首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou D  Song ZH 《FEBS letters》2002,518(1-3):164-168
We isolated an INF1 elicitin-inducible cDNA encoding a pleiotropic drug resistance (PDR)-type ATP-binding cassette (ABC) transporter homolog (NtPDR1) in suspension-cultured tobacco Bright Yellow-2 (BY-2) cells by application of differential display PCR. The NtPDR1 (Nicotiana tabacum PDR protein 1) gene also encodes a 162 kDa protein that includes two putative hydrophilic domains containing the ABC signature motif and two putative hydrophobic domains. Expression of the NtPDR1 gene was rapidly and strongly activated by treatment of BY-2 cells with INF1 elicitin. Further, treatment of BY-2 cells with flagellin, a bacterial proteinaceous hypersensitive reaction elicitor, or yeast extract, a general elicitor, also induced NtPDR1 gene expression. These results indicate that NtPDR1 may be involved in the general defense response in tobacco. This is the first report that microbial elicitors induce the expression of a plant ABC transporter gene.  相似文献   

2.
3.
The ATP‐binding cassette (ABC) superfamily is a large protein family with diverse physiological functions in all kingdoms of life. One distinguished subfamily, the pleiotropic drug resistance (PDR) transporters, has only been identified in plants and fungi. Here, we identified a Nicotiana tabacum PDR gene, NtPDR6, which is a homolog of Petunia hybrida PDR1. The full‐length cDNA of NtPDR6 had a 4482‐bp open reading frame encoding a full‐size ABC transporter with 1493 amino acids. Sequence comparison showed that NtPDR6 had high homology with plant PDR proteins. NtPDR6 was strongly induced by phosphate starvation as well as by 1‐naphthalene acetic acid. Tissue expression pattern analysis showed that NtPDR6 was detected in all surveyed tissues but preferentially in roots. We cloned the 1.3‐kb NtPDR6 promoter and found that there was one phosphate starvation response‐related element Pho‐like and several root‐specific expression‐related elements rootmotiftapox1 in the NtPDR6 promoter. A tissue‐specific pattern of NtPDR6 promoter‐β‐glucuronidase expression was dominantly observed in subepidermal cells and the elongation zone of lateral roots. RNA interference technology was used to knock down NtPDR6 expression, and there was a significantly increased branching phenotype in the NtPDR6 knockdown plants. These data suggest that NtPDR6 plays a key role in regulation of shoot branching processes.  相似文献   

4.
ATP-binding cassette transporters are involved in the active transport of a wide variety of metabolites in prokaryotes and eukaryotes. One subfamily, the Pleiotropic Drug Resistance (PDR) transporters, or full-size ABCG transporters, are found only in fungi and plants. NtPDR1 was originally identified in Nicotiana tabacum suspension cells (BY2), in which its expression was induced by microbial elicitors. To obtain information on its expression in plants, we generated NtPDR1-specific antibodies and, using Western blotting, found that this transporter is localized in roots, leaves, and flowers and this was confirmed in transgenic plants expressing the ß-glucuronidase reporter gene fused to the NtPDR1 promoter region. Expression was seen in the lateral roots and in the long glandular trichomes of the leaves, stem, and flowers. Western blot analysis and in situ immunolocalization showed NtPDR1 to be localized in the plasma membrane. Induction of NtPDR1 expression by various compounds was tested in N. tabacum BY2 cells. Induction of expression was observed with the hormones methyl jasmonate and naphthalene acetic acid and diterpenes. Constitutive ectopic expression of NtPDR1 in N. tabacum BY2 cells resulted in increased resistance to several diterpenes. Transport tests directly demonstrated the ability of NtPDR1 to transport diterpenes. These data suggest that NtPDR1 is involved in plant defense through diterpene transport.  相似文献   

5.
The ATP-binding cassette transporter G1 (ABCG1) was recently identified as a regulator of macrophage cholesterol and phospholipid transport. This transporter together with ABCA1 belongs to a group of sterol-sensitive ABC proteins which are induced by lipid loading or specific oxysterols. We report here the genomic structure of ABCG1 along with the 5' flanking sequence using library screening and BLAST search analysis. The ABCG1 gene spans more than 70 kb and contains 15 exons. The exon size is between 30 and 1081 bp and the introns range in size from 137 bp to more than 45 kb. All exon-intron boundaries display the canonical GT/AG sequences. Using promoter-luciferase reporter assays in the myeloid cell lines THP-1 and RAW246.7 and the hepatoma cell line HepG2 we could demonstrate the functionality of the ABCG1 promoter and the minimal sequence requirements for gene expression. The TATA-less proximal promoter contains multiple Sp1 binding sites and a consensus sequence for sterol regulatory element binding protein.  相似文献   

