首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The innervation of the Brockmann bodies in the teleost fish, Blennius gattoruggine, was studied using immunocytochemical techniques at both the light and electron microscopy levels. Islet innervation consisted of intrapancreatic ganglia, generally localized inside the rim of the exocrine tissue of the Brockmann bodies, in proximity to the islet, nerve fibres and nerve terminals with synaptic complexes. The intrapancreatic ganglia were of variable size, with different numbers of ganglionic cells, that appeared unipolar in section. The cell bodies showed immunoreactivity to galanin, oxytocin, peptide tyrosine tyrosine and glucagon. The extrinsic and intrinsic nerve fibres passed through the exocrine parenchyma and crossed the connectival septa and islet connectival sheath, penetrating into the islets, where they became increasingly thinner. They terminated on the endocrine cells with dilated nerve terminals. At least three types of terminals were detected, depending on the different vesicle content: peptidergic, cholinergic or adrenergic. They presented specialized synaptic structures, the neuroglandular junctions, some of which contained neurosecretory granules immunogold labelled by galanin antiserum. This new finding confirms the role of galanin as a neurotransmitter. This rich supply of innervation may be important in the regulation and integration of islet secretion.  相似文献   

2.
When comparing the data of neurohistochemical and electron microscopic investigations in the hen and chick ovaries, adrenergic, cholinergic and, possibly, peptidergic nerve fibers have been identified. Previously described cells in the follicular internal theca are mainly SIF-cells and AChE-positive neurocytes of afferent and efferent nature. Axonal terminals make synaptic (or synaptic-like) contacts with chromaffin cells, thecocytes, pericytes of capillaries, AChE-positive motor neurons. Integral estimation, taking into account informative parameters, demonstrates that the degree of the neuromediator differentiation and age resistivity of nervous structures correlates the gland steroidogenic activity. The vascular adrenergic apparatus and chromaffin cells can be considered as potential sources of innervation and catecholamines, able to perform a compensatory function at ageing and other conditions, that are accompanied with a local deficit of sympathetic mediation.  相似文献   

3.
Summary The localization and intraneuronal distribution of the monoaminergic transmitters in the nervous system of the earthworm, Lumbricus terrestris, have been investigated in detail with the aid of the histochemical fluorescence method of Falck and Hillarp.In the ventral nerve cord, many yellow fluorescent, 5-hydroxytryptamine containing neurons are found, but only few green fluorescent noradrenaline containing cell bodies, which, however, are numerous in the peripheral nervous system. There is an abundance of both fibre types in the neuropile.The 5-hydroxytryptaminergic neurons probably have a motor (possibly inhibitor) function; the adrenergic neurons in the body segments are supposed to have a receptor (exteroceptive and possibly proprioceptive) function.In the cerebral ganglion, both 5-hydroxytryptamine and noradrenaline containing neurons are found in large numbers, and there are closely packed numerous fibres of both types in the neuropile. Their function is more obscure, though an associative function can be presumed for some adrenergic neurons; smaller 5-hydroxytryptaminergic neurons might have a motor (perhaps inhibitor) function.Adrenergic sensory cells are found in the body integument, most frequently in the clitellum segments, in the prostomium, and in the roof of the buccal cavity. These cells give off varicose fibres that form a basi-epithelial network which is in communication with the green fluorescent sensory fascicles in the ventral nerve cord via the epidermal nerves, the ring nerves, and the segmental nerves. No direct adrenergic sensory-effector innervation of either circular and/or longitudinal musculature or gland cells seems to exist. No adrenergic free nerve endings in the body integument have been observed. Instead, there must be a synaptic contact with the motoneurons, either directly in the neuropile or via an interjacent neuron.No synaptic contacts have been observed in the ventral nerve cord between adrenergic or 5-hydroxytryptaminergic fibres and either the giant fibres or fluorescent or nonfluorescent perikarya.An adrenergic innervation of the pharynx musculature has been found, and sensory cells of a different type are present in and below the epithelium; here, a direct senso-motoric innervation of the pharyngeal musculature cannot be excluded. It is established that the adrenergic neurons in the stomatogastric nervous system have an exciting function on the pharynx, whereas a direct monoaminergic influence of the muscular movements of the intestine probably does not exist.Abbreviations Used A adrenaline - CA catecholamine - DA dopamine - 5-HT 5-hydroxytryptamine - MA monoamine - NA noradrenaline The research reported in this document has been sponsored by the Air Force Office of Scientific Research under Grant AF EOAR 67-15 through the European Office of Aerospace Research (OAR), United States Air Force, by the Swedish Natural Science Research Council (99-34, 6627), and by the Swedish Medical Research Council (B67-12X-712-02A).  相似文献   

