首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a novel robotic sensor system that can monitor volatile chemicals and airflow. The system is modelled on characteristics of the human body that are thought to have a significant influence on the human odour and airflow senses. In particular, the effect of buoyant airflow due to body heat acts to gather volatile chemicals over large areas of the human body and carry them to the nose. It is postulated that this effect increases the receptive area for human olfaction. In addition, the interaction between rising air heated by the body and external airflow produces a temperature distribution about head height that can be used to infer airflow direction and magnitude. A heated sensor system was constructed to investigate these effects and the resulting sensor was mounted on a mobile robot. The design of the sensor system is described. Results are presented which demonstrate its ability to measure airflow direction and detect chemical signals over a wider receptive field compared with an unheated sensor.  相似文献   

2.
An experimental system is described for validating electrochemical oxygen sensors implanted in tissues. The system is a modified hamster window chamber in which a thin layer of vascularized tissue is held between two plates, one plate having an observation window and the other plate having an array of oxygen sensors. This arrangement permits simultaneous recording of oxygen sensor signals and nondestructive visualization of the tissue adjacent to the sensors over periods of 1 mo or more, without the inhibitory effects of anesthesia. The system provides a means for study of the effects of spatial and temporal oxygen distributions on the sensor signals and adaptation of the tissue structure over time. Examples are given of sensor recordings and images of tissues with implanted oxygen sensor arrays.  相似文献   

3.
A penicillin fiber optic sensor is described. The sensor is based on co-immobilization of a pH indicator, fluorescein isothiocyanate (FITC), and penicillinase on a preactivated biodyne B membrane attached to the end of a bifurcated optical fiber. The characteristics of the sensor are investigated in conjunction with a flow injection analysis system. The proposed sensor is reversible and responds to penicillin in the concentration range of 1 x 10(-4) to 5 x 10(-2) mol/L. The application of this sensor to penicillin analysis in some pharmaceutical samples is demonstrated.  相似文献   

4.
A compact integrated optical sensor system for a large variety of different (bio-) chemical applications using replicated sensor chips is described. Features of the refractometric system to be emphasized for practical applications include a high-resolution window that can be positioned within a wide measuring range, an in situ chip testing and characterization procedure, and on-chip referencing. As an application example, experimental results on refractometric measurements as well as on the suppression of non-specific binding are given.  相似文献   

5.
The cataluminescence (CTL)‐based sensor is a new promising type of chemical transducer, and has attracted much attention of researchers for its potential versatile applications in public safety, emission control and environmental protection. In this review, we briefly introduce the development history of CTL‐based sensors and summarize existing explanations of the CTL reaction mechanism as well as three research strategies for mechanism the CTL mechanism. In the following, all the function units of a typical CTL‐based sensor system are described and the investigation of the sensor materials. CTL‐based sensor arrays, are discussed in detail. We classify the recent novel hyphenated techniques based on CTL coupled to other analysis techniques into the preconcentration‐CTL hyphenated technique, nebulization‐CTL hyphenated technique, plasma‐assisted CTL technique and tandem CTL technique according to the type of analysis combined with CTL and provide a detailed account of novel hyphenated techniques. Owing to the appearance of these novel techniques, the application range of CTL has been expanded as well as the sensitivity and selectivity of CTL system has been greatly improved. Finally, the applications of CTL‐based sensor and sensor arrays in the last several years are classified and summarized. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A few years ago it became possible to carry out complicated surgical procedures in humans with the required precision by combining medical imaging (MRI, CT) with minimally invasive surgery. The confined space within these imaging systems and the resulting inaccuracies associated with the manual use of instruments increasingly make necessary the help of aids ranging from positioning systems to robotic devices, which themselves must be position controlled. A position sensor has been developed for a medical robotic system allowing the image-controlled insertion of injection needles and the simultaneous administration of different drugs. The 3D position coordinates are determined by a noncontact optical principle, which also enables simultaneous determination of all 6 basic degrees of freedom of the robotic system (3 translational, 3 rotational). On the basis of an area image sensor and the measurement of a geometrically defined structure in the path of the rays between sensor and light source, the position coordinates are calculated almost real time. Special emphasis was placed on designing the sensor system to cover a sufficiently large workspace to enable it to cover the entire intervention area. The sensor described herein determines the position coordinates in a volume of 10 x 10 x 10 cm at a resolution of up to 1 mm for translations and 1 degree for rotations.  相似文献   

