首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major endocannabinoids, anandamide (N-arachidonoylethanolamide, 20:4n-6 N-acylethanolamine) and 2-arachidonoylglycerol (2-AG) are structurally and functionally similar, but they are produced by different metabolic pathways and their levels must therefore be regulated by different mechanisms. Both endocannabinoids are accompanied by cannabinoid receptor-inactive, saturated and mono- or di-unsaturated congeners which can influence their metabolism and function. Here we review published data on the presence and production of anandamide and 2-AG and their congeners in mammalian cells and discuss this information in terms of their proposed signaling functions.  相似文献   

2.
植物N-酰基乙醇胺(NAEs)的代谢机制及其生理功能   总被引:3,自引:0,他引:3  
N-酰基乙醇胺是植物组织中由N-酰基磷脂酰乙醇胺水解生成的脂肪酸氨基化合物,并能在酰胺水解酶和脂氧合酶的作用下进一步发生水解或氧化反应。作为细胞中微量的脂质组分,N-酰基乙醇胺参与了植物细胞防卫系统的信号转导事件,且对植物种子萌发等生命活动具有生理调节功能。本文综述了近年来N-酰基乙醇胺的相关研究进展,主要包括植物体中N-酰基乙醇胺的种类、分布及其代谢机制,并着重介绍了其生理功能。  相似文献   

3.
The long history of the medicinal use of Cannabis sativa and, more recently, of its chemical constituents, the cannabinoids, suggests that also the endogenous ligands of cannabinoid receptors, the endocannabinoids, and, particularly, their derivatives may be used as therapeutic agents. Studies aimed at correlating the tissue and body fluid levels of endogenous cannabinoid-like molecules with pathological conditions have been started and may lead to identify those diseases that can be alleviated by drugs that either mimic or antagonize the action of these substances, or modulate their biosynthesis and degradation. Hints for the therapeutic applications of endocannabinoids, however, can be obtained also from our previous knowledge of marijuana medicinal properties. In this article, we discuss the anti-tumor and anti-inflammatory activity of: (1) the endocannabinoids anandamide (arachidonoylethanolamide) and 2-arachidonoyl glycerol; (2) the bioactive fatty acid amides palmitoylethanolamide and oleamide; and (3) some synthetic derivatives of these compounds, such as the N-acyl-vanillyl-amines. Furthermore, the possible role of cannabimimetic fatty acid derivatives in the pathological consequences of cancer and inflammation, such as cachexia, wasting syndrome, chronic pain and local vasodilation, will be examined.  相似文献   

4.
Many aspects of the physiology and pharmacology of anandamide (arachidonoyl ethanol amide), the first endogenous cannabinoid ligand ("endocannabinoid") isolated from pig brain, have been studied since its discovery in 1992. Ethanol amides from other fatty acids have also been identified as endocannabinoids with similar in vivo and in vitro pharmacological properties. 2-Arachidonoyl glycerol and noladin ether (2-arachidonyl glyceryl ether), isolated in 1995 and 2001, respectively, so far, display pharmacological properties in the central nervous system, similar to those of anandamide. The endocannabinoids are widely distributed in brain, they are synthesized and released upon neuronal stimulation, undergo reuptake and are hydrolyzed intracellularly by fatty acid amide hydrolase (FAAH). For therapeutic purposes, inhibitors of FAAH may provide more specific cannabinoid activities than direct agonists, and several such molecules have already been developed.Pharmacological effects of the endocannabinoids are very similar, yet not identical, to those of the plant-derived and synthetic cannabinoid receptor ligands. In addition to pharmacokinetic explanations, direct or indirect interactions with other receptors have been considered to explain some of these differences, including activities at serotonin and GABA receptors. Binding affinities for other receptors such as the vanilloid receptor, have to be taken into account in order to fully understand endocannabinoid physiology. Moreover, possible interactions with receptors for the lysophosphatidic acids deserve attention in future studies.Endocannabinoids have been implicated in a variety of physiological functions. The areas of central activities include pain reduction, motor regulation, learning/memory, and reward. Finally, the role of the endocannabinoid system in appetite stimulation in the adult organism, and perhaps more importantly, its critical involvement in milk ingestion and survival of the newborn, may not only further our understanding of the physiology of food intake and growth, but may also find therapeutic applications in wasting disease and infant's "failure to thrive".  相似文献   