4.
Summary Neuroepithelial bodies (NEB) were identified in the lung of Bufo marinus. The characteristics of the cells and their innervation were studied with electron and fluorescence microscopy before and after close vagosympathetic denervation. The bodies consist of low columnar cells which rest on the epithelial basal lamina. The majority of the cells do not reach the lumen of the lung (basal cells); the few which do (apical cells) are bordered by microvilli and possess a single cilium. The neuroepithelial cell cytoplasm contains a variety of organelles the most characteristic of which are dense cored vesicles. Microspectrofluorometry and electron microscopic cytochemistry indicate significant quantities of 5-hydroxytryptamine in these cells. The neuroepithelial bodies could be divided into three groups on the basis of their innervation: 1) About 60% of the NEBs are innervated solely by nerve fibres containing agranular vesicles which form reciprocal synapses; 2) about 20% are innervated solely by adrenergic nerve fibres which form distinct synaptic contacts; and 3) the remaining 20% are innervated by both types of nerve fibres. It is proposed that the NEBs are receptors monitoring intrapulmonary PCO 2 and so leading to modulation of activity in afferent nerve fibres (type containing agranular vesicles). The presence of NEBs solely with an adrenergic (efferent) innervation poses a problem with this interpretation.  相似文献   

5.
The developmental pattern and distribution of peptide-containing neurons in the rat heart right atrium has been studied by indirect immunofluorescence. Antibodies against neuropeptide Y (NPY), substance P (SP), and vasoactive intestinal polypeptide (VIP) were applied to whole-mount stretch preparations of the right atria from hearts of newborn to 40-day-old animals. NPY-like immunoreactivity (LI) was compared with the synaptic vesicle marker SV2 in double immunoincubation studies. The distribution of immunofluorescence was studied by confocal laser scanning microscopy. NPY-LI and SP-LI were present throughout the atria already at birth, in contrast to VIP-LI that was observed at day 10. The postnatal changes of innervation were basically quantitative, with an increase in density of nerve fibres and number of varicosities, while the basic pattern of innervation was essentially established during the first 1–10 days. NPY- and SP-positive bundles of fibres appeared to enter the right atrium along the superior caval vein, having extrinsic origins. Nerve fibres with NPY-LI colocalized in most nerve terminals with SV2-LI, and showed a developmental pattern similar to that observed for adrenergic neurons earlier. These NPY/SV2 positive fibres probably represent the extrinsic NPY innervation. In addition, NPY-LI was identified in large intrinsic nerve cells bodies located near the atrioventricular (AV) region. Most of the VIP-LI was observed in short nerve fibres originating in intrinsic VIP-positive cell bodies, but a few apparently extrinsic VIP-positive fibres were found, probably representing preganglionic parasympathetic neurons. SP in the atria was probably of extrinsic (sensory) origin and no nerve cell bodies with SP-LI were detected. The results show that the peptidergic innervation in the developing rat right atrium involves both extrinsic and intrinsic peptidergic neurons which may participate in the regulation of neurotransmission in local neuronal circuits.  相似文献   

6.
Summary The perivascular innervation of extraparenchymal arteries of spinal cord and the radicular arteries was examined using histochemical and immunohistochemical technics in monkey. The radicular and the extraparenchymal arteries of spinal cord were found to be invested with adrenergic, neuropeptide Y, vasoactive intestinal peptide, substance P and calcitonin gene-related peptide containing nerve fibres. The pattern of arrangement of fibres differed among the various fibre types. SP-and CGRP-containing fibres were less in density as compared to other nerve plexus. There was no difference in density of an individual type of nerve fibre in arteries of different cord segments or between the radicular arteries from different levels. The study reveals the existence of a comprehensive perivascular adrenergic and peptidergic innervation of spinal cord arterial system, with a possible role in neurogenic regulation of spinal cord circulation.  相似文献   

