首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Photosynthetically fixed 14C was analyzed in various chemical fractions from leaves and stems of cottonwood (Populus deltoides Bartr. ex. Marsh.) during dormancy induction. Dormancy was induced by 8-h photoperiods and 20/14°C temperature regimes. Within 4 weeks under short days, terminal buds were set and leaf expansion and stem elongation had stopped. 14C2 was fed to a leaf at Leaf Plastochron Index 7 for 30 min. Either after this 30 min feeding period or after a 48-h translocation period the plants were sampled, freeze-dried, extracted and analyzed for14C. 14C-fixation decreased during dormancy induction from 60% to 17% of the 3.7 MBq 14C applied at 0 week and 8 weeks, respectively. Percentage distribution of 14C in chemical fractions of source leaves reflected leaf age and translocation inhibition. In rapidly growing plants, considerable 14C was incorporated into leaf protein while most of the soluble14C-sugars were either metabolized or translocated out of the leaf. After terminal bud set, the percentage of 14C in the protein and residue fractions decreased rapidly and that in the sugar fraction increased. Percent distribution in stems closely reflected changing metabolic pathways of carbon flow as influenced by dormancy induction. For example, the 14C in structural carbohydrates decreased in 5 weeks under short days from 65 to less than 10% of the 14C recovered in the chemical fractions, thus indicating cambium inhibition. At the same time the percentage of 14C in starch and sugar increased indicating storage. Short term (after 30 min) incorporation of 14C into the protein and starch fractions of leaves changed relatively little throughout the 8-week induction period. In contrast the turnover rates of these fractions (14C present after 48 h) increased considerably after active growth of the whole plant stopped.  相似文献   

2.
Shiroya M 《Plant physiology》1968,43(10):1605-1610
When single leaves attached at a given node were allowed to carry on photosynthesis in 14CO2 for 30 min, younger plants showed a higher proportion of upward translocation than did older plants. Downward translocation of 14C-photosynthate was stimulated by ATP pre-treatment of the translocating leaf, while upward translocation was not affected by ATP. A similar phenomenon was observed in the translocation of 14C-sucrose infiltrated into a leaf with or without ATP. Downward translocation of photosynthate was inhibited by DNP pre-treatment of a fed leaf. Upward translocation, however, was not affected by DNP. Thirty min after infiltration of 14C-glucose into a leaf, almost all the 14C translocated upwards was found to be in the form of glucose, while a great part of the 14C translocated downwards was in the form of sucrose. In the case of translocation of infiltrated 14C-sucrose, 14C found both above and below the fed leaf was mainly in the form of sucrose.  相似文献   

3.
Satsuma mandarin fruit (Citrus unshiu Mark.) photosynthesizes as comparable to leaf at about 100 days after full bloom (DAFB). In this study, translocation and accumulation of fruit-fixed photosynthate were investigated by using 14CO2. When fruit at 108 DAFB was exposed to 14CO2 for 48 h under 135 photosynthetic photon flux density (PPFD), 14C-sucrose, 14C-glucose and 14C-fructose were detected not only in flavedo but juice sac; more than 50?% of fruit assimilated 14C-sugars were present in juice sac. Thus, majority of rind-fixed photosynthate are infiltrated into juice sac and accumulated there within 48 h after assimilation. Although 14C-sucrose was predominant at flavedo where high SS (sucrose synthase) activity toward synthesis was present, the amount decreased gradually from the outside (flavedo) to the inside (juice sac) of fruit. In vascular bundle, strong SS toward cleavage and soluble acid invertase activities were involved, and 14C-fructose was predominant in juice sac. Accordingly, rind-fixed photosynthate is once converted to sucrose, the translocated sugar in Citrus, at flavedo by SS toward synthesis, and loaded on vascular bundle through symplastic and/or apoplastic movement in the albedo tissue. In the vascular bundle, sucrose may be degraded by SS toward cleavage and invertase, and resulting hexoses transported symplastically to the juice sac through juice stalk.  相似文献   