5.
Endocannabinoids are bioactive lipids, that comprise amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the best studied endocannabinoids, and act as agonists of cannabinoid receptors. Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous cannabinoid delta9-tetrahydrocannabinol, the psychoactive principle of hashish and marijuana. It is known that the activity of endocannabinoids at their receptors is limited by cellular uptake through specific membrane transporters, followed by intracellular degradation by a fatty acid amide hydrolase (for AEA and partly 2-AG) or by a monoacylglycerol lipase (for 2-AG). Together with AEA, 2-AG and congeners, the proteins that bind, transport and metabolize these lipids form the "endocannabinoid system". This new system will be briefly presented in this review, in order to put in a better perspective the role of the endocannabinoid pathway in neurodegenerative disorders, like Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, the potential exploitation of antagonists of endocannabinoid receptors, or of inhibitors of endocannabinoid metabolism, as next-generation therapeutics will be discussed.  相似文献   

6.
Primary fatty acid amides (PFAM) are important signaling molecules in the mammalian nervous system, binding to many drug receptors and demonstrating control over sleep, locomotion, angiogenesis, and many other processes. Oleamide is the best-studied of the primary fatty acid amides, whereas the other known PFAMs are significantly less studied. Herein, quantitative assays were used to examine the endogenous amounts of a panel of PFAMs, as well as the amounts produced after incubation of mouse neuroblastoma N(18)TG(2) and sheep choroid plexus (SCP) cells with the corresponding fatty acids or N-tridecanoylethanolamine. Although five endogenous primary amides were discovered in the N(18)TG(2) and SCP cells, a different pattern of relative amounts were found between the two cell lines. Higher amounts of primary amides were found in SCP cells, and the conversion of N-tridecanoylethanolamine to tridecanamide was observed in the two cell lines. The data reported here show that the N(18)TG(2) and SCP cells are excellent model systems for the study of PFAM metabolism. Furthermore, the data support a role for the N-acylethanolamines as precursors for the PFAMs and provide valuable new kinetic results useful in modeling the metabolic flux through the pathways for PFAM biosynthesis and degradation.  相似文献   

7.
The brain produces at least five compounds that possess sub-micromolar affinity for cannabinoid receptors: anandamide, 2-arachidonoylglycerol, noladin ether, virodhamine, and N-arachidonoyldopamine (NADA). One function of these and/or related compounds is to suppress pain sensitivity. Much evidence supports a role of endocannabinoids in pain modulation in general, and some evidence points to the role of particular endocannabinoids. Related endogenous fatty acid derivatives such as oleamide, palmitoylethanolamide, 2-lineoylglycerol, 2-palmitoylglycerol, and a family of arachidonoyl amino acids may interact with endocannabinoids in the modulation of pain sensitivity.  相似文献   

8.
Agonists at cannabinoid receptors, such as the phytocannabinoid Δ(9)-tetrahydrocannabinol, exert a remarkable array of therapeutic effects but are also associated with undesirable psychoactive side effects. Conversely, targeting enzymes that hydrolyze endocannabinoids (eCBs) allows for more precise fine-tuning of cannabinoid receptor signaling, thus providing therapeutic relief with reduced side effects. Here, we report the development and characterization of an inhibitor of eCB hydrolysis, UCM710, which augments both N-arachidonoylethanolamine and 2-arachidonoylglycerol levels in neurons. This compound displays a unique pharmacological profile in that it inhibits fatty acid amide hydrolase and α/β-hydrolase domain 6 but not monoacylglycerol lipase. Thus, UCM710 represents a novel tool to delineate the therapeutic potential of compounds that manipulate a subset of enzymes that control eCB signaling.  相似文献   

9.
Mammalian cells produce both N-arachidonoylethanolamine (20:4n-6 NAE, anandamide) and 2-arachidonoylglycerol (2-AG), lipid signaling molecules that activate cannabinoid receptors. Because both agonists occur in the presence of receptor-inactive congeners, we have developed a sensitive method for the simultaneous assay of N-acylethanolamines (NAEs) and 2-monoacylglycerols (2-MAG). These lipid classes are isolated from total lipids by solid phase extraction and converted to tert-butyldimethylsilyl (tBDMS) derivatives in the presence of deuterated analogs. The tBDMS derivatives are analyzed by gas chromatography/mass spectrometry using selected ion monitoring programs specific for NAE and 2-MAG. Individual NAEs and 2-MAGs can be quantified in the nanogram and subnanogram range. The NAE and 2-MAG compositions of rat organs and cultured JB6 cells are reported.  相似文献   

