首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the kinase homology domain (KHD) in receptor guanylyl cyclases is to regulate the activity of the catalytic guanylyl cyclase domain. The KHD lacks many of the amino acids required for phosphotransfer activity and, therefore, is not expected to possess kinase activity. Guanylyl cyclase activity of the receptor guanylyl cyclase C (GC-C) is modulated by ATP, and computational modeling showed that the KHD can adopt a structure similar to protein kinases, suggesting that the KHD is the site for ATP interaction. A monoclonal antibody, GCC:4D7, raised to the KHD of GC-C, fails to react with GC-C in the presence of ATP and ATP analogues that regulate GC-C catalytic activity, indicating that a conformational change occurs in the KHD on ATP binding. Mapping of the epitope of the antibody through the use of recombinant protein constructs and phage display showed that the epitope for GC-C:4D7 lies immediately C-terminal to a critical lysine residue (Lys516 in GC-C), required for ATP interaction in protein kinases. By employing a novel approach utilizing ATP-agarose affinity chromatography, we demonstrate that the intracellular domain of GC-C and the KHD bind ATP. Mutation of Lys516 to Ala abolishes ATP binding. Thus, this report is the first to show direct ATP binding to the pseudokinase domain of receptor guanylyl cyclase C, as well as to identify dramatic conformational changes that occur in this domain on ATP binding, akin to those seen in catalytically active protein kinases.  相似文献   

2.
Guanylyl cyclase C (GC-C), the receptor for guanylin, uroguanylin, and the heat-stable enterotoxin, regulates fluid balance in the intestine and extraintestinal tissues. The receptor has an extracellular domain, a single transmembrane spanning domain, and an intracellular domain that harbors a region homologous to protein kinases, followed by the C-terminal guanylyl cyclase domain. Adenine nucleotides can regulate the guanylyl cyclase activity of GC-C by binding to the intracellular kinase homology domain (KHD). In this study, we have tested the effect of several protein kinase inhibitors on GC-C activity and find that the tyrphostins, known to be tyrosine kinase inhibitors, could inhibit GC-C activity in vitro. Tyrphostin A25 (AG82) was the most potent inhibitor with an IC(50) of approximately 15 microM. The mechanism of inhibition was found to be noncompetitive with respect to both the substrate MnGTP and the metal cofactor. Interestingly, the activity of the catalytic domain of GC-C (lacking the KHD) expressed in insect cells was also inhibited by tyrphostin A25 with an IC(50) of approximately 5 microM. As with the full-length receptor, inhibition was found to be noncompetitive with respect to MnGTP. Inhibition was reversible, ruling out a covalent modification of the receptor. Structurally similar proteins such as the soluble guanylyl cyclase and the adenylyl cyclases were also inhibited by tyrphostin A25. Evaluation of a number of tyrphostins allowed us to identify the requirement of two vicinal hydroxyl groups in the tyrphostin for effective inhibition of cyclase activity. Therefore, our studies are the first to report that nucleotide cyclases are inhibited by tyrphostins and suggest that novel inhibitors based on the tyrphostin scaffold can be developed, which could aid in a greater understanding of nucleotide cyclase structure and function.  相似文献   