4.
Translocation of carbon in powdery mildewed barley   总被引:6,自引:1,他引:5       下载免费PDF全文
This paper compares translocation in healthy and powdery mildew (Erysiphe graminis f. sp. hordei, race CR3) infected barley (Hordeum vulgare, variety Manchuria). The sink-like properties of the powdery mildew infection were used to determine what effect imposing a sink in the midst of normal source tissue (mature primary leaf) had on the translocation process. The pattern of translocation was determined by monitoring the movement of 14C which was photosynthetically incorporated from 14C either by the primary or second leaf. In the healthy primary leaf of barley, 14C fixed in the tip section of the blade was preferentially translocated to the root, whereas 14C fixed in the basal section was primarily translocated to the shoot. When a sporulating powdery mildew infection was present in the mid-section of the primary leaf, 14C fixed in that section or in the acropetal healthy tip section readily accumulated in the infection area. Labeled carbon fixed in the healthy basal section was translocated into the other parts of the plant with only a small fraction moving acropetally into the infected mid-section. The 14C fixed by the second leaf was translocated to the root and younger shoot with very little entering the primary leaf. The presence of the mildew infection did not alter this pattern.  相似文献   

5.
The kinetic behavior of translocation profiles indicates that their shape is determined largely by the rate at which tracer enters the sieve tubes in the source leaf. Confirmation of this relationship was sought by investigating the kinetics of 14C in the immediate source pool for translocated sucrose in soybean (Glycine max L., cv. Bragg) and morning glory (Ipomea nil Roth, cv. Scarlet O'Hara) leaves. Quantitative microautoradiography was used to follow the water-soluble 14C contents of the companion cells in minor veins after pulse-labeling with 14CO2. In both morning glory and soybean, the observed kinetics in the companion cells matched reasonably well those expected from the shape of the translocation profiles.

Marked compartmentation of sucrose was evident in soybean leaves in that the specific radioactivity of total leaf sucrose was greatest immediately after labeling and quickly declined, whereas labeling in the companion cells was low at first and did not reach a maximum for about 35 minutes. In morning glory leaves, the kinetics of sucrose specific radioactivity and of companion cell-labeling more closely paralleled one another.

  相似文献   

6.
Partitioning and translocation of photosynthates were compared between a nonmutant genotype (Oh 43) of corn (Zea mays L.) and two starch-deficient endosperm mutants, shruken-2 (sh2) and brittle-1 (bt1), with similar genetic backgrounds. Steady-state levels of 14CO2 were supplied to source leaf blades for 2-hour periods, followed by separation and identification of 14C-assimilates in the leaf, kernel, and along the translocation path. An average of 14.1% of the total 14C assimilated was translocated to normal kernels, versus 0.9% in sh2 kernels and 2.6% in btl kernels. Over 98% of the kernel 14C was in free sugars, and further analysis of nonmutant kernels showed 46% of this label in glucose and fructose. Source leaves of mutant plants exported significantly less total photosynthate (24.0% and 36.3% in sh2 and bt1 compared to 48.0% in the normal plants) and accumulated greater portions of label in the insoluble (starch) fraction. Mutant plants also showed lower percentages of photosynthate in the leaf blade and sheath below the exposed blade area. The starch-deficient endosperm mutants influence the partitioning and translocation of photosynthates and provide a valuable tool for the study of source-sink relations.  相似文献   

7.
《Experimental mycology》1991,15(4):302-309
Translocation of nutrients from a part of the mycelium exposed to an ample supply of a particular nutrient to other parts of the mycelium might be of the utmost importance for the proliferation of fungi in a nutritionally heterogeneous environment. The extent and mechanism of such translocation for saprophytic molds are poorly understood. In this study, diffusion has been shown to be responsible for the translocation of label added as [14C]glucose and [32P[orthophosphate to cultures ofRhizopus nigricans grown on opposing gradients of glucose and other nutrients in glass fiber filters. Translocation of the labeled nutrient was found when the label was added to the side of the mycelium that was exposed to high levels of the nutrient. When added to the inoculation point or to the side of the colony exposed to low levels of the nutrient, the labeled compound was immobilized by the mycelium at the addition point. Translocation was bidirectional in that14C was translocated simultaneously in the opposite direction to32P. A sink for the translocated nutrients was apparent in the region of sporulation. This pattern of translocation of label added as [14C]glucose to the glucose surplus side was similar forTrichoderma viride andStemphylium sp.  相似文献   