10.
Kunos  George  Btákai  Sándor 《Neurochemical research》2001,26(8-9):1015-1021
The presence in the mammalian brain of specific receptors for marijuana triggered a search for endogenous ligands, several of which have been recently identified. There has been growing in-terest in the possible physiological functions of endocannabinoids, and mutant mice that lack cannabinoid receptors have become an important tool in the search for such functions. To date, studies using CB1 knockout mice have supported the possible role of endocannabinoids in retro-grade synaptic inhibition in the hippocampus, in long-term potentiation and memory, in the de-velopment of opiate dependence, and in the control of appetite and food intake. They also suggested the existence of as yet unidentified cannabinoid receptors in the cardiovascular and central nervous systems. The use of CB2 receptor knockout mice suggested a role for this re-ceptor in macrophage-mediated helper T cell activation. Further studies will undoubtedly reveal many additional roles for this novel signaling system.  相似文献   

11.
Endocannabinoids and N-acylethanolamines are lipid mediators regulating a wide range of biological functions including food intake. We investigated short-term effects of feeding rats five different dietary fats (palm oil (PO), olive oil (OA), safflower oil (LA), fish oil (FO) and arachidonic acid (AA)) on tissue levels of 2-arachidonoylglycerol, anandamide, oleoylethanolamide, palmitoylethanolamide, stearoylethanolamide, linoleoylethanolamide, eicosapentaenoylethanolamide, docosahexaenoylethanolamide and tissue fatty acid composition. The LA-diet increased linoleoylethanolamide and linoleic acid in brain, jejunum and liver. The OA-diet increased brain levels of anandamide and oleoylethanolamide (not 2-arachidonoylglycerol) without changing tissue fatty acid composition. The same diet increased oleoylethanolamide in liver. All five dietary fats decreased oleoylethanolamide in jejunum without changing levels of anandamide, suggesting that dietary fat may have an orexigenic effect. The AA-diet increased anandamide and 2-arachidonoylglycerol in jejunum without effect on liver. The FO-diet decreased liver levels of all N-acylethanolamines (except eicosapentaenoylethanolamide and docosahexaenoylethanolamide) with similar changes in precursor lipids. The AA-diet and FO-diet had no effect on N-acylethanolamines, endocannabinoids or precursor lipids in brain. All N-acylethanolamines activated PPAR-alpha. In conclusion, short-term feeding of diets resembling human diets (Mediterranean diet high in monounsaturated fat, diet high in saturated fat, or diet high in polyunsaturated fat) can affect tissue levels of endocannabinoids and N-acylethanolamines.  相似文献   

12.
Martin BR 《Life sciences》2005,77(14):1543-1558
Cannabinoid agonists such as Delta9-tetrahydrocannabinol (THC) produce a wide range of pharmacological effects both in the central nervous system and in the periphery. One of the most striking features of cannabinoids such as THC is the magnitude to tolerance that can be produced upon repetitive administration of this substance to animals. Relatively modest dosing regimens are capable of producing significant tolerance, whereas greater than 100-fold tolerance can be obtained with aggressive treatments. While cannabinoid tolerance has been studied quite extensively to establish its relevance to the health consequences of marijuana use, it has also proven to be a valuable strategy in understanding the mechanism of action of cannabinoids. The discovery of the endocannabinoid system that contains two receptor subtypes, CB1 and CB2, associated signaling pathways, endocannabinoids (anandamide and 2-arachidonoylglycerol) and their synthetic and degradative pathways has provided a means of systematically evaluating the mechanism of cannabinoid tolerance. It is well known that the CB1 cannabinoid receptor is down-regulated in states of cannabinoid tolerance along with uncoupling from its second messenger systems. Endocannabinoid levels are also altered in selected brain regions during the development of tolerance. While it is reasonable to speculate that a likely relationship exists between receptor and endocannabinoid levels, at present, little is known regarding the biological signal that leads to alterations in endocannabinoid levels. It is also unknown to what degree synthetic and degradative pathways for the endocannabinoids are altered in states of tolerance. The discovery that the brain is abundant in fatty acid amides and glycerols raises the question as to what roles these lipids contribute to the endocannabinoid system. Some of these lipids also utilize the endocannabinoid metabolic pathways, produce similar pharmacological effects, and are capable of modulating the actions of anandamide and 2-arachidonoylglycerol. In addition, there are dopamine, glycine, and serotonin conjugates of arachidonic acid that may also contribute to the actions of endocannabinoids. A systematic examination of these lipids in cannabinoid tolerance might shed light on their physiological relevance to the endocannabinoid system.  相似文献   