7.
Current trends in artificial nose research are strongly influenced by knowledge of biological olfactory systems. Insects have evolved over millions of years to detect and maneuver toward a food source or mate, or away from predators. The insect olfactory system is able to identify volatiles on a time scale that matches their ability to maneuver. Here, biological olfactory sense organs, insect antennae, have been exploited in a hybrid-device biosensor, demonstrating the ability to identify individual strands of odor in a plume passing over the sensor on a sub-second time scale. A portable system was designed to utilize the electrophysiological responses recorded from a sensor array composed of male or female antennae from four or eight different species of insects (a multi-channel electroantennogram, EAG). A computational analysis strategy that allows discrimination between odors in real time is described in detail. Following a training period, both semi-parametric and k-nearest neighbor (k-NN) classifiers with the ability to discard ambiguous responses are applied toward the classification of up to eight odors. EAG responses to individual strands in an odor plume are classified or discarded as ambiguous with a delay (sensor response to classification report) on the order of 1 s. The dependence of classification error rate on several parameters is described. Finally, the performance of the approach is compared to that of a minimal conditional risk classifier.  相似文献   

8.
A new hybrid humidity sensor comprising a conventional capacitance humidity sensor and a planar heating element is described. Owing to its short response time of only a few milliseconds, its great measuring accuracy, large measuring range, and simplicity in handling, the sensor is suitable for measuring water vapour partial pressure in gases with rapidly changing flow and direction, e.g. in ventilated patients in the fields of anaesthesia and intensive care medicine. The small dimensions permit measurements at almost any location within the ventilation system.  相似文献   

9.
A novel method and instrumental system to determine the total protein concentration in a liquid sample is described. It uses a fiber optic total protein sensor (FOPS) based on the principles of fiber optic evanescent wave spectroscopy. The FOPS applies a dye-immobilized porous glass coating on a multi-mode optical fiber. The evanescent waves at the fiber optic core-cladding interface are used to monitor the protein-induced changes in the sensor element. The FOPS offers a single-step method for quantifying protein concentrations without destroying the sample. The response time and reusability of the FOPS are evaluated. This unique sensing method presents a sensitive and accurate platform for the quantification of protein.  相似文献   

10.
A new analysis for monitoring host cell proteins in preparations of transgenically produced protein pharmaceuticals is described. A capacitive biosensor with a very high sensitivity is used to monitor trace amounts of host cell proteins. The sensor consists of a gold electrode, the surface of which is well insulated and on which a preparation of a population of polyclonal antibodies raised against the complete protein set-up of the host cell are immobilized.Host cell proteins are present at very low concentrations during the production of a transgenic protein. The system studied here is a model system with an enzyme expressed in Escherichia coli (E. coli). Due to the high sensitivity, it may even be possible to dilute the samples to be analyzed, thereby reducing a negative influence from non-specific binding to the sensor surface.  相似文献   

11.
The development of a novel biosensor system for measuring the respiratory activity of whole eubacterial cells is described. The biosensor incorporates a physically immobilized layer of cells held in intimate contact with an amperometric transducing electrode and uses a chemical mediator, potassium ferricyanide, to divert electrons from the respiratory system of the bacteria to the poised electrode. The current thus produced is proportional to the level of respiratory activity of the immobilized bacterial cells and can be monitored by a computer interface system. The paper outlines the principles of the biosensor and describes the results of a screen of potentially useful eubacteria. Also described are the effects of physical parameters on the sensor and a strategy for the long term preservation of the biosensor by freeze-drying.  相似文献   

12.
Containment sensors for the determination of L-lactate and glucose   总被引:3,自引:0,他引:3  
This paper reports some new results on enzyme based silicon containment sensors. For the first time an L-lactate sensor in containment technology is presented. Through optimization of the buffer system the stability of the lactate sensor was enhanced and the linear response of over 10 mM was achieved. The glucose sensor has also been optimized for a large linear measurement range exceeding 30 mM. A two-enzyme chip with glucose and lactate sensor elements which were integrated on one silicon chip is presented. The response behaviour of the two-enzyme chip was very similar to the single chip behaviour. No cross-talking effects could be observed. A fabrication process for mass-production is described.  相似文献   

13.
Abstract: A multi-sensor system is described, based on a 1024 channel diode array spectrometer, to measure spectral radiant flux density in the range of 380 nm to 850 nm, with a resolution of 0.8 nm in minimal 16 milliseconds integration time per sensor (noon, clear sky conditions). 264 space-integrating 4π sensors deployed in the canopies and 2 m above stand floor are sequentially connected to the spectrometer by means of 30-m long fibre optics. During low-level conditions (dawn, overcast sky) the system automatically lengthens the integration time of the spectrometer. About 3 sec per sensor, i.e., 13 min for the total of 264 sensors (worst case) are needed to collect spectral energy data, store them on hard disk and move the channel multiplexer to the next fibre optic position. The detection limit of quartz fibre sensors is 0.2 W/m2; precision and absolute error of radiant flux density are smaller than 3 % and 10 %, respectively.
The system, operating since 1999, is derived from a 20-sensor pilot system developed for PAR measurements (PMMA fibre sensor, 400nm to 700 nm).
Data achieved with the system serve to determine vertical profiles of wavelength dependent radiation extinction, with special respect to R/FR ratios and to develop a model of spectral radiation distribution in a mature forest stand, prerequisites for the computation of carbon gain of the stand and the evaluation of stand growth models.  相似文献   