7.
The perivascular innervation of extraparenchymal arteries of spinal cord and the radicular arteries was examined using histochemical and immunohistochemical technics in monkey. The radicular and the extraparenchymal arteries of spinal cord were found to be invested with adrenergic, neuropeptide Y, vasoactive intestinal peptide, substance P and calcitonin gene-related peptide containing nerve fibres. The pattern of arrangement of fibres differed among the various fibre types. SP- and CGRP-containing fibres were less in density as compared to other nerve plexus. There was no difference in density of an individual type of nerve fibre in arteries of different cord segments or between the radicular arteries from different levels. The study reveals the existence of a comprehensive perivascular adrenergic and peptidergic innervation of spinal cord arterial system, with a possible role in neurogenic regulation of spinal cord circulation.  相似文献   

8.
The innervation of the bovine tubouterine junction was studied in sexually mature heifers using antisera against various neuronal markers and a modified acetylcholinesterase method. The vast majority of the nerve fibres in the bovine tubouterine junction belongs to the sympathetic nervous system; peptidergic and cholinergic fibers are restricted to characteristic locations. The endosalpinx in the adovarian portion of the terminal tubal segment is poorly innervated. The mucosa of the aduterine portion and of the tubouterine transitinal region proper receives a strikingly dense innervation, which is observed mainly in combination with a strong vascularisation of specialised mucosal structures. In the endometrium, perivascular nerves accompany the ascending spiral arteries but sporadic contacts between nerve fibres and uterine glands are also observed. From the muscular coat the inner longitudinal layer of the terminal tubal segment is more richly supplied by nerve fibres than the intermediate circular and outer longitudinal layers of the tubouterine junction. No changes in the innervation pattern were seen during the different stages of the sexual cycle.  相似文献   

9.
Summary Adrenergic nerve fibres were demonstrated in the connective tissue of the rabbit coronar glomera by means of the formaldehyde-induced fluorescence technique for catecholamines. This type of innervation is similar to the adrenergic nerve supply to the rabbit and cat carotid body. Adrenergic fibres terminate subendothelially and only a few can be traced to type I cells in the glomera coronaria. The sympathetic innervation of the ascending aorta is exceedingly sparse in contrast to the pulmonary trunk, while vasa vasorum of the ascending aorta exhibit a dense sympathetic innervation.  相似文献   

10.
Summary The percentage of peptidergic (A1 and A2) and adrenergic (B) neurosecretory terminals was studied in the neurohypophysis of sexually mature female sturgeons. Neurosecretory terminals of the A2 type prevail in the neurohypophysis, whereas A1 and B terminals are rare. The activity of these types of terminals was established (1) during upstream migration, (2) shortly after spawning, and (3) three to six weeks after spawning. Terminals of B type are the most active elements during all the periods studied. These elements become strongly activated in sturgeons during upstream migration, i.e., earlier than the peptidergic neurosecretory terminals. Peptidergic terminals, especially elements of type A2, become synchronously and strongly activated in fish shortly after spawning. In the late postspawning period neurosecretory terminals of all three types become synchronously inactive, persisting in a quiescent state in comparison to the two previous periods. The appearance of neurosecretory material discharged into the intercellular clefts by exocytosis correlates on the whole with the activity level of the A1 and A2 terminals in each individual studied. A functional correlation exists between the activity of the peptidergic and adrenergic neurosecretory terminals in the neurohypophysis. The data obtained are discussed with reference to a concept regarding spawning in some fish species as a physiological stress (Polenov et al., 1976). A possible dual control (peptide and monoamine neurohormones) over the function of visceral organs and glandular cells of the intermediate lobe of the hypophysis is also suggested (Polenov, 1970, 1975, 1978; Polenov and Belenky, 1973).Dedicated to the memory of Professor Wolfgang Bargmann, a great scientist and a generous friend  相似文献   

