uncouplers have electrophysiological effects independent from their uncoupling actions. Thus, isolated hearts from Cx43(Cre-ER(T)/fl) mice treated with 4-hydroxytamoxifen (4-OHT), from Cx43KI32 mice [in which connexin (Cx)43 was replaced with Cx32], and from control animals were submitted to regional ischemia and reperfusion, and spontaneous and induced ventricular arrhythmias were monitored. In additional hearts, changes in activation time and electrical impedance during global ischemia-reperfusion were assessed. In contrast to treatment with 4-OHT, replacement of Cx43 with Cx32 did not modify baseline activation time or electrical impedance. However, the number of extrasistole and ventricular tachyarrhythmias was higher in isolated hearts from Cx43KI32 and 4-OHT-treated Cx43(Cre-ER(T)/fl) animals versus wild-type animals during normoxia, ischemia (12.29 ± 3.26 and 52.17 ± 22.51 vs. 3.00 ± 1.46 spontaneous tachyarrhythmias, P < 0.05), and reperfusion. The impairment in conduction during ischemia was steeper in isolated hearts from Cx43KI32 animals, whereas changes in myocardial impedance were attenuated during ischemia in both transgenic models, suggesting altered cell-to-cell coupling at baseline. In conclusion, both reduction of Cx43 with 4-OHT and replacement of Cx43 by less-conductive Cx32 were arrhythmogenic under normoxia and ischemia-reperfusion, despite no major effects on baseline electrical properties. These results suggest that modifications in gap junction communication silent under normal conditions may be arrhythmogenic during ischemia-reperfusion.  相似文献   

2.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

3.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

4.
Danqi soft capsule (DQ) is a traditional Chinese medicine containing Salvia miltiorrhiza and Panax notoginseng; it is safe and efficient in treating ischaemic heart diseases. The purpose of the present study was to assess whether DQ could prevent infarct border zone (IBZ) remodelling and decrease ventricular arrhythmias occurrence in post‐myocardial infarction (MI) stage. MI was induced by a ligation of the left anterior descending coronary artery. DQ was administered to the post‐MI rats started from 1 week after MI surgery for 4 weeks. The results showed that DQ treatment significantly attenuated tachyarrhythmia induction rates and arrhythmia score in post‐MI rats. In echocardiography, DQ improved left ventricular (LV) systolic and diastolic function. Histological assessment revealed that DQ significantly reduced fibrotic areas and myocyte areas, and increased connexin (Cx) 43 positive areas in IBZ. Western blot revealed that DQ treatment significantly reduced the protein expression levels of type I and III collagens, α‐smooth muscle actin (α‐SMA), transforming growth factor‐β1 (TGF‐β1) and Smad3 phosphorylation, while increasing Cx43 amounts. Overall, these findings mainly indicated that DQ intervention regulates interstitial fibrosis, Cx43 expression and myocyte hypertrophy by TGF‐β1/Smad3 pathway in IBZ, inhibits LV remodelling and reduces vulnerability to tachyarrhythmias after MI. This study presents a proof of concept for novel antiarrhythmic strategies in preventing IBZ remodelling, modifying the healed arrhythmogenic substrate and thus reducing susceptibility to ventricular arrhythmias in the late post‐MI period.  相似文献   

5.
Genetic studies in the mouse have demonstrated that conditional cardiac-restricted loss of connexin43 (Cx43), the major ventricular gap junction protein, is highly arrhythmogenic. However, whether more focal gap junction remodeling, as is commonly seen in acquired cardiomyopathies, influences the propensity for arrhythmogenesis is not known. We examined electrophysiological properties and the frequency of spontaneous and inducible arrhythmias in genetically engineered chimeric mice derived from injection of Cx43-deficient embryonic stem cells into wild-type recipient blastocysts. Chimeric mice had numerous well-circumscribed microscopic Cx43-negative foci in their hearts, comprising approximately 15% of the total surface area as determined by immunohistochemical analysis. Systolic function in the chimeric mice was significantly depressed as measured echocardiographically (19.0% decline in fractional shortening compared with controls, P < 0.05) and by invasive hemodynamics (17.6% reduction in change of pressure over time, P < 0.01). Chimeras had significantly more spontaneous arrhythmic events than controls (P < 0.01), including frequent runs of nonsustained ventricular tachycardia in some of the chimeric mice. However, in contrast to mice with conditional cardiac-resricted loss of Cx43 in the heart, no sustained ventricular tachyarrhythmias were observed. We conclude that focal areas of uncoupling in the myocardium increase the likelihood of arrhythmic triggers, but more widespread uncoupling is required to support sustained arrhythmias.  相似文献   