8.
Movement of THO and tritium-labeled photoassimilate was studied in intact fronds and frond cuttings of Macrocystis integrifolia following labeling of a mature blade by tritiated water. Both THO and tritium-labeled assimilate moved from the source blade to sink areas at velocities comparable to those recorded earlier for 14C- and 32P-labeled compounds. In intact fronds and frond cuttings, THO and tritium-labeled assimilate showed a declining gradient with increasing distance from the source. In the exudate collected from the basal cut end of the frond, there was a marked increase in radioactivity with time in the photoassimilate, but no such gradient was evident for THO. These results support the idea that, although both tritium-labeled assimilate and THO move in the sieve elements, THO is rapidly exchanged with water in the tissues surrounding the sieve elements. Finally, it is shown that THO is transported to the sink and there “unloaded”; indeed, it can move out of the plant itself. The data on velocity and directionality of transport as well as unloading of THO at the sink are discussed, along with computations on specific mass transfer, and favor the idea that Münch's pressure-flow hypothesis is applicable in Macrocystis for long distance translocation of photoassimilates.  相似文献   

9.
A technique for collection of phloem exudate from detached leaves using 20 millimolar EDTA (pH 7.0) has previously been developed (King, Zeevaart 1974 Plant Physiol 53: 96-103). It was the aim of the present study to determine the efficiency of this technique in relation to undisturbed export from attached leaves. Paired primary leaves of bean seedlings (Phaseolus vulgaris L. cv Montcalm) were used to minimize variations in plant material. Attached leaves, exposed to 14CO2 for 10 minutes with subsequent excision of one of the leaves and collection of the exudate over a 12-hour period, showed a 25% export of total assimilated 14C from the attached versus 15% of total assimilated 14C in the form of exudation from the detached ones. Leaf excision changed the labeling pattern within the leaf, increasing% total leaf 14C-activity in the ethanolic fraction, while decreasing activity in the starch fraction, as compared to attached leaves. This was presumably caused by a lack of translocation from the detached leaves. Excision did not affect dark respiration. However, measurements of total nonstructural carbohydrates in leaf starch and neutral fractions indicated no significant differences between attached and leaves detached in EDTA. Thus, in terms of actual carbon export, and accompanying distribution of nonexported carbohydrate within the leaf, EDTA-enhanced exudation compares favorably with translocation from attached leaves.  相似文献   

10.
Light (about 3,000 foot-candles) neither increased nor decreased the sink strength of young, rapidly expanding leaves of Phaseolus vulgaris L. cv. Black Valentine, as measured by the comparative rates of import of 14C-labeled photosynthates by sink leaves in the light versus dark in short term experiments. Although irradiated sink leaves accumulated more 14C activity, the difference was fully accounted for by photosynthetic reabsorption of respiratory CO2 derived from substrates translocated to the sink leaves.

Maximum sink strength was attained when the sink leaf reached 7 to 8 cm2 in area (9 to 10% of its fully expanded size). Thereafter sink strength declined rapidly and asymptotically to a near zero value at about 45% final area. During this period, however, the rapid decline in translocation was offset by a rapid rise in the photosynthetic rate of the sink leaf, maintaining a near constant relative rate of dry weight increase until the sink leaf had expanded to about 17% of its final area. Although the increasing photosynthetic capacity was associated with a decreasing import capacity, suggesting that the rate of translocation to the sink leaf was controlled by the developing capacity of the sink leaf for photosynthesis, it was not possible to vary the total (true) translocation rate to the sink leaf by varying the photosynthetic rate of the sink leaf in short term light-dark experiments. Despite a high ratio of source to sink in these experiments, no evidence accrued that translocation into young bean leaves was ever sink-limited.