11.
Summary The ultrastructure of the pars intermedia (PI) of the normal VII +/+ and hereditary nephrogenic diabetes inspidus DI Os/+ mice has been studied with particular reference to the morphology of the glandular cells and their innervation. Four types of cells were observed in both the genotypes of mice, 1) the light glandular cell, 2) the dark cell, 3) a type of cell similar to ependymal cells and 4) a small percentage of typical ACTH cells, observed mostly on the PI border of the cleft and rarely in the centre of PI. The predominant light glandular cells contain mainly two types of membrane bound granules: 1) electron dense core granules, which measure 1500–2500 Å and 2) electron lucent vesicles, which measure 3000–4000 Å in diameter. Granules of intermediate size with various density are also present in both types of mice. The electron dense core granules are predominant in DI Os/+ mice, whereas, electron lucent vesicles are predominant in the normal VII +/+ mice. Similar uniform size membrane bound electron dense granules have been observed in ACTH cells of PI and pars distalis. From earlier experimental evidences and the present observations, it is concluded that the dense core granules in PI may be synthesizing ACTH or ACTH-like substance. It is also discussed that these dense core granules may further mature and give rise to MSH in the form of electron lucent vesicles. If it is so, PI light glandular cells may have dual functions, of producing MSH and ACTH. One of the functions of ependymal-like cells, may be the transport of PI secretion.Three types of nerve endings are observed throughout the PI, making synaptic contact with the predominant cell type. The innervation is more in DI Os/+ mice than in normal mice. The classification of these nerves is according to Bargmann and co-workers 1) peptidergic neurosecretory fibers, contain mainly membrane bound dense core granules, measuring 1200 to 1800 Å, and are the classic neurosecretory granules; 2) adrenergic fibers, measuring 700–900 Å; 3) cholinergic fibers, measuring 300–400 Å. Adrenergic and cholinergic fibers are more towards the hypophysial cleft. The increased innervation, the synaptic contact, the extremely hypertrophied PI and the greater activity of its light glandular cells in the DI Os/+ mice show the PI is under the influence of the nervous system.This study was supported by MRC of Canada Grant No. MA-3759.  相似文献   

12.
Summary The distribution of monoamines in the pharynx and oesophagus of the rhesus monkey (Macacus rhesus) and the cat (Felis domestica) was investigated by means of fluorescence microscopical and chemical methods. Fluorimetric determinations reveal the presence of varying amounts of noradrenaline in the pharynx and oesophagus of the rhesus monkey. The lowest amount (0.05 (g/g) was found in the lower part of the oesophagus, the so-called sphincter-segment. The middle and upper part of the oesophagus contain medium amounts of noradrenaline (0.06–0.09 g) whereas the highest concentration was detected in the pharynx (0.14 (g/g). Neither dopamine nor adrenaline occurred in the tissue pieces analyzed. Fluorescence microscopically noradrenaline was found to be located in varicose intramural nerve fibre plexus which innervate mucous glands and blood vessels in the pharynx of both species. In the rhesus monkey, the lamina muscularis mucosae of all parts of the oesophagus is supplied by a well developed noradrenergic ground-plexus. Preterminal and terminal varicose nerve fibres are distributed in myenteric and submucous ganglia of the oesophagus; the number of such ganglia decreases towards the lower segment. The density of the adrenergic innervation is higher in myenteric when compared to submucous ganglia. The arrangement of the intraganglionic terminals suggests that both axosomatic and axodendritic contacts occur in Auerbach's ganglia whereas axodendritic contacts seem to predominate in Meissner's ganglia. Myenteric ganglia situated close to the submucosa as well as true submucous ganglia may be occasionally seen to be traversed by faintly fluorescent non-varicosed fibres which do not establish any synaptic contacts. The fluorescence intensity of intraganglionic varicosities varies considerably; accordingly the transmitter content of individual varicosities seems to be very variable. The adrenergic innervation of the lamina muscularis is restricted to single contorted fibres being sparsely distributed throughout the longitudinal smooth muscle layer. The circularly arranged smooth musculature of the sphincter-segment lacks an adrenergic nerve supply. The vagus nerve carries sympathetic adrenergic fibres to the lower oesophagus and the cardia. Species differences between the innervation pattern in rhesus monkeys and cats are outlined: No adrenergically innervated ganglia occur in the submucosa of the cat. However, part of the myenteric ganglia in cats exhibit an adrenergic innervation pattern similar to that seen in submucous ganglia of the rhesus monkey. They might therefore be regarded as morphologically equivalent to the plexus submucosus which is, however, present in the whole gut. The density of the noradrenergic ground-plexus in the muscularis mucosae of the cat's oesophagus is less than that of the corresponding plexus in rhesus monkeys.The influence of noradrenaline upon the smooth musculature and the neurons from myenteric as well as submucous ganglia is discussed. From the point of view of the adrenergic innervation there is no structure corresponding to the sphincterlike lower oesophageal segment.Supported by the Deutsche Forschungsgemeinschaft and the Joachim-Jungius-Gesellschaft zur Förderung der Wissenschaften, Hamburg.  相似文献   