13.
Endocannabinoids are fatty acid amides like anandamide (AEA), and monoacylglycerols like 2-arachidonoylglycerol, that bind to cannabinoid, vanilloid and peroxisome proliferator-activated receptors. Their biological actions are controlled through not yet fully characterized cellular mechanisms. These compounds, together with their related enzymes, that include key proteins for the synthesis and degradation of endocannabinoids, cannabinoid and non-cannabinoid receptors, and purported membrane transporter(s), form the “endocannabinoid system (ECS)”. In the past few years AEA and related ECS elements have emerged as essential players in various aspects of human reproduction, both for males and females. Here, the key features of the ECS and the potential of its components to direct human fertility towards a positive or negative end will be reviewed. In particular, the involvement of AEA and related ECS elements in regulating embryo oviductal transport, blastocyst implantation and placental development (in females), and sperm survival, motility, capacitation and acrosome reaction (in males) will be addressed, as well as the role of endocannabinoids in sperm–oviduct interactions. Additionally, the possibility that blood AEA and its hydrolase FAAH may represent reliable diagnostic markers of natural and assisted reproduction in humans will be discussed, along with the therapeutic exploitation of ECS-oriented drugs as useful fertility enhancers.  相似文献   

14.
McKinney MK  Cravatt BF 《Biochemistry》2006,45(30):9016-9022
Fatty acid amide hydrolase (FAAH) inactivates a large and diverse class of endogenous signaling lipids termed fatty acid amides. Representative fatty acid amides include the N-acyl ethanolamines (NAEs) anandamide, which serves as an endogenous ligand for cannabinoid receptors, and N-oleoyl and N-palmitoyl ethanolamine, which produce satiety and anti-inflammatory effects, respectively. Global metabolite profiling studies of FAAH (-/-) mice have recently identified a second class of endogenous FAAH substrates: the N-acyl taurines (NATs). To determine the metabolic and signaling functions performed by NAEs and NATs in vivo, a FAAH variant that discriminates between these two substrate classes would be of value. Here, we report the structure-guided design of a point mutant in the active site of FAAH that selectively disrupts interactions with NATs. This glycine-to-aspartate (G268D) mutant was found to exhibit wild-type kinetic parameters with NAEs, but more than a 100-fold reduction in activity with NATs attributable to combined effects on Km and kcat values. These in vitro properties were also observed in living cells, where WT-FAAH and the G268D mutant displayed equivalent hydrolytic activity with NAEs, but the latter enzyme was severely impaired in its ability to catabolize NATs. The G268D FAAH mutant may thus serve as a valuable research tool to illuminate the unique roles played by the NAE and NAT classes of signaling lipids in vivo.  相似文献   

15.
The endocannabinoid system (ECS) is composed of two G protein-coupled receptors (GPCRs), the cannabinoid CB1 and CB2 receptors, and the two main endogenous lipid ligands of such receptors (also known as the “endocannabinoids”), anandamide and 2-arachidonoyl-glycerol. The ECS is a pleiotropic signalling system involved in all aspects of mammalian physiology and pathology, and for this reason it represents a potential target for the design and development of new therapeutic drugs. However, the endocannabinoids as well as some of their congeners also interact with a much wider range of receptors, including members of the Transient Receptor Potential (TRP) channels, Peroxisome Proliferator-Activated Receptors (PPARs), and other GPCRs. Indeed, following the discovery of the endocannabinoids, endocannabinoid-related lipid mediators, which often share the same metabolic pathways of the endocannabinoids, have also been identified or rediscovered. In this review article, we discuss the role of endocannabinoids and related lipids during physiological functions, as well as their involvement in some of the most common neurological disorders.  相似文献   

16.
The salivary glands and saliva from the lone star tick Amblyomma americanum (L.) were analyzed for the presence of the two endogenous agonists of cannabinoid receptors, N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), as well as of the anandamide congener, N-palmitoylethanolamine (PEA), an anti-inflammatory and analgesic mediator that is inactive at cannabinoid receptors. Two very sensitive mass-spectrometric techniques were used for this purpose. Both 2-AG and PEA, as well as other N-acylethanolamines (NAEs), were identified in salivary glands, but anandamide was below detection. The levels of 2-AG were considerably higher in the salivary glands of partially fed than replete females. Ex vivo gland stimulation with arachidonic acid increased the levels of 2-AG, but not of PEA or other NAEs, and caused the formation of anandamide and of the potent analgesic compound N-arachidonoylglycine. Instead, the amounts of anandamide, 2-AG and PEA were not influenced by treatment of salivary glands with dopamine, which stimulates saliva secretion. The possible biosynthetic precursors of anandamide, PEA and other NAEs were also detected in salivary glands, whereas only PEA was detected in tick saliva. These data demonstrate for the first time that the salivary glands of an obligate ectoparasite species can make endocannabinoids and/or related congeners with analgesic and anti-inflammatory activity, which possibly participate in the inhibition of the host defense reactions.  相似文献   