  相似文献   

11.
Kagawa T  Wong JH 《Plant physiology》1985,77(2):266-274
The allocation and turnover of photosynthetically assimilated 14CO2 in lipid and protein fractions of soybean (Glycine max L. Clark) leaves and stem materials was measured. In whole plant labeling experiments, allocation of photosynthate from a pulse of 14CO2 into polymeric compounds was: 25% to proteins in 4 days, 20% to metabolically inert cell wall products in 1 to 2 days, 10% to lipids in 4 days, and 4% to starch in 1 day. The amount of 14C labeled photosynthate that an actively growing leaf (leaf 4) used for its own lipid synthesis immediately following pulse labeling was about 25%. The 14C of labeled proteins turned over with half-lives of 3.8, 3.3, and 4.1 days in leaves 1, 2, and 3, respectively; and turnover of 14C in total shoot protein proceeded with a half-life of 5.2 days. Three kinetic 14C turnover patterns were observed in lipids: a rapid turnover fraction (within a day), an intermediate fraction (half-life about 5 days), and a slow turnover fraction. These results are discussed in terms of previously published accounts of translocation, carbon budgets, carbon use, and turnover in starch, lipid, protein, and cell wall materials of various plants including soybeans.  相似文献   

12.
Measurements of net photosynthesis show that in Phaseolus vulgaris L. the cultivar Michelite-62 exceeds the cultivar Red Kidney in net CO2 uptake by 23 to 31%. Data on translocation of pulse label indicate that export of a pulse of photosynthetically assimilated 14C from the source leaf of either M-62 or Red Kidney follows an exponential pattern and shows an initial rapid phase followed by a second slower phase. The steeper slope for both phases in M-62 suggests its rate of translocation of pulse label is higher than that of Red Kidney. Furthermore, only 38% of the 14C remains in the leaf of M-62 after 8 hours, while Red Kidney retains up to 60% of the label. Leaf autoradiographs obtained after pulse labeling demonstrate a much faster rate of vein loading in M-62 and are considered evidence for the higher translocation efficiency of M-62. These results provide evidence for a positive correlation between photosynthetic efficiency and translocation efficiency in M-62 and Red Kidney and give support to our hypothesis that translocation is one of the important physiological factors controlling the varietal differences in photosynthetic efficiency in Phaseolus vulgaris.  相似文献   

13.
A mathematical model for the reversible exchange of THO between the sieve tube lumen and its surrounding phloem tissue is used to explain the difference between the apparent velocities of THO and 14C-sucrose transport observed when both are supplied simultaneously. Theoretically predicted results show a close correlation with those obtained experimentally. This model may be used in evaluating previous work in which THO was used as a tracer. The calculations support the existence of a mass flow of sugars in aqueous solution along the path.  相似文献   

14.
Translocation of C Sucrose in Sugar Beet during Darkness   总被引:1,自引:1,他引:0       下载免费PDF全文
Geiger DR  Batey JW 《Plant physiology》1967,42(12):1743-1749
The time-course of arrival of 14C translocate in a sink leaf was studied in sugar beet (Beta vulgaris L. cultivar Klein Wanzleben) for up to 480 minutes of darkness. Following darkening of the source leaf, translocation rapidly declined, reaching a rate approximately 25% of the light period rate by 150 minutes. Comparison of data from plants that were girdled 1 cm below the crown with data from ungirdled plants indicates that after about 150 minutes darkness the beet root becomes a source of translocate to the sink leaf. After about 90 minutes darkness, starch-like reserve polysaccharide from the source leaf begins to contribute 14C to ethanol soluble pools in that leaf. Because of a 15% isotope mass effect, sucrose, at isotopic saturation, reaches a specific activity which is about 85% of the level of the supplied CO2. The source leaf sucrose specific activity remains at the isotopic saturation level for about 150 minutes of darkness, after which time input from polysaccharide reserves causes the specific activity to drop to about 55% of that of the supplied CO2. Sucrose specific activity determinations, polysaccharide dissolution measurements, and pulse labeling experiments indicate that following partial depletion of the sucrose pool, source leaf polysaccharide contributes to dark translocation. Respired CO2 from the source leaf appears to be derived from a pool which, unlike sucrose, remains at a uniform specific activity.  相似文献   