14.
《Biosensors》1986,2(6):343-362
The development of practical immunosensors is an important topic for biosensor research. Recently the authors have demonstrated novel immuno-sensors called, respectively, the reactor-type enzyme immunosensor, the potentiometric sensing system for pathogenic microbes, the piezo-immunosensor, the pulse immunoassay, the bio-image sensor and the photofluctuation immunosensor. These six types of immunosensors based on novel principles are described.  相似文献   

15.
The light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor with an electrolyte-insulator-semiconductor structure. The LAPS can have many measuring points integrated on the sensing surface, which are individually accessed by a light beam. By modifying the measuring points with different materials, a single sensor plate can be used as a multi-analyte sensor. In this paper, instrumentation and application of LAPS to multi-ion sensing and imaging are described. As a new application of LAPS, potentiometric imaging of a microfluidic channel is proposed.  相似文献   

16.
A system is described for automated monitoring of pest insects in stored grain. It provides quantitative data indicative of the species of detected insects and is self-calibrating to maintain reliable operation over time across adverse environmental and biological conditions. The system uses electronic grain probes, each with a dual infrared-beam sensor head providing orthogonal views of falling insects. Sensor analog signals are analyzed by an embedded microprocessor, and extracted waveform parameters are transmitted back to a central computer. Filtering algorithms recognize and eliminate false detections due to extraneous (nonfalling) insect activities and provide an indication of species based on body size. Laboratory test data provide species identification templates and an analysis of Montana field test data acquired in aerated and nonaerated bins demonstrates the effectiveness of the filtering algorithms. The described system technology has been licensed by OPIsystems, Inc., Calgary, Alberta, Canada, and is commercially available as Insector.  相似文献   

17.
We report a new high-throughput surface plasmon resonance (SPR) sensor based on combination of SPR imaging with polarization contrast and a spatially patterned multilayer SPR structure. We demonstrate that this approach offers numerous advantageous features including high-contrast SPR images suitable for automated computer analysis, minimum crosstalk between neighboring sensing channels and inherent compensation for light level fluctuations. Applications of a laboratory prototype of the high-throughput SPR sensor with 108 sensing channels for refractometry and biosensing are described. In refractometric experiments, the noise-limited refractive index resolution of the system has been established to be 3 x 10(-6) refractive index unit (RIU). Experimental data on detection of human choriogonadotropin (hCG) suggest that in conjunction with monoclonal antibodies against hCG, the reported SPR imaging sensor is capable of detecting hCG at concentrations lower than 500 ng/ml.  相似文献   

18.
Divisible load theory is a methodology involving the linear and continuous modeling of partitionable computation and communication loads for parallel processing. It adequately represents an important class of problems with applications in parallel and distributed system scheduling, various types of data processing, scientific and engineering computation, and sensor networks. Solutions are surprisingly tractable. Research in this area over the past decade is described.  相似文献   

19.
An infrared sensor system to measure product surface temperature in industrial food processes is described. The method is suitable for use in either manufacturing plant or laboratory equipment. Good correlation can be expected between experimental and plant temperature readings.  相似文献   

20.
A novel online sensor system for noninvasive and continuous monitoring of cell growth in shake flasks is described. The measurement principle is based on turbidity measurement by detecting 180°‐scattered light and correlation to OD by nonlinear calibration models. The sensor system was integrated into a commercial shaking tablar to read out turbidity from below the shake flasks bottom. The system was evaluated with two model microorganisms, Escherichia coli K12 as prokaryotic and Saccharomyces cerevisiae as eukaryotic model. The sensor allowed an accurate monitoring of turbidity and correlation with OD600 ≤ 30. The determination of online OD showed relative errors of about 7.5% for E. coli K12 and 12% for S. cerevisiae. This matches the errors of the laborious offline OD and thus facilitates to overcome the drawbacks of the classical method as risk of contamination and decreasing volumes through sampling. One major challenge was to ensure a defined, nonvarying measurement zone as the rotating suspension in the shake flask forms a liquid sickle which circulates round the flasks inner bottom wall. The resulting alteration of liquid height above the sensor could be compensated by integration of an acceleration sensor into the tablar to synchronize the sensor triggering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号