首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.

Background

The human genome carries a high load of proviral-like sequences, called Human Endogenous Retroviruses (HERVs), which are the genomic traces of ancient infections by active retroviruses. These elements are in most cases defective, but open reading frames can still be found for the retroviral envelope gene, with sixteen such genes identified so far. Several of them are conserved during primate evolution, having possibly been co-opted by their host for a physiological role.

Results

To characterize further their status, we presently sequenced 12 of these genes from a panel of 91 Caucasian individuals. Genomic analyses reveal strong sequence conservation (only two non synonymous Single Nucleotide Polymorphisms [SNPs]) for the two HERV-W and HERV-FRD envelope genes, i.e. for the two genes specifically expressed in the placenta and possibly involved in syncytiotrophoblast formation. We further show - using an ex vivo fusion assay for each allelic form - that none of these SNPs impairs the fusogenic function. The other envelope proteins disclose variable polymorphisms, with the occurrence of a stop codon and/or frameshift for most - but not all - of them. Moreover, the sequence conservation analysis of the orthologous genes that can be found in primates shows that three env genes have been maintained in a fully coding state throughout evolution including envW and envFRD.

Conclusion

Altogether, the present study strongly suggests that some but not all envelope encoding sequences are bona fide genes. It also provides new tools to elucidate the possible role of endogenous envelope proteins as susceptibility factors in a number of pathologies where HERVs have been suspected to be involved.  相似文献   

2.
Stop codon readthrough is used extensively by viruses to expand their gene expression. Until recent discoveries in Drosophila, only a very limited number of readthrough cases in chromosomal genes had been reported. Analysis of conserved protein coding signatures that extend beyond annotated stop codons identified potential stop codon readthrough of four mammalian genes. Here we use a modified targeted bioinformatic approach to identify a further three mammalian readthrough candidates. All seven genes were tested experimentally using reporter constructs transfected into HEK-293T cells. Four displayed efficient stop codon readthrough, and these have UGA immediately followed by CUAG. Comparative genomic analysis revealed that in the four readthrough candidates containing UGA-CUAG, this motif is conserved not only in mammals but throughout vertebrates with the first six of the seven nucleotides being universally conserved. The importance of the CUAG motif was confirmed using a systematic mutagenesis approach. One gene, OPRL1, encoding an opiate receptor, displayed extremely efficient levels of readthrough (∼31%) in HEK-293T cells. Signals both 5′ and 3′ of the OPRL1 stop codon contribute to this high level of readthrough. The sequence UGA-CUA alone can support 1.5% readthrough, underlying its importance.  相似文献   

3.
It is well known that stop codons play a critical role in the process of protein synthesis. However, little effort has been made to investigate whether stop codon usage exhibits biases, such as widely seen for synonymous codon usage. Here we systematically investigate stop codon usage bias in various eukaryotes as well as its relationships with its context, GC3 content, gene expression level, and secondary structure. The results show that there is a strong bias for stop codon usage in different eukaryotes, i.e., UAA is overrepresented in the lower eukaryotes, UGA is overrepresented in the higher eukaryotes, and UAG is least used in all eukaryotes. Different conserved patterns for each stop codon in different eukaryotic classes are found based on information content and logo analysis. GC3 contents increase with increasing complexity of organisms. Secondary structure prediction revealed that UAA is generally associated with loop structures, whereas UGA is more uniformly present in loop and stem structures, i.e., UGA is less biased toward having a particular structure. The stop codon usage bias, however, shows no significant relationship with GC3 content and gene expression level in individual eukaryotes. The results indicate that genomic complexity and GC3 content might contribute to stop codon usage bias in different eukaryotes. Our results indicate that stop codons, like synonymous codons, exhibit biases in usage. Additional work will be needed to understand the causes of these biases and their relationship to the mechanism of protein termination. [Reviewing Editor: Dr. Manyuan Long]  相似文献   