17.
Inverse agonism and neutral antagonism at cannabinoid CB1 receptors   总被引:14,自引:0,他引:14  
Pertwee RG 《Life sciences》2005,76(12):1307-1324
There are at least two types of cannabinoid receptor, CB1 and CB2, both G protein coupled. CB1 receptors are expressed predominantly at nerve terminals and mediate inhibition of transmitter release whereas CB2 receptors are found mainly on immune cells, one of their roles being to modulate cytokine release. Endogenous cannabinoid receptor agonists also exist and these "endocannabinoids" together with their receptors constitute the "endocannabinoid system". These discoveries were followed by the development of a number of CB1- and CB2-selective antagonists that in some CB1 or CB2 receptor-containing systems also produce "inverse cannabimimetic effects", effects opposite in direction from those produced by cannabinoid receptor agonists. This review focuses on the CB1-selective antagonists, SR141716A, AM251, AM281 and LY320135, and discusses possible mechanisms by which these ligands produce their inverse effects: (1) competitive surmountable antagonism at CB1 receptors of endogenously released endocannabinoids, (2) inverse agonism resulting from negative, possibly allosteric, modulation of the constitutive activity of CB1 receptors in which CB1 receptors are shifted from a constitutively active "on" state to one or more constitutively inactive "off" states and (3) CB1 receptor-independent mechanisms, for example antagonism of endogenously released adenosine at A1 receptors. Recently developed neutral competitive CB1 receptor antagonists, which are expected to produce inverse effects through antagonism of endogenously released endocannabinoids but not by modulating CB1 receptor constitutive activity, are also discussed. So too are possible clinical consequences of the production of inverse cannabimimetic effects, there being convincing evidence that released endocannabinoids can have "autoprotective" roles.  相似文献   

18.
We investigated the structure-activity relationships for the interactions of fatty acid amide analogs of the endocannabinoid anandamide with human recombinant cannabinoid receptors. Thirty-five novel fatty acid amides were synthesized using five different types of acyl chains and 11 different aromatic amine 'heads.' Although none of the new compounds was a more potent ligand than anandamide, we identified three amine groups capable of improving the metabolic stability of arachidonoylamides and their CB(1)/CB(2) selectivity ratio to over 20-fold, and several aromatic amines capable of improving the affinity of short chain or monosaturated fatty acids for cannabinoid CB(1) receptors. For the first time a tertiary amide of arachidonic acid was found to possess moderate affinity (K(i)=300 nM) for cannabinoid CB(1), but not CB(2), receptors.  相似文献   

19.
Our knowledge of the function of the cannabinoid system in the body has been aided by the availability of pharmacological agents that affect its function. This has been achieved by the design of agents that either directly interact with the receptor (agonists and antagonist/inverse agonists) and agents that indirectly modulate the receptor output by changing the levels of the endogenous cannabinoids (endocannabinoids). In this review, examples of the most commonly used receptor agonists, antagonists/inverse agonists, and indirectly acting agents (anandamide uptake inhibitors, fatty acid amide hydrolase inhibitors, monoacylglycerol lipase inhibitors) are given, with particular focus upon their selectivity and, in the case of the directly acting compounds, efficacy. Finally, the links between the endocannabinoid and cyclooxygenase pathways are explored, in particular, with respect to agents whose primary function is to inhibit cyclooxygenase activity, but which also interact with the endocannabinoid system.  相似文献   

20.
Anandamide (N -arachidonoylethanolamine) was the first ligand to be identified as an endogenous ligand of the G-protein coupled cannabinoid CB1 receptor. Subsequently, two other fatty acid ethanolamides, N -homo- gamma -linolenylethanolamine and N -7,10,13,16-docosatetraenylethanolamine were identified as endogenous cannabinoid ligands. A fatty acid ester, 2-arachidonoylglycerol (2-AG), and a fatty acid ether, 2-arachidonyl glyceryl ether also have been isolated and shown to be endogenous cannabinoid ligands. Recent studies have postulated the existence of carrier-mediated anandamide transport that is essential for termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellularly, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-AG. 2-AG has also been proposed to be an endogenous CB2 ligand. Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors are currently emerging in the literature. This review considers cannabinoid receptor SAR developed to date for the endocannabinoids with emphasis upon the conformational implications for endocannabinoid recognition at the cannabinoid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号