15.
The incorporation and distribution of photosynthetically fixed 14CO2 was followed for 48 hours in a recently matured source leaf (LPI 7) and in young expanding source and sink leaves (LPI 4) of cottonwood (Populus deltoides Bartr.). The major chemical constituents of leaf laminae and petioles were separated by sequential solvent extractions and enzyme hydrolyses. Two hours after labeling, about 80% of the 14C was found in water-alcohol-soluble constituents in the mature source lamina as compared to about 45% in those of the young expanding leaf. In both mature and expanding source leaves the water-alcohol-soluble constituents decreased while the CHCl3-soluble and -insoluble compounds increased with time. After 48 hours, 7 and 37% of the total 14C was recovered from structural carbohydrates and from protein + CHCl3-soluble fractions, respectively, in the mature source leaf; and 4 and 65%, respectively, in the young source leaf. When the distribution of 14C among major chemical fractions was calculated on per cent dpm/mg basis, the data showed that a young sink leaf incorporated over twice as much 14C into structural carbohydrates as a young source leaf (11% versus 4%). However, when calculated on an absolute dpm/mg basis, activity in this fraction of the young source leaf exceeded that in the sink leaf by a ratio of about 11:1 (9528 versus 845 dpm/mg). Thus, most of the material for synthesis of structural carbohydrates was derived from in situ photosynthate.  相似文献   

16.
The factors affecting the absorption and translocation of 14C-dalapon (2.2-dichloropropionic acid) in johnsongrass were studied. Johnsongrass [Sorghum halepense (L.) Pers.] was first pot-grown in a greenhouse and then treated and placed in controlled-environment chambers. Absorption of 14C-dalapon into johnsongrass leaves and subsequent translocation occurred continuously within the plant during a 48-h period after treatment. Gas chromatographic analysis of johnsongrass extracts showed that the dalapon molecule was translocated intact. Absorption and translocation of 14C-dalapon increased as the droplet volume of the diluent was increased from 0.2 to 5.0 μl per treated spot. At 21 and 32°C, translocation of 14C-dalapon from a 2-cm treated leaf section into the plant was greater at 100% than at 35% relative humidity. At 38°C, translocation was greater at 35% than at 100% relative humidity. The addition of 0.5% surfactant to the dalapon solution increased translocation under all environmental conditions studied. The addition of 0.1 M KH2PO4 to dalapon-surfactant solutions increased 4-dalapon translocation under high temperature (38°C), especially at 35% relative humidity.  相似文献   

17.
The import-export transition in sugar beet leaves (Beta vulgaris) occurred at 40 to 50% leaf expansion and was characterized by loss in assimilate import and increase in photosynthesis. The metabolism and partitioning of assimilated and translocated C were determined during leaf development and related to the translocation status of the leaf. The import stage was characterized by C derived from either 14C-translocate or 14C-photosynthate being incorporated into protein and structural carbohydrates. Marked changes in the C partitioning were temporally correlated with the import-export conversion. Exporting leaves did not hydrolyze accumulated sucrose and the C derived from CO2 fixation was preferentially incorporated into sucrose. Both source and sink leaves contained similar levels of acid invertase and sucrose synthetase activities (sucrose hydrolysis) while sucrose phosphate synthetase (sucrose synthesis) was detected only in exporting leaves. The results are discussed in terms of intracellular compartmentation of sucrose and sucrose-metabolizing enzymes in source and sink leaves.  相似文献   