4.
The soybean SIRE1 family of Ty1/copia retrotransposons encodes an envelope-like gene (env-like). We analysed the DNA sequences of nine SIRE1 insertions and observed that the gag/pol and env-like genes are in the same reading frame and separated by a single UAG stop codon. The six nucleotides immediately downstream of the stop codon conform to a degenerate nucleotide motif, CARYYA, which is sufficient to facilitate stop codon suppression in tobacco mosaic virus. In vivo stop codon suppression assays indicate that SIRE1 sequences confer leakiness to the UAG stop codon at an efficiency of 5%. These data suggest that SIRE1 retro-elements use translational suppression to express their envelope-like protein; this is in contrast with all characterized retroviruses, which express the envelope protein from a spliced genomic messenger RNA.  相似文献   

5.
A striking characteristic of the simian immunodeficiency virus (SIV) and of the human immunodeficiency virus type 2 (HIV-2) is the presence of a nonsense mutation in the env gene resulting in the synthesis of a truncated transmembrane protein lacking the cytoplasmic domain. By mutagenesis of an infectious molecular clone of SIVmac142, we investigated the function of the cytoplasmic domain and the significance of the env nonsense mutation. When the nonsense codon (TAG) was replaced by a glutamine codon (CAG), the virus infected HUT78 cells with markedly delayed kinetics. This negative effect was counterselected in vitro as reversion of the slow phenotype frequently occurred. The sequencing of one revertant revealed the presence of a new stop codon three nucleotides 5' to the original mutation. Deletions or an additional nonsense mutation introduced 3' to the original stop codon did not modify SIV infectivity. In contrast, the same deletions or nonsense mutation introduced in the clone in which the stop codon was replaced by CAG abolished infectivity. These results indicated that the envelope domain located 3' to the stop codon is not necessary for in vitro replication. However, the presence of this domain in SIV transmembrane protein leads to a reduced infectivity. This negative effect might correspond to a function controlling the rate of spread of the virus during in vivo infection.  相似文献   

6.
An intact gene for the ribosomal protein S19 (rps19) is absent from Oenothera mitochondria. The conserved rps19 reading frame found in the mitochondrial genome is interrupted by a termination codon. This rps19 pseudogene is cotranscribed with the downstream rps3 gene and is edited on both sides of the translational stop. Editing, however, changes the amino acid sequence at positions that were well conserved before editing. Other strange editings create translational stops in open reading frames coding for functional proteins. In coxI and rps3 mRNAs CGA codons are edited to UGA stop codons only five and three codons, respectively, downstream to the initiation codon. These aberrant editings in essential open reading frames and in the rps19 pseudogene appear to have been shifted to these positions from other editing sites. These observations suggest a requirement for a continuous evolutionary constraint on the editing specificities in plant mitochondria.  相似文献   

7.
Many viruses use stop codon readthrough as a strategy to produce extended coat or replicase proteins. The stop codon of the barley yellow dwarf virus (PAV serotype) coat protein gene is read through at a low rate. This produces an extended polypeptide which becomes part of the virion. We have analyzed the cis-acting sequences in the barley yellow dwarf virus PAV genome required for this programmed readthrough in vitro in wheat germ extracts and reticulocyte lysates and in vivo in oat protoplasts. Two regions 3' to the stop codon were required. Deletion of sections containing the first 5 of the 16 CCN NNN repeats located 3' of the stop codon greatly reduced readthrough in vitro and in vivo. Surprisingly, readthrough also required a second, more distal element that is located 697 to 758 bases 3' of the stop codon within the readthrough open reading frame. This element also functioned in vivo in oat protoplasts when placed more than 2 kb from the coat protein gene stop in the untranslated region following a GUS reporter gene. This is the first report of a long-range readthrough signal in viruses.  相似文献   