6.
Gap junction redistribution and reduced expression, a phenomenon termed gap junction remodeling (GJR), is often seen in diseased hearts and may predispose toward arrhythmias. We have recently shown that short-term pacing in the mouse is associated with changes in connexin43 (Cx43) expression and localization but not with increased inducibility into sustained arrhythmias. We hypothesized that short-term pacing, if imposed on murine hearts with decreased Cx43 abundance, could serve as a model for evaluating the electrophysiological effects of GJR. We paced wild-type (normal Cx43 abundance) and heterozygous Cx43 knockout (Cx43+/-; 66% mean reduction in Cx43) mice for 6 h at 10-15% above their average sinus rate. We investigated the electrophysiological effects of pacing on the whole animal using programmed electrical stimulation and in isolated ventricular myocytes with patch-clamp studies. Cx43+/- myocytes had significantly shorter action potential durations (APD) and increased steady-state (Iss) and inward rectifier (I(K1)) potassium currents compared with those of wild-type littermate cells. In Cx43+/- hearts, pacing resulted in a significant prolongation of ventricular effective refractory period and APD and significant diminution of Iss compared with unpaced Cx43+/- hearts. However, these changes were not seen in paced wild-type mice. These data suggest that Cx43 abundance plays a critical role in regulating currents involved in myocardial repolarization and their response to pacing. Our study may aid in understanding how dyssynchronous activation of diseased, Cx43-deficient myocardial tissue can lead to electrophysiological changes, which may contribute to the worsened prognosis often associated with pacing in the failing heart.  相似文献   

7.
Heart failure is known to predispose to life-threatening ventricular tachyarrhythmias even before compromising the systemic circulation, but the underlying mechanism is not well understood. The aim of this study was to clarify the connexin43 (Cx43) gap junction remodeling and its potential role in the pathogenesis of arrhythmias during the development of heart failure. We investigated stage-dependent changes in Cx43 expression in UM-X7.1 cardiomyopathic hamster hearts and associated alterations in the electrophysiological properties using a high-resolution optical mapping system. UM-X7.1 hamsters developed left ventricular (LV) hypertrophy by ages 6 approximately 10 wk and showed a moderate reduction in LV contractility at age 20 wk. Appreciable interstitial fibrosis was recognized at these stages. LV mRNA and protein levels of Cx43 in UM-X7.1 were unaffected at age 10 wk but significantly reduced at 20 wk. The expression level of Ser255-phosphorylated Cx43 in UM-X7.1 at age 20 wk was significantly greater than that in control golden hamsters at the same age. In UM-X7.1 at age 10 wk, almost normal LV conduction was preserved, whereas the dispersion of action potential duration was significantly increased. UM-X7.1 at age 20 wk showed significant reduction of cardiac space constant, significant decrease in conduction velocity, marked distortion of activation fronts, and pronounced increase in action potential duration dispersion. Programmed stimulation resulted in sustained ventricular tachycardia or fibrillation in UM-X7.1. LV activation during polymorphic ventricular tachycardia was characterized by multiple phase singularities or wavebreaks. During the development of heart failure in the cardiomyopathic hamster, alterations of Cx43 expression and phosphorylation in concert with interstitial fibrosis may create serious arrhythmogenic substrate through an inhibition of cell-to-cell coupling.  相似文献   