3.
Receptor guanylyl cyclases are multidomain proteins, and ligand binding to the extracellular domain increases the levels of intracellular cGMP. The intracellular domain of these receptors is composed of a kinase homology domain (KHD), a linker of ∼70 amino acids, followed by the C-terminal guanylyl cyclase domain. Mechanisms by which these receptors are allosterically regulated by ligand binding to the extracellular domain and ATP binding to the KHD are not completely understood. Here we examine the role of the linker region in receptor guanylyl cyclases by a series of point mutations in receptor guanylyl cyclase C. The linker region is predicted to adopt a coiled coil structure and aid in dimerization, but we find that the effects of mutations neither follow a pattern predicted for a coiled coil peptide nor abrogate dimerization. Importantly, this region is critical for repressing the guanylyl cyclase activity of the receptor in the absence of ligand and permitting ligand-mediated activation of the cyclase domain. Mutant receptors with high basal guanylyl cyclase activity show no further activation in the presence of non-ionic detergents, suggesting that hydrophobic interactions in the basal and inactive conformation of the guanylyl cyclase domain are disrupted by mutation. Equivalent mutations in the linker region of guanylyl cyclase A also elevated the basal activity and abolished ligand- and detergent-mediated activation. We, therefore, have defined a key regulatory role for the linker region of receptor guanylyl cyclases which serves as a transducer of information from the extracellular domain via the KHD to the catalytic domain.In transmembrane receptors a series of conformational changes are required to transmit the information of ligand binding (an extracellular signal) to the interior of the cell, resulting in either altered interaction with signaling intermediates or in the regulation of a catalytic activity present in the receptor. In these multidomain receptors, where the ligand binding and effector domains are present in the same polypeptide chain, the relay of conformational changes is under the exquisite control of post-translational modifications or precise structural alterations.Receptor guanylyl cyclases (GCs)4 have an N-terminal extracellular ligand binding domain, a single transmembrane domain, and a C-terminal intracellular domain (1). Binding of ligands to the extracellular domain elicits a conformational change that increases the guanylyl cyclase activity of the receptor, resulting in increased cGMP production. The intracellular domain of receptor GCs contains a region that shares considerable sequence similarity to protein kinases and is referred to as the kinase homology domain (KHD). Binding of ATP to the KHD induces a conformational change that regulates cGMP production by the guanylyl cyclase domain (2). Thus, receptor GCs exemplify the intricate interactions between domains in transducing the signal from an extracellular ligand to the interior of the cell.The amino acid sequences of the extracellular domain of mammalian receptor GCs vary (less than ∼15% similarity), as would be expected given the diversity in the ligands that bind to and activate these receptors. The KHD shows ∼25–30% conservation in amino acid sequence across receptor GCs, and computational modeling has not only suggested that this region could adopt the overall structure of a protein kinase but also identified specific residues that could interact with ATP (2, 3). The catalytic domains of mammalian receptor GCs are more conserved (∼80% sequence similarity). The gradual increase in sequence similarity across the various domains, with the extracellular domain being the most diverse and the cyclase domains sharing the maximum sequence similarity, is a reflection of the ability of these receptor GCs to converge diverse extracellular signals to a unified output of cGMP production. The guanylyl cyclase domains of receptor GCs can be classified as members of the Class III family of nucleotide cyclases (4). The recent crystal structures of a bacterial guanylyl cyclase (5) and a eukaryotic soluble guanylyl cyclase (6) show similarities in the overall three-dimensional structure of adenylyl and guanylyl cyclases and also highlight the critical residues that determine substrate utilization (either ATP or GTP) in these enzymes.Guanylyl cyclase C (GC-C) serves as the receptor for the guanylin family of endogenous peptides as well as for the exogenous heat-stable enterotoxin (ST) peptides secreted by enterotoxigenic bacteria (7, 8). GC-C is predominantly expressed on the apical surface of epithelial cells in the intestine, although robust extra-intestinal expression is observed in the kidney and reproductive tissues of the rat (912). The extracellular domain of GC-C is glycosylated, and we have shown the importance of glycosylation in regulating receptor desensitization in colonic cells. We have also identified a critical residue (Lys-516) in the KHD of GC-C as being important for KHD-mediated modulation of the guanylyl cyclase activity (2, 3).A sequence of ∼70 amino acids is found between the KHD and the guanylyl cyclase domain of receptor GCs, which we refer to here as the linker region (13). This region is predicted to form an amphipathic α-helix and could also adopt a coiled coil conformation (14, 15). The linker region is also present in soluble (cytosolic) guanylyl cyclases where it connects the N-terminal heme binding regulatory domain to the C-terminal catalytic cyclase domain. The linker region is suggested to act as a dimerization module in receptor GCs (1618) and has also been implicated in heterodimerization of the α and β subunits of soluble guanylyl cyclases (19, 20). However, there are several reports to the contrary that indicate that the linker does not affect the dimerization of receptor GCs (14, 15). Nevertheless, the critical importance of the linker in regulating the activity of receptor GCs is shown by the fact that mutations in this region of the retinal guanylyl cyclase (RetGC-1) are associated with autosomal dominant cone-rod dystrophy in humans (16, 21). We show here through extensive mutational and biochemical analysis that the linker regions in two receptor GCs, GC-C and guanylyl cyclase A (GC-A), play an important role in repressing the catalytic activity of the receptors in the absence of their ligands. In addition, our results provide for the first time a molecular explanation for detergent-enhanced guanylyl cyclase activity in this family of receptors and suggest a mechanism for this activation that could involve a hydrophobic interaction between the linker region and the guanylyl cyclase domain.  相似文献   