13.
Summary The development of adrenergic nerves to the anterior eye segment was studied in human and guinea-pig embryos. Adrenergic terminals had already appeared in the earliest human embryos available (4–6 cm). They first appeared mainly in nerve trunks in the primitive chorioid, especially in the region of the developing ciliary body. Adrenergic nerves then grow into different structures of the eye as these develop, but typical terminals in contact with effector cells appeared late during the development, about the 25–30 cm stage. No adrenergic nerves were observed in the chamber angle. Corneal adrenergic nerves (also intraepithelial terminals) appeared much more frequently in embryos than in adults. No adrenergic neurons were observed in the retina. In the guinea-pig, the first adrenergic fibres were observed at about gestation day 35. The general principle of the development was very similar to that of the humans. At gestation day 45 to 50, the supply of adrenergic fibres was essentially that of the adult animal, except that the corneal adrenergic fibres were increasing until just before birth and that the adrenergic terminals of the chamber angle appeared shortly before term.This work was supported by grants from the Association for the Aid of Crippled Children, H. Hiertas Stiftelse, and the Swedish Medical Research Council (Project no. B71-14X-2321-05B).  相似文献   

14.
The innervation of the dorsal aorta and renal vasculature in the toad (Bufo marinus) has been studied with both fluorescence and ultrastructural histochemistry. The innervation consists primarily of a dense plexus of adrenergic nerves associated with all levels of the preglomerular vasculature. Non-adrenergic nerves are occasionally found in the renal artery, and even more rarely near the afferent arterioles. Many of the adrenergic nerve profiles in the dorsal aorta and renal vasculature are distinguished by high proportions of chromaffin-negative, large, filled vesicles. Close neuromuscular contacts are common in both the renal arteries and afferent arterioles. Possibly every smooth muscle cell in the afferent arterioles is multiply innervated. The glomerular capillaries and peritubular vessels are not innervated, and only 3-5% of efferent arterioles are accompanied by single adrenergic nerve fibres. Thus, nervous control of glomerular blood flow must be exerted primarily by adrenergic nerves acting on the preglomerular vasculature. The adrenergic innervation of the renal portal veins and efferent renal veins may play a role in regulating peritubular blood flow. In addition, glomerular and postglomerular control of renal blood flow could be achieved by circulating agents acting via contractile elements in the glomerular mesangial cells, and in the endothelial cells and pericytes of the efferent arterioles. Some adrenergic nerve profiles near afferent arterioles are as close as 70 nm to distal tubule cells, indicating that tubular function may be directly controlled by adrenergic nerves.  相似文献   