8.
9.
Gap junction channels in ventricular myocardium are required for electrical and metabolic coupling between cardiac myocytes and for normal cardiac pump function. Although much is known about expression patterns and remodeling of cardiac connexin(Cx)43, little is known about the less abundant Cx45, which is required for embryonic development and viability, is downregulated in adult hearts, and is pathophysiologically upregulated in human end-stage heart failure. We applied quantitative immunoblotting and immunoprecipitation to native myocardial extracts, immunogold electron microscopy to cardiac tissue and membrane sections, electrophysiological recordings to whole hearts, and high-resolution tandem mass spectrometry to Cx45 fusion protein, and developed two new tools, anti-Cx45 antisera and Cre+;Cx45 floxed mice, to facilitate characterization of Cx45 in adult mammalian hearts. We found that Cx45 represents 0.3% of total Cx protein (predominantly 200 fmol Cx43 protein/μg ventricular protein) and colocalizes with Cx43 in native ventricular gap junctions, particularly in the apex and septum. Cre+;Cx45 floxed mice express 85% less Cx45, but do not exhibit overt electrophysiologic abnormalities. Although the basal phosphorylation status of native Cx45 remains unknown, CaMKII phosphorylates 8 Ser/Thr residues in Cx45 in vitro. Thus, although downregulation of Cx45 does not produce notable deficits in electrical conduction in adult, disease-free hearts, Cx45 is a target of the multifunctional kinase CaMKII, and the phosphorylation status of Cx45 and the role of Cx43/Cx45 heteromeric gap junction channels in both normal and diseased hearts merits further investigation.  相似文献   

10.
Gap junction channels in ventricular myocardium are required for electrical and metabolic coupling between cardiac myocytes and for normal cardiac pump function. Although much is known about expression patterns and remodeling of cardiac connexin(Cx)43, little is known about the less abundant Cx45, which is required for embryonic development and viability, is downregulated in adult hearts, and is pathophysiologically upregulated in human end-stage heart failure. We applied quantitative immunoblotting and immunoprecipitation to native myocardial extracts, immunogold electron microscopy to cardiac tissue and membrane sections, electrophysiological recordings to whole hearts, and high-resolution tandem mass spectrometry to Cx45 fusion protein, and developed two new tools, anti-Cx45 antisera and Cre(+);Cx45 floxed mice, to facilitate characterization of Cx45 in adult mammalian hearts. We found that Cx45 represents 0.3% of total Cx protein (predominantly 200 fmol Cx43 protein/μg ventricular protein) and colocalizes with Cx43 in native ventricular gap junctions, particularly in the apex and septum. Cre(+);Cx45 floxed mice express 85% less Cx45, but do not exhibit overt electrophysiologic abnormalities. Although the basal phosphorylation status of native Cx45 remains unknown, CaMKII phosphorylates 8 Ser/Thr residues in Cx45 in vitro. Thus, although downregulation of Cx45 does not produce notable deficits in electrical conduction in adult, disease-free hearts, Cx45 is a target of the multifunctional kinase CaMKII, and the phosphorylation status of Cx45 and the role of Cx43/Cx45 heteromeric gap junction channels in both normal and diseased hearts merits further investigation.  相似文献   

11.
Abnormal QT prolongation with the associated arrhythmias is a significant predictor of mortality in diabetic patients. Gap junctional intercellular communication allows electrical coupling between heart muscle cells. The effects of streptozotocin (STZ)-induced diabetes mellitus on the expression and distribution of connexin 43 (Cx43) in ventricular muscle have been investigated. Cx43 mRNA expression was measured in ventricular muscle by quantitative PCR. The distribution of total Cx43, phosphorylated Cx43 (at serine 368) and non-phosphorylated Cx43 was measured in ventricular myocytes and ventricular muscle by immunocytochemistry and confocal microscopy. There was no significant difference in Cx43 mRNA between diabetic rat ventricle and controls. Total and phosphorylated Cx43 were significantly increased in ventricular myocytes and ventricular muscle and dephosphorylated Cx43 was not significantly altered in ventricular muscle from diabetic rat hearts compared to controls. Disturbances in gap junctional intercellular communication, which in turn may be attributed to alterations in balance between total, phosphorylated and dephosporylated Cx43, might partly underlie prolongation of QRS and QT intervals in diabetic heart.  相似文献   