4.
The natriuretic peptide receptor-A (NPR-A) is composed of an extracellular ligand-binding domain, a transmembrane-spanning domain, a kinase homology domain (KHD) and a guanylyl cyclase domain. Because the presence of ATP or adenylylimidodiphosphate reduces atrial natriuretic peptide (ANP) binding and is required for maximal guanylyl cyclase activity, a direct interaction of ATP with the receptor KHD domain is plausible. Therefore, we investigated whether ATP interacts directly with a binding site on the receptor by analyzing the binding of a photoaffinity analog of ATP to membranes from human embryonic kidney 293 cells expressing the NPR-A receptor lacking the guanylyl cyclase moiety (DeltaGC). We demonstrate that this receptor (NPR-A-DeltaGC) can be directly labeled by 8-azido-3'-biotinyl-ATP and that labeling is highly increased following ANP treatment. The mutant receptor DeltaKC, which does not contain the KHD, is not labeled. Photoaffinity labeling of the NPR-A-DeltaGC is reduced by 50% in the presence of 550 microm ATP, and competition curve fitting studies indicate a Hill slope of 2.2, suggestive of cooperative binding. This approach demonstrates directly that the interaction of ANP with its receptor modulates the binding of ATP to the KHD, probably through a conformational change in the KHD. In turn, this conformational change is essential for maximal activity. In addition, the ATP analog, 8-azido-adenylylimidodiphosphate, inhibits guanylyl cyclase activity but increases ANP binding to the extracellular domain. These results suggest that the KHD regulates ANP binding and guanylyl cyclase activity independently.  相似文献   

5.
Tyrosine phosphorylation events are key components of several cellular signal transduction pathways. This study describes a novel method for identification of substrates for tyrosine kinases. Co-expression of the tyrosine kinase EphB1 with the intracellular domain of guanylyl cyclase C (GCC) inEscherichia coli cells resulted in tyrosine phosphorylation of GCC, indicating that GCC is a potential substrate for tyrosine kinases. Indeed, GCC expressed in mammalian cells is tyrosine phosphorylated, suggesting that tyrosine phosphorylation may play a role in regulation of GCC signalling. This is the first demonstration of tyrosine phosphorylation of any member of the family of membrane-associated guanylyl cyclases.  相似文献   

6.
Natriuretic peptide receptor A (NPR-A) is the biological receptor for atrial natriuretic peptide (ANP). Activation of the NPR-A guanylyl cyclase requires ANP binding to the extracellular domain and ATP binding to a putative site within its cytoplasmic region. The allosteric interaction of ATP with the intracellular kinase homology domain (KHD) is hypothesized to derepress the carboxyl-terminal guanylyl cyclase catalytic domain, resulting in the synthesis of the second messenger, cyclic GMP. Here, we show that phosphorylation of the KHD is essential for receptor activation. Using a combination of phosphopeptide mapping techniques, we have identified six residues within the ATP-binding domain (S497, T500, S502, S506, S510, and T513) which are phosphorylated when NPR-A is expressed in HEK 293 cells. Mutation of any one of these Ser or Thr residues to Ala caused reductions in the receptor phosphorylation state, the number and pattern of phosphopeptides observed in tryptic maps, and ANP-dependent guanylyl cyclase activity. The reductions were not explained by decreases in NPR-A protein levels, as indicated by immunoblot analysis and determinations of cyclase activity in the presence of detergent. Conversion of Ser-497 to Ala resulted in the most dramatic decrease in cyclase activity (~20% of wild-type activity), but conversion to an acidic residue (Glu), which mimics the charge of the phosphoserine moiety, had no effect. Simultaneous mutation of five of the phosphorylation sites to Ala resulted in a dephosphorylated receptor which was unresponsive to hormone and had potent dominant negative inhibitory activity. We conclude that phosphorylation of the KHD is absolutely required for hormone-dependent activation of NPR-A.  相似文献   