15.
《Tissue & cell》2016,48(5):552-557
This study investigated general morphology and immunohistochemical properties of nerve fibres supplying the mammary gland (MG) in the European beaver. The microscopic analysis of the beaver mammary gland revealed the presence of morphological structures which are characteristic for mammals. There were no distinct differences in the morphological features of the mammary gland between the juvenile and non-pregnant mature beaver.The nerve fibres were visualized using antibodies against protein gene product 9.5 (PGP) and biologically active substances including β-hydroxylase tyrosine (DβH), neuropeptide Y (NPY), calcitonine gene-related peptide (CGRP) and substance P (SP). The study has revealed that the MG in the juvenile and mature beaver is richly supplied with PGP-immunoreactive (PGP-IR) nerve fibres. The most abundant innervation was observed in the nipple and less numerous nerve terminals supplied the glandular tissue. Double-labelling immunohistochemistry disclosed that the majority of PGP-IR nerve fibres associated with blood vessels and smooth muscle cells in both the nipple and glandular tissue were also DßH-IR. However, these nerve terminals were less numerous in the glandular tissue than in the nipple. Most of the DßH-IR axons associated with arteries and smooth muscle cells in the entire gland also stained for NPY. Small number of DßH/NPY-IR fibres supplied veins. CGRP-IR fibres were more abundant than those expressing SP. No distinct differences in the distribution and immunohistochemical characteristic of nerve fibres were observed between the juvenile and adult animals. The distribution and immunohistochemical properties of nerve fibres supplying the gland in the beaver remind those previously described in other mammalian species.  相似文献   

16.
Summary The distribution of adrenergic and peptidergic (Gomori-positive) structures of the hypophysial neuro-intermediate complex in Acipenseridae has been studied by means of light, fluorescence, and electron microscopy. Adrenergic fibres (B-fibres) and their terminals have been detected in the neurohypophysis of these fishes. The terminal swellings of B-fibres as well as the terminals of the neurosecretory peptidergic fibres (A1 and A2) make contact with the basement membrane of the connective tissue layer separating the neurohypophysis from the intermediate lobe. Capillaries are situated within this layer and, therefore, the main part of the fibre terminals is in contact with the pericapillary space. The release of catecholamines from the adrenergic terminals into the capillaries connected with the general circulation is supposed. The diffusion of catecholamines through the connective tissue layer into the parenchyma of the intermediate lobe is also suggested. Hence, the glandular activity of the intermediate lobe seems to be under the dual control of adrenergic and peptidergic elements of the hypothalamus.The authors wish to express their deep appreciation to G. M. Persov, Dr. Sc. Biol., Head of the Laboratory of Experimental Ichthyology, Petershof Biological Institute of the University of Leningrad, for the material supplied for fluorescence microscopy, and to Mr. G. V. Sabinin for photographic services.  相似文献   

17.
Summary The central catecholamine innervation of the pituitary neural lobe and pars intermedia of the rat have been identified ultrastructurally and their organization has been investigated in a combined fluorescence histochemical and electron microscopical study. The dopamine analogues, 5-hydroxydopamine and 6-hydroxydopamine, were used to label the catecholamine terminals, and to enable the direct correlation between the fluorescence microscopical and the electron microscopical pictures.The fibre type that was identified as catecholamine-containing was ultrastructurally chiefly characterized by dense-cored vesicles, 500–1200 Å in diameter, intermingled with varying numbers of small empty vesicles. 5-hydroxydopamine was selectively accumulated in these fibres and caused an increased electron density of the granular vesicles as well as of some small normally agranular vesicles, and systemically administered 6-hydroxydopamine caused a selective degeneration of these fibres, most prominently within the neural lobe. The dopaminergic terminals of the neural lobe showed frequent close contacts (80–120 Å), without real membrane thickenings, to neurosecretory axons and to pituicyte processes. It is suggested that these close contacts might signify a direct dopaminergic influence on the neurosecretory axons and/or on the pituicyte processes. The identified central catecholamine fibres were also found to make common synapse-like contacts on the pars intermedia cells, whereas the innervation by neurosecretory fibres was very rare. This suggests that the direct central nervous control of the rat pars intermedia is exerted by the catecholamine neurons. A very special feature of the catecholamine fibres in the pituitary is the occurrence of peculiar, large dopamine-filled droplet-like swellings. Electron microscopically, such large axonal swellings (more than 2 in diameter) were found to contain, in addition to the characteristic vesicles and organelles, strongly osmiophilic lamellated membrane complexes resembling myelin bodies and multivesicular bodies encircling disintegrated vesicles, suggesting that these droplet fibres represent dilated stumps of spontaneously degenerating dopaminergic axons. It is suggested that the dopaminergic neural lobe fibres are undergoing continuous reorganization through degeneration—regeneration cycles, a phenomenon previously suggested for the neurosecretory axons of the neural lobe.Supported by the Deutsche Forschungsgemeinschaft.Supported by Svenska Livförsäkringsbolags Nämnd för Medicinsk Forskning, by The Medical Faculty, University of Lund and by the Ford Foundation.  相似文献   