6.
7.
The human albumin-alpha-fetoprotein genomic domain contains 13 repetitive DNA elements randomly distributed throughout the symmetrical structures of these genes. These repeated sequences are located at different sites within the two genes. The human albumin gene contains five Alu elements within four of its 14 intervening sequences. Two of these repeats are located in intron 2, and the remaining three are located in introns 7, 8, and 11. The human alpha-fetoprotein gene contains three of these Alu elements, one in intron 4 and the remaining two in the 3'-untranslated region. In addition, the human alpha-fetoprotein gene contains a Kpn repeat and two classes of novel repeats that are absent from the human albumin gene. Six of the Alu elements within the two genes are bound by short direct repeats that harbor five base substitutions in 120 possible positions (60 bp times 2 termini). The absence of Alu repeats from analogous positions in rodents indicates that these repeats invaded the albumin-alpha-fetoprotein domain less than 85 Myr ago (the time of mammalian radiation). Furthermore, considering the conservation of terminal repeats flanking the Alu sequences of the albumin-alpha-fetoprotein domain (0.042 changes per site), we submit that the average time of Alu insertion into this gene family could have been as recently as 15-30 Myr ago.  相似文献   

8.
9.
The genomes of plants, like virtually all other eukaryotic organisms, harbor a diverse array of mobile elements, or transposons. In terms of numbers, the predominant type of transposons in many plants is the miniature inverted-repeat transposable element (MITE). There are three archetypal MITEs, known as Tourist, Stowaway, and Emigrant, each of which can be defined by a specific terminal inverted-repeat (TIR) sequence signature. Although their presence was known for over a decade, only recently have open reading frames (ORFs) been identified that correspond to putative transposases for each of the archetypes. We have identified two Stowaway elements that encode a putative transposase and are similar to members of the previously characterized IS630-Tc1-mariner superfamily. In this report, we provide a high-resolution phylogenetic analysis of the evolutionary relationship between Stowaway, Emigrant, and members of the IS630-Tc1-mariner superfamily. We show that although Emigrant is closely related to the pogo-like family of elements, Stowaway may represent a novel family. Integration of our results with previously published data leads to the conclusion that the three main types of MITEs have different evolutionary histories despite similarity in structure.  相似文献   

10.
11.
One 1.2 kbp long sequence was cloned by using PCR with primers that were designed from cDNA sequence of CsH1 gene (Genbank: EU716314) from tea plant (Camellia sinensis). According to the 1.2 kbp sequence, a 0.6 kbp sequence was isolated from tea plant genomic DNA using DNA Walking Method. Sequence analysis revealed that the 1.2 kbp sequence is a CsH1 gene consisting of 1 exon and 2 introns, the border of exton and intron sequences conforming to the GT–AG rule, and the 0.6 kbp sequence was found to be the promoter of CsH1 gene which contains basic promoter elements, TATA-box and CAAT-box. Abscisic acid responsiveness cis-acting element, elictor-responsive element, GA response element, light response cis-acting element and TC-rich repeats were also represented. To further study the activity of this promoter, the sequence was used to drive a GUS fusion gene in Agrobacterium-mediated transformation of tea plant somatic embryos, leaf discs and calli of tobacco (Nicotiana tabacum L.) where a high level of GUS expression was both observed in the tobacco calli and tea plant somatic embryos. These results suggest that the CsH1 gene promoter isolated is capable of conferring nuclear gene expression.  相似文献   

12.
Mitochondrial genomes (mtDNAs) in angiosperms contain numerous group II-type introns that reside mainly within protein-coding genes that are required for organellar genome expression and respiration. While splicing of group II introns in non-plant systems is facilitated by proteins encoded within the introns themselves (maturases), the mitochondrial introns in plants have diverged and have lost the vast majority of their intron-encoded ORFs. Only a single maturase gene (matR) is retained in plant mtDNAs, but its role(s) in the splicing of mitochondrial introns is currently unknown. In addition to matR, plants also harbor four nuclear maturase genes (nMat 1 to 4) encoding mitochondrial proteins that are expected to act in the splicing of group II introns. Recently, we established the role of one of these proteins, nMAT2, in the splicing of several mitochondrial introns in Arabidopsis. Here, we show that nMAT1 is required for trans-splicing of nad1 intron 1 and also functions in cis-splicing of nad2 intron 1 and nad4 intron 2. Homozygous nMat1 plants show retarded growth and developmental phenotypes, modified respiration activities and altered stress responses that are tightly correlated with mitochondrial complex I defects.  相似文献   

13.
14.
15.
Yuasa HJ  Takagi T 《Gene》2001,268(1-2):17-22
Troponin C (TnC) superfamily genes essentially possess five introns, the positions of all but the fourth being highly conserved. The fourth intron is frequently absent from protostomian invertebrate genes, such as calmodulin or TnC. We previously proposed that the common ancestor of TnC superfamily genes never possessed an intron corresponding to today's fourth introns, and that members of the superfamily independently gained a fourth intron in the evolutionary pathway of each lineage. In the present study, we isolated the TnC cDNA from the sandworm, Perinereis vancaurica tetradentata and determined its genomic structure. Sandworm TnC appears to exist as a single copy gene consisting of six exons and five introns. The positions of the first, second, third and fifth introns are identical to other TnCs, but that of the fourth intron is unique. This is in good agreement with the above-mentioned scheme, i.e. the gain of the fourth intron of sandworm TnC might have occurred within the annelid lineage after annelida/mollusca divergence.  相似文献   