7.
D Koesling  E B?hme  G Schultz 《FASEB journal》1991,5(13):2785-2791
Guanylyl cyclases, which catalyze the formation of the intracellular signal molecule cyclic GMP from GTP, display structural features similar to other signal-transducing enzymes such as protein tyrosine-kinases and protein tyrosine-phosphatases. So far, three isoforms of mammalian membrane-bound guanylyl cyclases (GC-A, GC-B, GC-C), which are stimulated by either natriuretic peptides (GC-A, GC-B) or by the enterotoxin of Escherichia coli (GC-C), have been identified. These proteins belong to the group of receptor-linked enzymes, with different NH2-terminal extracellular receptor domains coupled to a common intracellular catalytic domain. In contrast to the membrane-bound enzymes, the heme-containing soluble guanylyl cyclase is stimulated by NO and NO-containing compounds and consists of two subunits (alpha 1 and beta 1). Both subunits contain the putative catalytic domain, which is conserved in the membrane-bound guanylyl cyclases and is found twice in adenylyl cyclases. Coexpression of the alpha 1- and beta 1-subunit is required to yield a catalytically active enzyme. Recently, another subunit of soluble guanylyl cyclase was identified and designated beta 2, revealing heterogeneity among the subunits of soluble guanylyl cyclase. Thus, different enzyme subunits may be expressed in a tissue-specific manner, leading to the assembly of various heterodimeric enzyme forms. The implications concerning the physiological regulation of soluble guanylyl cyclase are not known, but different mechanisms of soluble enzyme activation may be due to heterogeneity among the subunits of soluble guanylyl cyclase.  相似文献   

8.
Guanylyl cyclase is a heat-stable enterotoxin receptor.   总被引:50,自引:0,他引:50  
S Schulz  C K Green  P S Yuen  D L Garbers 《Cell》1990,63(5):941-948
Plasma membrane forms of guanylyl cyclase have been shown to function as natriuretic peptide receptors. We describe a new clone (GC-C) encoding a guanylyl cyclase receptor for heat-stable enterotoxin. GC-C encodes a protein containing an extracellular amino acid sequence divergent from that of previously cloned guanylyl cyclases; however, the protein retains the intracellular protein kinase-like and cyclase catalytic domains. Expression of GC-C in COS-7 cells results in high guanylyl cyclase activity. In addition, heat-stable enterotoxin from E. coli, but not natriuretic peptides, causes marked elevations of cyclic GMP and is specifically bound by cells transfected with GC-C. The enterotoxin fails to elevate cyclic GMP in nontransfected cells or in cells transfected with the natriuretic peptide/guanylyl cyclase receptors. These results show that a heat-stable enterotoxin receptor responsible for acute diarrhea is a plasma membrane form of guanylyl cyclase.  相似文献   

9.
Guanylyl cyclase C (GCC) is the receptor for the family of guanylin peptides and bacterial heat-stable enterotoxins (ST). The receptor is composed of an extracellular, ligand-binding domain and an intracellular domain with a region of homology to protein kinases and a guanylyl cyclase catalytic domain. We have expressed the entire intracellular domain of GCC in insect cells and purified the recombinant protein, GCC-IDbac, to study its catalytic activity and regulation. Kinetic properties of the purified protein were similar to that of full-length GCC, and high activity was observed when MnGTP was used as the substrate. Nonionic detergents, which stimulate the guanylyl cyclase activity of membrane-associated GCC, did not appreciably increase the activity of GCC-IDbac, indicating that activation of the receptor by Lubrol involved conformational changes that required the transmembrane and/or the extracellular domain. The guanylyl cyclase activity of GCC-IDbac was inhibited by Zn(2+), at concentrations shown to inhibit adenylyl cyclase, suggesting a structural homology between the two enzymes. Covalent cross-linking of GCC-IDbac indicated that the protein could associate as a dimer, but a large fraction was present as a trimer. Gel filtration analysis also showed that the major fraction of the protein eluted at a molecular size of a trimer, suggesting that the dimer detected by cross-linking represented subtle differences in the juxtaposition of the individual polypeptide chains. We therefore provide evidence that the trimeric state of GCC is catalytically active, and sequences required to generate the trimer are present in the intracellular domain of GCC.  相似文献   