18.
Summary The extrinsic innervation of the guinea pig uterus was studied by immunohistochemical, ultrastructural and enzyme histochemical methods.The extrinsic innervation was organized in two major ways. One consisted of nerve trunks and non-varicose nerve fibres running in the suspensory ligament, and the other of a plexus of varicose nerve fibres surrounding vessels, and non-vessel-related non-varicose nerve fibres in the mesouterus. The use of different neuronal and Schwann cell markers showed that the extrinsic innervation was predominantly adrenergic and contained only few peptidergic nerves. Acetylcholinesterase-positive (cholinergic) nerves were only found around the uterine artery.In late pregnancy, the extrinsic nerves of the mesouterus adjacent to foetus-containing uterine horns underwent pronounced degenerative changes comprising both Schwann cell and axonal structures. In comparison, no changes were found in extrinsic nerves of mesouteri adjacent to non-foetus-bearing uterine horns or in extrinsic nerves in the suspensory ligaments. Further, chemical sympathectomy produced axonal degeneration but no changes in the Schwann cells.In conclusion, the pregnancy-induced nerve degeneration is of a very special type different from that following chemical sympathectomy and represents a local phenomenon related to the conceptus. Hypothetically, this could be of importance for counteracting disturbances in placental blood flow.  相似文献   

19.
Summary The distribution of adrenergic terminals to the anterior eye segment of humans, Cynomolgue monkeys, squirrel monkeys, owl monkeys, Cebus monkeys, vervets, tamarins, and baboons has been investigated. The cornea is normally devoid of adrenergic terminals, except in a plexus near the limbus. The trabecular meshwork contains varying numbers of adrenergic terminals: usually none in Cynomolgus monkeys, patas monkeys, vervets, and humans, although fibres have very rarely been observed in Cynomolgus monkeys, vervets, and humans; a few in owl monkeys, squirrel monkeys, and tamarins; and moderate numbers in Cebus monkeys and baboons. From the evidence, however, it seems premature to presume an adrenergic innervation of the trabecular mechanism regulating the outflow resistance. The dilatator pupillae is regularly supplied with numerous adrenergic terminals and in the iris stroma there is probably an adrenergic innervation of the melanophores. The sphincter pupillae regularly contains adrenergic terminals with notable species differences; most fibres occur in baboons and fewest in humans, with the remaining species forming a middle class. The ciliary processes in all species contain a moderate number of adrenergic terminals, presumably primarily associated with the epithelium. Intraepithelial adrenergic terminals have been observed on the pars plana of the ciliary body of humans, Cebus monkeys, vervets, baboons, and patas monkeys. The ciliary muscle of baboons and Cynomolgus monkeys contains numerous adrenergic terminals. Moderate numbers occur in Cebus monkeys and vervets, and still less in (in falling order) tamarins, squirrel monkeys, humans, and patas monkeys.  相似文献   

20.
Summary The adrenergic innervation of the major salivary glands in the rat has been studied by a specific histochemical method for the visualization of the adrenergic transmitter. Adrenergic varicose nerve fibres were found, located in a typical adrenergic ground plexus closely surrounding the serous acini of the submaxillary and parotid glands, but not the acini of the mainly mucous sublingual gland. The ducts were found to be completely devoid of adrenergic innervation. Arterioles and venules in the stroma of all three glands and certain very small vessels, possibly the sphincters of arterio-venous anastomoses, were also richly innervated by adrenergic vasomotor fibres. The relationship of the adrenergic nerve fibres to the different functional units of the gland parenchyma is discussed.The investigation has been supported by a research grant (B 66–257) from the Swedish Medical Research Council and by a Public Health Service Research Grant (NB 05236-01) from the National Institute of Neurological Diseases and Blindness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号