8.
9.
In mammals, most of the selenium contained in the body is present as an unusual amino acid, selenocysteine (Sec), whose codon is UGA. Because the UGA codon is typically recognized as a translation stop signal, it is intriguing how a cell recognizes and distinguishes a UGA Sec codon from a UGA stop codon. For eukaryotic selenoprotein mRNAs, it has been proposed that a conserved stem-loop structure designated the Sec insertion sequence (SECIS) in the 3'-untranslated (3'-UTR) region is required for recognition of UGA as a Sec codon. Some proteins which bind to SECIS (SBP) have been reported. However, it is not clear how the SECIS element in the 3'-UTR can mediate Sec insertion far at the in-frame UGA Sec codons. The idea that there must be a signal near the UGA Sec codon is still considered. Therefore, we searched for a protein which binds to an RNA sequence surrounding the UGA Sec codon on human glutathione peroxidase (GPx) mRNA. We found a protein which strongly bound to the RNA fragment upstream of the UGA Sec codon. However, this protein did not bind to the RNA sequence downstream of the UGA codon. This protein also bound to the SECIS sequence in the 3'-UTR of human GPx, and this binding to SECIS was competed with the RNA fragment upstream of the UGA Sec codon. Comparison of the RNA fragment with the SECIS fragment identified the conserved regions, which appeared in the region upstream of the in-frame UGA Sec codon of Se-protein mRNAs. Thus, this study proposes a novel model to understand the mechanisms of Sec incorporation at the UGA Sec codon, especially the regions upstream of the UGA codon of mRNAs of mammalian selenoproteins. This model explains that the stem-loop structure covering the UGA codon is recognized by SBP and how the UGA Sec codon escapes from attack by eRF of the peptide releasing factor.  相似文献   

10.
Translation is the final stage of gene expression where messenger RNA is used as a template for protein polymerization from appropriate amino acids. Release of the completed protein requires a release factor protein acting at the termination/stop codon to liberate it. In this paper we focus on a complex feedback control mechanism involved in the translation and synthesis of release factor proteins, which has been observed in different systems. These release factor proteins are involved in the termination stage of their own translation. Further, mutations in the release factor gene can result in a premature stop codon. In this case translation can result either in early termination and the production of a truncated protein or readthrough of the premature stop codon and production of the complete release factor protein. Thus during translation of the release factor mRNA containing a premature stop codon, the full length protein negatively regulates its production by its action on a premature stop codon, while positively regulating its production by its action on the regular stop codon. This paper develops a mathematical modelling framework to investigate this complex feedback control system involved in translation. A series of models is established to carefully investigate the role of individual mechanisms and how they work together. The steady state and dynamic behaviour of the resulting models are examined both analytically and numerically.  相似文献   

11.
12.
The ScaI polymorphic site within the stop codon of the human atrial natriuretic peptides (hANP) gene was investigated in Mauritian Indian, black African and French Caucasian populations. A distinct distribution pattern is observed in these three populations.  相似文献   

13.
In eukaryotes, the tRNA-mimicking polypeptide-chain release factor, eRF1, decodes stop codons on the ribosome in a complex with eRF3; this complex exhibits striking structural similarity to the tRNA–eEF1A–GTP complex. Although amino acid residues or motifs of eRF1 that are critical for stop codon discrimination have been identified, the details of the molecular mechanisms involved in the function of the ribosomal decoding site remain obscure. Here, we report analyses of the position-123 amino acid of eRF1 (L123 in Saccharomyces cerevisiae eRF1), a residue that is phylogenetically conserved among species with canonical and variant genetic codes. In vivo readthrough efficiency analysis and genetic growth complementation analysis of the residue-123 systematic mutants suggested that this amino acid functions in stop codon discrimination in a manner coupled with eRF3 binding, and distinctive from previously reported adjacent residues. Furthermore, aminoglycoside antibiotic sensitivity analysis and ribosomal docking modeling of eRF1 in a quasi-A/T state suggested a functional interaction between the side chain of L123 and ribosomal residues critical for codon recognition in the decoding site, as a molecular explanation for coupling with eRF3. Our results provide insights into the molecular mechanisms underlying stop codon discrimination by a tRNA-mimicking protein on the ribosome.  相似文献   

14.

Background

The genetic background of Growth Hormone (GH) secretion is not well understood. Mutations giving rise to a stop codon have a high likelihood of affecting protein function.

Objectives

To analyze likely functional stop codon mutations that are associated with fasting plasma concentration of Growth Hormone.