10.
Guanylyl cyclase C (GCC), a member of the family of membrane bound guanylyl cyclases is the receptor for the heat-stable enterotoxin (ST) peptides and the guanylin family of endogenous peptides. GCC is activated upon ligand binding to increase intracellular cGMP levels, which in turn activates other downstream signalling events in the cell. GCC is also activated in vitro by nonionic detergents. We have used the T84 cell line as a model system to investigate the regulation of GCC activity by ATP. Ligand-stimulated GCC activity is potentiated in the presence of ATP, whereas detergent-stimulated activity is inhibited. The potentiation of GCC activity by ATP is dependent on the presence of Mg2+ ions, and is probably brought about by a direct binding of Mg-ATP to GCC. The protein kinase-like domain of GCC, which has earlier been shown to play a critical role in the regulation of GCC activity, may be a possible site for the binding of Mg-ATP to GCC.  相似文献   

11.
Receptor guanylyl cyclase C (GC-C) is the target for the gastrointestinal hormones, guanylin, and uroguanylin as well as the bacterial heat-stable enterotoxins. The major site of expression of GC-C is in the gastrointestinal tract, although this receptor and its ligands play a role in ion secretion in other tissues as well. GC-C shares the domain organization seen in other members of the family of receptor guanylyl cyclases, though subtle differences highlight some of the unique features of GC-C. Gene knock outs in mice for GC-C or its ligands do not lead to embryonic lethality, but modulate responses of these mice to stable toxin peptides, dietary intake of salts, and development and differentiation of intestinal cells. It is clear that there is much to learn in future about the role of this evolutionarily conserved receptor, and its properties in intestinal and extra-intestinal tissues.  相似文献   

12.
D Koesling  G Schultz  E B?hme 《FEBS letters》1991,280(2):301-306
The cyclic GMP-forming enzyme guanylyl cyclase exists in cytosolic and in membrane-bound forms differing in structure and regulations. Determination of the primary structures of the guanylyl cyclases revealed that the cytosolic enzyme form consists of two similar subunits and that membrane-bound guanylyl cyclases represent enzyme forms in which the catalytic part is located in an intracellular, C-terminal domain and is regulated by an extracelluar, N-terminal receptor domain. A domain of 250 amino acids conserved in all guanylyl cyclases appears to be required for the formation of cyclic nucleotide, as this homologous domain is also found in the cytosolic regions of the adenylyl cyclase. The general structures of guanylyl cyclases shows similarities with other signal transducing enzymes such as protein-tyrosine phosphatases and protein-tyrosine kinases. which also exist in cytosolic and receptor-linked forms.  相似文献   

13.
A novel gene encoding an adenylyl cyclase, designated cyaG, was identified in the filamentous cyanobacterium Spirulina platensis. The predicted amino acid sequence of the C-terminal region of cyaG was similar to the catalytic domains of Class III adenylyl and guanylyl cyclases. The N-terminal region next to the catalytic domain of CyaG was similar to the dimerization domain, which is highly conserved among guanylyl cyclases. As a whole, CyaG is more closely related to guanylyl cyclases than to adenylyl cyclases in its primary structure. The catalytic domain of CyaG was expressed in Escherichia coli and partially purified. CyaG showed adenylyl cyclase (but not guanylyl cyclase) activity. By site-directed mutagenesis of three amino acid residues (Lys(533), Ile(603), and Asp(605)) within the purine ring recognition site of CyaG to Glu, Arg, and Cys, respectively, CyaG was transformed to a guanylyl cyclase that produced cGMP instead of cAMP. Thus having properties of both cyclases, CyaG may therefore represent a critical position in the evolution of Class III adenylyl and guanylyl cyclases.  相似文献   