12.
13.
Downregulation of the muscle-specific microRNA-1 (miR-1) mediates the induction of pathologic cardiac hypertrophy. Dysfunction of the gap junction protein connexin 43 (Cx43), an established miR-1 target, during cardiac hypertrophy leads to ventricular tachyarrhythmias (VT). However, it is still unknown whether miR-1 and Cx43 are interconnected in the pro-arrhythmic context of hypertrophy. Thus, in this study we investigated whether a reduction in the extent of cardiac hypertrophy could limit the pathological electrical remodeling of Cx43 and the onset of VT by modulating miR-1 levels. Wistar male rats underwent mechanical constriction of the ascending aorta to induce pathologic left ventricular hypertrophy (LVH) and afterwards were randomly assigned to receive 10mg/kg valsartan, VAL (LVH+VAL) delivered in the drinking water or placebo (LVH) for 12 weeks. Sham surgery was performed for control groups. Programmed ventricular stimulation reproducibly induced VT in LVH compared to LVH+VAL group. When compared to sham controls, rats from LVH group showed a significant decrease of miR-1 and an increase of Cx43 expression and its ERK1/2-dependent phosphorylation, which displaces Cx43 from the gap junction. Interestingly, VAL administration to rats with aortic banding significantly reduced cardiac hypertrophy and prevented miR-1 down-regulation and Cx43 up-regulation and phosphorylation. Gain- and loss-of-function experiments in neonatal cardiomyocytes (NCMs) in vitro confirmed that Cx43 is a direct target of miR-1. Accordingly, in vitro angiotensin II stimulation reduced miR-1 levels and increased Cx43 expression and phosphorylation compared to un-stimulated NCMs. Finally, in vivo miR-1 cardiac overexpression by an adenoviral vector intra-myocardial injection reduced Cx43 expression and phosphorylation in mice with isoproterenol-induced LVH. In conclusion, miR-1 regulates Cx43 expression and activity in hypertrophic cardiomyocytes in vitro and in vivo. Treatment of pressure overload-induced myocyte hypertrophy reduces the risk of life-threatening VT by normalizing miR-1 expression levels with the consequent stabilization of Cx43 expression and activity within the gap junction.  相似文献   

14.
This study was designed to test whether reduced levels of cardiac fructose-2,6-bisphosphate (F-2,6-P2) exacerbates cardiac damage in response to pressure overload. F-2,6-P2 is a positive regulator of the glycolytic enzyme phosphofructokinase. Normal and Mb transgenic mice were subject to transverse aortic constriction (TAC) or sham surgery. Mb transgenic mice have reduced F-2,6-P2 levels, due to cardiac expression of a transgene for a mutant, kinase deficient form of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) which controls the level of F-2,6-P2. Thirteen weeks following TAC surgery, glycolysis was elevated in FVB, but not in Mb, hearts. Mb hearts were markedly more sensitive to TAC induced damage. Echocardiography revealed lower fractional shortening in Mb-TAC mice as well as larger left ventricular end diastolic and end systolic diameters. Cardiac hypertrophy and pulmonary congestion were more severe in Mb-TAC mice as indicated by the ratios of heart and lung weight to tibia length. Expression of α-MHC RNA was reduced more in Mb-TAC hearts than in FVB-TAC hearts. TAC produced a much greater increase in fibrosis of Mb hearts and this was accompanied by 5-fold more collagen 1 RNA expression in Mb-TAC versus FVB-TAC hearts. Mb-TAC hearts had the lowest phosphocreatine to ATP ratio and the most oxidative stress as indicated by higher cardiac content of 4-hydroxynonenal protein adducts. These results indicate that the heart’s capacity to increase F-2,6-P2 during pressure overload elevates glycolysis which is beneficial for reducing pressure overload induced cardiac hypertrophy, dysfunction and fibrosis.  相似文献   