18.
Infection by the fungal endophyte Acremonium coenophialum affected the accumulation of inorganic and organic N in leaf blades and leaf sheaths of KY 31 tall fescue (Festuca arundinacea Schreb.) grown under greenhouse conditions. Total soluble amino acid concentrations were increased in either the blade or sheath of the leaf from infected plants. A number of amino acids were significantly increased in the sheath, but only asparagine increased in the blade. Infection resulted in higher sheath NH4+ concentrations, whereas NO3 concentrations decreased in both leaf parts. The effects on amino acid, NO3, and NH4+ concentrations were dependent upon the level of N fertilization and were usually apparent only at the high rate (10 millimolar) of application. Administration of 14CO2 to the leaf blades increased the accumulation of 14C in their amino acid fraction but not in the sheaths of infected plants. This may indicate that infection increased amino acid synthesis in the blade but that translocation to the sheath, which is the site of fungal colonization, was not affected. Glutamine synthetase activity was greater in leaf blades of infected plants at high and low N rates of fertilization, but nitrate reductase activity was not affected in either part of the leaf. Increased activities of glutamine synthetase together with the other observed changes in N accumulation and metabolism in endophyte-infected tall fescue suggest that NH4+ reassimilation could also be affected in the leaf blade.  相似文献   

19.
Turgeon R  Gowan E 《Plant physiology》1990,94(3):1244-1249
Phloem loading in Coleus blumei Benth. leaves cannot be explained by carrier-mediated transport of export sugar from the apoplast into the sieve element-companion cell complex, the mechanism by which sucrose is thought to load in other species that have been studied in detail. Uptake profiles of the export sugars sucrose, raffinose, and stachyose into leaf discs were composed of two components, one saturable and the other not. Saturable (carrier-mediated) uptake of all three sugars was almost completely eliminated by the inhibitor p-chloromercuribenzenesulfonic acid (PCMBS). However, when PCMBS was introduced by transpiration into mature leaves it did not prevent accumulation of 14C-photosynthate in minor veins or translocation of labeled photosynthate from green to nonchlorophyllous regions of the leaf following exposure to 14CO2. The efficacy of introducing inhibitor solutions in the transpiration stream was proven by observing saffranin O and calcofluor white movement in the minor veins and leaf apoplast. PCMBS introduced by transpiration completely inhibited phloem loading in tobacco leaves. Phloem loading in C. blumei was also studied in plasmolysis experiments. The carbohydrate content of leaves was lowered by keeping plants in the dark and then increased by exposing them to light. The solute level of intermediary cells increased in the light (phloem loading) in both PCMBS-treated and control tissues. A mechanism of symplastic phloem loading is proposed for species that translocate the raffinose series of oligosaccharides.  相似文献   

20.
Dixit  Deeksha  Srivastava  N.K. 《Photosynthetica》2000,38(2):193-197
Changes in leaf growth, photosynthetic efficiency, and incorporation pattern of photosynthetically fixed 14CO2 in leaves 1 and 2 from plant apex, in roots, and rhizome induced in Curcuma by growing in a solution culture at Fe concentration of 0 and 5.6 g m–3 were studied. 14C was incorporated into primary metabolites (sugars, amino acids, and organic acids) and secondary metabolites (essential oil and curcumin). Fe deficiency resulted in a decrease in leaf area, its fresh and dry mass, chlorophyll (Chl) content, and CO2 exchange rate at all leaf positions. The rate of 14CO2 fixation declined with leaf position, maximum being in the youngest leaf. Fe deficiency resulted in higher accumulation of sugars, amino acids, and organic acids in leaves at both positions. This is due to poor translocation of metabolites. Roots and rhizomes of Fe-deficient plants had lower concentrations of total photosynthate, sugars, and amino acids whereas organic acid concentration was higher in rhizomes. 14CO2 incorporation in essential oil was lower in the youngest leaf, as well as incorporation in curcumin content in rhizome. Fe deficiency influenced leaf area, its fresh and dry masses, CO2 exchange rate, and oil and curcumin accumulation by affecting translocation of assimilated photosynthates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号