14.
Natriuretic peptide receptor-A (NPR-A), a particulate guanylyl cyclase receptor, is composed of an extracellular domain (ECD) with a ligand binding site, a transmembrane spanning, a kinase homology domain (KHD), and a guanylyl cyclase domain. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), the natural agonists, bind and activate the receptor leading to cyclic GMP production. This receptor has been reported to be spontaneously dimeric or oligomeric. In response to agonists, the KHD-mediated guanylate cyclase repression is removed, and it is assumed that ATP binds to the KHD. Since NPR-A displays a pair of juxtamembrane cysteines separated by 8 residues, we hypothesized that the removal of one of those cysteines would leave the other unpaired and reactive, thus susceptible to form an interchain disulfide bridge and to favor the dimeric interactions. Here we show that NPR-AC423S mutant, expressed mainly as a covalent dimer, increases the affinity of pBNP for this receptor by enhancing a high affinity binding component. Dimerization primarily depends on ECD since a secreted NPR-A C423S soluble ectodomain (ECDC423S) also documents a covalent dimer. ANP binding to the unmutated ECD yields up to 80-fold affinity loss as compared with the membrane receptor. However, the ECD C423S mutation restores a high binding affinity. Furthermore, C423S mutation leads to cellular constitutive activation (20-40-fold) of basal catalytic production of cyclic GMP by the full-length mutant. In vitro particulate guanylyl cyclase assays demonstrate that NPR-AC423S displays an increased sensitivity to ATP treatment alone and that the effect of ANP + ATP joint treatment is cumulative instead of synergistic. Finally, the cellular and particulate guanylyl cyclase assays indicate that the receptor is desensitized to agonist stimulation. We conclude the following: 1) dimers are functional units of NPR-A guanylyl cyclase activation; and 2) agonists are inducing dimeric contact of the juxtamembranous region leading to the removal of the KHD-mediated guanylyl cyclase repression, hence allowing catalytic activation.  相似文献   

15.
Guanylyl cyclases (GCs) are enzymes that generate cyclic GMP and regulate different physiologic and developmental processes in a number of organisms. GCs possess sequence similarity to class III adenylyl cyclases (ACs) and are present as either membrane-bound receptor GCs or cytosolic soluble GCs. We sought to determine the evolution of GCs using a large-scale bioinformatic analysis and found multiple lineage-specific expansions of GC genes in the genomes of many eukaryotes. Moreover, a few GC-like proteins were identified in prokaryotes, which come fused to a number of different domains, suggesting allosteric regulation of nucleotide cyclase activity. Eukaryotic receptor GCs are associated with a kinase homology domain (KHD), and phylogenetic analysis of these proteins suggest coevolution of the KHD and the associated cyclase domain as well as a conservation of the sequence and the size of the linker region between the KHD and the associated cyclase domain. Finally, we also report the existence of mimiviral proteins that contain putative active kinase domains associated with a cyclase domain, which could suggest early evolution of the fusion of these two important domains involved in signal transduction. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Guanylyl cyclase structure, function and regulation   总被引:1,自引:0,他引:1  
Potter LR 《Cellular signalling》2011,23(12):1921-1926
Nitric oxide, bicarbonate, natriuretic peptides (ANP, BNP and CNP), guanylins, uroguanylins and guanylyl cyclase activating proteins (GCAPs) activate a family of enzymes variously called guanyl, guanylyl or guanylate cyclases that catalyze the conversion of guanosine triphosphate to cyclic guanosine monophosphate (cGMP) and pyrophosphate. Intracellular cyclic GMP is a second messenger that modulates: platelet aggregation, neurotransmission, sexual arousal, gut peristalsis, blood pressure, long bone growth, intestinal fluid secretion, lipolysis, phototransduction, cardiac hypertrophy and oocyte maturation. This review briefly discusses the discovery of cGMP and guanylyl cyclases, then nitric oxide, nitric oxide synthase and soluble guanylyl cyclase are described in slightly greater detail. Finally, the structure, function, and regulation of the individual mammalian single membrane-spanning guanylyl cyclases GC-A, GC-B, GC-C, GC-D, GC-E, GC-F and GC-G are described in greatest detail as determined by biochemical, cell biological and gene-deletion studies.  相似文献   