16.
In solanaceous plants such as tomato and tobacco, the sucrose transporter SUT1 is crucial for phloem loading. Using GUS as a reporter, the promoter and other regulatory cis elements required for the tomato LeSUT1 expression were analyzed by heterologous expression of translational chimeric constructs in tobacco. Although LeSUT1 is highly expressed at the RNA level, GUS expression under the control of a 1.8 kb LeSUT1 promoter resulted in few plants expressing GUS. In GUS-positive transformants, expression levels were low and limited to leaf phloem. Increasing or decreasing the length of LeSUT1 promoter did not lead to a significant increase in positive transformants or higher expression levels. Translational fusion of GUS to the LeSUT1 C-terminus in a construct containing all exons and introns and the 3'-UTR led to a higher number of positive transformants and many plants with high GUS activity. LeSUT1 expression was detected in ab- and adaxial phloem companion cells, trichomes and guard cells. The role of individual introns in LeSUT1 expression was further analyzed by placing each LeSUT1 intron into the 5'-UTR within the 2.3 kb LeSUT1 promoter construct. Results showed remarkable functions for the three introns for SUT1 expression in trichomes, guard cells and phloem cells. Intron 3 is responsible for expression in trichomes, whereas intron 2 is necessary for expression in companion cells and guard cells. The combination of all introns is required for the full expression pattern in phloem, guard cells and trichomes.  相似文献   

17.
Group II introns are ribozymes that catalyze a splicing reaction with the same chemical steps as spliceosome-mediated splicing. Many group II introns have lost the capacity to self-splice while acquiring compensatory interactions with host-derived protein cofactors. Degenerate group II introns are particularly abundant in the organellar genomes of plants, where their requirement for nuclear-encoded splicing factors provides a means for the integration of nuclear and organellar functions. We present a biochemical analysis of the interactions between a nuclear-encoded group II splicing factor and its chloroplast intron target. The maize (Zea mays) protein Chloroplast RNA Splicing 1 (CRS1) is required specifically for the splicing of the group II intron in the chloroplast atpF gene and belongs to a plant-specific protein family defined by a recently recognized RNA binding domain, the CRM domain. We show that CRS1's specificity for the atpF intron in vivo can be explained by CRS1's intrinsic RNA binding properties. CRS1 binds in vitro with high affinity and specificity to atpF intron RNA and does so through the recognition of elements in intron domains I and IV. These binding sites are not conserved in other group II introns, accounting for CRS1's intron specificity. In the absence of CRS1, the atpF intron has little uniform tertiary structure even at elevated [Mg2+]. CRS1 binding reorganizes the RNA, such that intron elements expected to be at the catalytic core become less accessible to solvent. We conclude that CRS1 promotes the folding of its group II intron target through tight and specific interactions with two peripheral intron segments.  相似文献   

18.
The 5' end of the breast and ovarian cancer-susceptibility gene BRCA1 has previously been shown to lie within a duplicated region of chromosome band 17q21. The duplicated region contains BRCA1 exons 1A, 1B, and 2 and their surrounding introns; as a result, a BRCA1 pseudogene (PsiBRCA1) lies upstream of BRCA1. However, the sequence of this segment remained essentially unknown. We needed this information to investigate at the nucleotide level the germline deletions comprising BRCA1 exons 1A, 1B, and 2, which we had previously identified in two families with breast and ovarian cancer. We have analyzed the recently deposited nucleotide sequence of the 1.0-Mb region upstream of BRCA1. We found that 14 blocks of homology between the tandemly repeated copies (cumulative length = 11.5 kb) show similarity of 77%-92%. Gaps between blocks result from insertion or deletion, usually of repetitive elements. BRCA1 exon 1A and PsiBRCA1 exon 1A are 44.5 kb apart. In the two families with breast and ovarian cancer mentioned above, distinct homologous recombination events occurred between intron 2 of BRCA1 and intron 2 of PsiBRCA1, leading to 37-kb deletions. Breakpoint junctions were found to be located at close but distinct sites within segments that are 98% identical. The mutant alleles lack the BRCA1 promoter and harbor a chimeric gene consisting of PsiBRCA1 exons 1A, 1B, and 2, which lacks the initiation codon, fused to BRCA1 exons 3-24. Thus, we report a new mutational mechanism for the BRCA1 gene. The presence of a large region homologous to BRCA1 on the same chromosome appears to constitute a hot spot for recombination.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号