15.
The conduction of cardiac action potentials depends on the flow of excitation through gap junctions, which are hexameric protein associations of connexins (Cxs). The major Cx reported in the heart is Cx43, although some Cx40 and Cx45 are also present. There is some evidence for altered Cx content in heart failure. In heart failure, conduction is depressed and slowed conduction may contribute to arrhythmogenesis and (or) the maintenance of arrhythmia. Cx content and distribution were determined in ventricular tissues from normal and cardiomyopathic Syrian hamsters, an animal model of heart failure which has reproducible age-specific cardiomyopathy resulting in heart failure and age-matched controls in three groups: young (3-5 weeks), adult (13-18 weeks), and old (>45 weeks). Frozen, unfixed sections of ventricular tissues were immunofluorescently stained using antibodies against Cx43, Cx40, and Cx45. Cx43 was the predominant Cx detected in all samples. In normal hamsters, Cx43 was localized predominantly at the intercalated disc region, while in myopathic myocytes, it was scattered. In Western blots, Cx43 content of normal hamster hearts was highest in the adult hearts compared with young and old hamster hearts. In contrast, Cx43 content was significantly lower in adult cardiomyopathic hamster hearts compared with all other groups. The alterations of content and distribution of gap junction Cx43 may contribute to diminished conduction, pump function, and arrhythmogenesis in heart failure.  相似文献   

16.
17.
Maladaptive cardiac hypertrophy predisposes one to arrhythmia and sudden death. Cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) promote anti-inflammatory and antiapoptotic mechanisms, and are involved in the regulation of cardiac Ca2+-, K+- and Na+-channels. To test the hypothesis that enhanced cardiac EET biosynthesis counteracts hypertrophy-induced electrical remodeling, male transgenic mice with cardiomyocyte-specific overexpression of the human epoxygenase CYP2J2 (CYP2J2-TG) and wildtype littermates (WT) were subjected to chronic pressure overload (transverse aortic constriction, TAC) or β-adrenergic stimulation (isoproterenol infusion, ISO). TAC caused progressive mortality that was higher in WT (42% over 8 weeks after TAC), compared to CYP2J2-TG mice (6%). In vivo electrophysiological studies, 4 weeks after TAC, revealed high ventricular tachyarrhythmia inducibility in WT (47% of the stimulation protocols), but not in CYP2J2-TG mice (0%). CYP2J2 overexpression also enhanced ventricular refractoriness and protected against TAC-induced QRS prolongation and delocalization of left ventricular connexin-43. ISO for 14 days induced high vulnerability for atrial fibrillation in WT mice (54%) that was reduced in CYP-TG mice (17%). CYP2J2 overexpression also protected against ISO-induced reduction of atrial refractoriness and development of atrial fibrosis. In contrast to these profound effects on electrical remodeling, CYP2J2 overexpression only moderately reduced TAC-induced cardiac hypertrophy and did not affect the hypertrophic response to β-adrenergic stimulation. These results demonstrate that enhanced cardiac EET biosynthesis protects against electrical remodeling, ventricular tachyarrhythmia, and atrial fibrillation susceptibility during maladaptive cardiac hypertrophy.  相似文献   

18.
Electrophysiological remodeling involving gap junctions has been demonstrated in failing hearts and may contribute to intercellular uncoupling, delayed conduction, enhanced arrhythmias, and vulnerability to sudden death in patients with heart failure. Recently, we showed that failing human hearts exhibit marked increases in connexin45 (Cx45) expression in addition to previously documented decreases in connexin43 (Cx43) expression. Each of these changes results in reduced gap junction coupling. The objective of the present study was to examine functional consequences of increased Cx45 in cardiac gap junctions. Transgenic mice with cardiac-selective overexpression of the developmentally downregulated cardiac connexin, connexin45 (Cx45OE mice) were subjected to in vivo electrophysiology studies in which an intracardiac catheter was used to induce ventricular arrhythmias in anesthetized mice, and in which ambulatory ECG monitoring was used to detect spontaneous arrhythmias in unanesthetized mice. Hearts were analyzed by TaqMan RT-PCR, immunostaining, immunoblotting, and echocardiography. Lucifer yellow and neurobiotin dye transfer was used to assess coupling in transgenic and control myocyte cultures. Cx45 mRNA was two orders of magnitude greater in Cx45OE mice. Cx45-immunoreactive signal at gap junctions increased twofold and total Cx45 protein by immunoblotting increased 25% in Cx45OE mice compared with nontransgenic littermate controls. Functionally, Cx45OE mice exhibited more inducible ventricular tachycardia than controls but did not exhibit any other functional or structural derangements as assessed by echocardiography. Ventricular myocytes isolated from Cx45OE mice exhibited diminished intercellular transfer of Lucifer yellow dye and increased transfer of neurobiotin, consistent with altered cell-to-cell communication. Thus increased myocardial expression of Cx45 results in remodeling of intercellular coupling and greater susceptibility to ventricular arrhythmias in vivo.  相似文献   