Methods

We analyzed stop codon mutations in 5451 individuals in the Malmö Diet and Cancer study by genotyping the Illumina Exome Chip. To enrich for stop codon mutations with likely functional effects on protein function, we focused on those disrupting >80% of the predicted amino acid sequence, which were carried by ≥10 individuals. Such mutations were related to GH concentration, measured with a high sensitivity assay (hs-GH) and, if nominally significant, to GH related phenotypes, using linear regression analysis.

Results

Two stop codon mutations were associated with the fasting concentration of hs-GH. rs121909305 (NP_005370.1:p.R93*) [Minor Allele Frequency (MAF) = 0.8%] in the Myosin 1A gene (MYO1A) was associated with a 0.36 (95%CI, 0.04 to 0.54; p=0.02) increment of the standardized value of the natural logarithm of hs-GH per 1 minor allele and rs35699176 (NP_067040.1:p.Q100*) in the Zink Finger protein 77 gene (ZNF77) (MAF = 4.8%) was associated with a 0.12 (95%CI, 0.02 to 0.22; p = 0.02) increase of hs-GH. The mutated high hs-GH associated allele of MYO1A was related to lower BMI (β-coefficient, -0.22; p = 0.05), waist (β-coefficient, -0.22; p = 0.04), body fat percentage (β-coefficient, -0.23; p = 0.03) and with higher HDL (β-coefficient, 0.23; p = 0.04). The ZNF77 stop codon was associated with height (β-coefficient, 0.11; p = 0.02) but not with cardiometabolic risk factors.

Conclusion

We here suggest that a stop codon of MYO1A, disrupting 91% of the predicted amino acid sequence, is associated with higher hs-GH and GH-related traits suggesting that MYO1A is involved in GH metabolism and possibly body fat distribution. However, our results are preliminary and need replication in independent populations.  相似文献   

15.
16.
17.
vnfG and anfG encode the delta subunits of alternative nitrogenases 2 and 3 in Azotobacter vinelandii, respectively. As a first step towards elucidating the role of these subunits, diazotrophic growth and acetylene reduction studies were conducted on mutants containing alterations in the genes encoding these subunits. Mutants containing a stop codon (C36stop) or an in-frame deletion in anfG were unable to grow in N-free, Mo-deficient medium (Anf-). Mutants in which cysteine 36 of AnfG (a residue conserved between VnfG and AnfG) was changed to Ala or Ser were Anf+. Thus, this conserved cysteine is not essential for the function of AnfG in dinitrogenase 3. A mutant with a stop codon in vnfG (C17stop) grew after a lag of 25 h in N-free, Mo-deficient medium containing V2O5. However, a Nif- Anf- strain with this mutation was unable to grow under these conditions. This shows that the vnfG gene product is required for nitrogenase 2-dependent growth. Strains with mutations in vnfG and anfG reduced acetylene to different degrees. This indicates that the delta subunits are not required for acetylene reduction by nitrogenases 2 and 3.  相似文献   

18.
19.
Hereditary systemic amyloidosis may be caused by mutations in a number of plasma proteins including transthyretin, apolipoprotein AI, fibrinogen Aalpha-chain, lysozyme, and gelsolin. Each type of amyloidosis is inherited as an autosomal dominant disease and is associated with a structurally altered protein that aggregates to form amyloid fibrils. Here we report that the amyloid protein in a family with previously uncharacterized hereditary renal amyloidosis is apolipoprotein AII (apoAII) with a 21-residue peptide extension on the carboxyl terminus. Sequence analysis of the apoAII gene of affected individuals showed heterozygosity for a single base substitution in the apoAII stop codon. The mutation results in extension of translation to the next in-frame stop codon 60 nucleotides downstream and is predicted to give a 21-residue C-terminal extension of the apoAII protein identical to that found in the amyloid. This mutation produces a novel BstNI restriction site that can be used to identify individuals with this gene by restriction fragment length polymorphism analysis. This is the first report of apoAII amyloid in humans and the first mutation identified in apoAII protein. Amyloid fibril formation from apoAII suggests that this lipoprotein, which is predicted to have an amphipathic helical structure, must undergo a transition to a beta-pleated sheet by a mechanism shared by other lipoproteins that form amyloid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号