18.
Guanylyl cyclases in eukaryotic unicells were biochemically investigated in the ciliates Paramecium and Tetrahymena, in the malaria parasite Plasmodium and in the ameboid Dictyostelium. In ciliates guanylyl cyclase activity is calcium-regulated suggesting a structural kinship to similarly regulated membrane-bound guanylyl cyclases in vertebrates. Yet, cloning of ciliate guanylyl cyclases revealed a novel combination of known modular building blocks. Two cyclase homology domains are inversely arranged in a topology of mammalian adenylyl cyclases, containing two cassettes of six transmembrane spans. In addition the protozoan guanylyl cyclases contain an N-terminal P-type ATPase-like domain. Sequence comparisons indicate a compromised ATPase function. The adopted novel function remains enigmatic to date. The topology of the guanylyl cyclase domain in all protozoans investigated is identical. A recently identified Dictyostelium guanylyl cyclase lacks the N-terminal P-type ATPase domain. The close functional relation of Paramecium guanylyl cyclases to mammalian adenylyl cyclases has been established by heterologous expression, respective point mutations and a series of active mammalian adenylyl cyclase/Paramecium guanylyl cyclase chimeras. The unique structure of protozoan guanylyl cyclases suggests that unexpectedly they do not share a common guanylyl cyclase ancestor with their vertebrate congeners but probably originated from an ancestral mammalian-type adenylyl cyclase.  相似文献   

19.
Paramecium has a 280-kDa guanylyl cyclase. The N terminus resembles a P-type ATPase, and the C terminus is a guanylyl cyclase with the membrane topology of canonical mammalian adenylyl cyclases, yet with the cytosolic loops, C1 and C2, inverted compared with the mammalian order. We expressed in Escherichia coli the cytoplasmic domains of the protozoan guanylyl cyclase, independently and linked by a peptide, as soluble proteins. The His(6)-tagged proteins were enriched by affinity chromatography and analyzed by immunoblotting. Guanylyl cyclase activity was reconstituted upon mixing of the recombinant C1a- and C2-positioned domains and in a linked C1a-C2 construct. Adenylyl cyclase activity was minimal. The nucleotide substrate specificity was switched from GTP to ATP upon mutation of the substrate defining amino acids Glu(1681) and Ser(1748) in the C1-positioned domain to the adenylyl cyclase specific amino acids Lys and Asp. Using the C2 domains of mammalian adenylyl cyclases type II or IX and the C2-positioned domain from the Paramecium guanylyl cyclase we reconstituted a soluble, all C2 adenylyl cyclase. All enzymes containing protozoan domains were not affected by Galpha(s)/GTP or forskolin, and P site inhibitors were only slightly effective.  相似文献   

20.
The Rv1625c Class III adenylyl cyclase from Mycobacterium tuberculosis is a homodimeric enzyme with two catalytic centers at the dimer interface, and shows sequence similarity with the mammalian adenylyl and guanylyl cyclases. Mutation of the substrate-specifying residues in the catalytic domain of Rv1625c, either independently or together, to those present in guanylyl cyclases not only failed to confer guanylyl cyclase activity to the protein, but also severely abrogated the adenylyl cyclase activity of the enzyme. Biochemical analysis revealed alterations in the behavior of the mutants on ion-exchange chromatography, indicating differences in the surface-exposed charge upon mutation of substrate-specifying residues. The mutant proteins showed alterations in oligomeric status as compared to the wild-type enzyme, and differing abilities to heterodimerize with the wild-type protein. The crystal structure of a mutant has been solved to a resolution of 2.7A. On the basis of the structure, and additional biochemical studies, we provide possible reasons for the altered properties of the mutant proteins, as well as highlight unique structural features of the Rv1625c adenylyl cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号