19.
Bone marrow mesenchymal stem cells (BMSCs) emerge as a promising approach for treating heart diseases. However, the effects of BMSCs‐based therapy on cardiac electrophysiology disorders after myocardial infarction were largely unclear. This study was aimed to investigate whether BMSCs transplantation prevents cardiac arrhythmias and reverses potassium channels remodelling in post‐infarcted hearts. Myocardial infarction was established in male SD rats, and BMSCs were then intramyocardially transplanted into the infarcted hearts after 3 days. Cardiac electrophysiological properties in the border zone were evaluated by western blotting and whole‐cell patch clamp technique after 2 weeks. We found that BMSCs transplantation ameliorated the increased heart weight index and the impaired LV function. The survival of infarcted rats was also improved after BMSCs transplantation. Importantly, electrical stimulation‐induced arrhythmias were less observed in BMSCs‐transplanted infarcted rats compared with rats without BMSCs treatment. Furthermore, BMSCs transplantation effectively inhibited the prolongation of action potential duration and the reduction of transient and sustained outward potassium currents in ventricular myocytes in post‐infarcted rats. Consistently, BMSCs‐transplanted infarcted hearts exhibited the increased expression of KV4.2, KV4.3, KV1.5 and KV2.1 proteins when compared to infarcted hearts. Moreover, intracellular free calcium level, calcineurin and nuclear NFATc3 protein expression were shown to be increased in infarcted hearts, which was inhibited by BMSCs transplantation. Collectively, BMSCs transplantation prevented ventricular arrhythmias by reversing cardiac potassium channels remodelling in post‐infarcted hearts.  相似文献   

20.
Endothelin-1 (ET-1) is an important contributor to ventricular hypertrophy and failure, which are associated with arrhythmogenesis and sudden death. To elucidate the mechanism(s) underlying the arrhythmogenic effects of ET-1 we tested the hypothesis that long-term (24 hrs) exposure to ET-1 impairs impulse conduction in cultures of neonatal rat ventricular myocytes (NRVM). NRVM were seeded on micro-electrode-arrays (MEAs, Multi Channel Systems, Reutlingen, Germany) and exposed to 50 nM ET-1 for 24 hrs. Hypertrophy was assessed by morphological and molecular methods. Consecutive recordings of paced activation times from the same cultures were conducted at baseline and after 3, 6 and 24 hrs, and activation maps for each time period constructed. Gap junctional Cx43 expression was assessed using Western blot and confocal microscopy of immunofluorescence staining using anti-Cx43 antibodies. ET-1 caused hypertrophy as indicated by a 70% increase in mRNA for atrial natriuretic peptide ( P < 0.05), and increased cell areas ( P < 0.05) compared to control. ET-1 also caused a time-dependent decrease in conduction velocity that was evident after 3 hrs of exposure to ET-1, and was augmented at 24 hrs, compared to controls ( P < 0.01). ET-1 increased total Cx43 protein by ∼40% ( P < 0.05) without affecting non- phosphorylated Cx43 (NP-Cx43) protein expression. Quantitative confocal microscopy showed a ∼30% decrease in the Cx43 immunofluorescence per field in the ET-1 group ( P < 0.05) and a reduced field stain intensity ( P < 0.05), compared to controls. ET-1-induced hypertrophy was accompanied by reduction in conduction velocity and gap junctional remodelling. The reduction in conduction velocity may play a role in ET-1 induced susceptibility to arrhythmogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号