首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The successful production of interspecific hybrids between membersof the dysploid chromosome series inDahlia offers a unique opportunityto investigate chromosome evolution. Analysis of meiotic metaphaseI in these hybrids using genomic in situ hybridization (GISH)has shown that pairing occurs both between and within parentalgenomes. These results have provided clear evidence for theallotetraploid origin of Dahlia species with 2n=32 and suggeststhat species with 2n=34 and 2n=36 have also arisen via allopolyploidy.A bivalent promoting mechanism proposed for species with 2n=32also appears to be present in Dahlia species with 2n=34 and2n=36 .Copyright 1999 Annals of Botany Company Dahlia , GISH, dysploidy, chromosome pairing, karyotype analysis, polyploidy.  相似文献   

2.
We have used in situ hybridization to determine the number ofsites of rDNA in species in the genus Arabidopsis. A. wallichii(2n = 16) has one major pair of sites and one minor pair ofsites, while A. pumila and A. griffithiana (both 2n = 32) havesix major and two minor rDNA sites. A. thaliana (2n = 10) isknown to have two pairs of rDNA sites. a highly repeated para-centromericsequence from A. thaliana, pAL1, is absent in the other threespecies. Hence the A.thaliana genome is not present (or thecentromeric DNA has evolved substantially) in the polyploidspecies A. pumila and A. griffithiana. Analysis of Arabidopsisspecies is a valuable complement to the large programmes forgenetic analysis of A. thaliana.Copyright 1993, 1999 AcademicPress Arabidopsis, centromeric DNA, maps (genetic), nuclear architecture, repetitive DNA, ribosomal DNA, rDNA, evolution, Brassicaceae, Crucifereae, in situ hybridization  相似文献   

3.
Repetitive sequences have been widely used for examining genomeand species relationships by in situ and Southern hybridization.In the present study, double-stranded DNA sequences, from denaturedDNA reannealed to Cot = 1, from Avena strigosa(2 n = 2x = 14;A genome; referred to as CotA) and Avena sativa(2n = 6 x =42; ACD genome; referred to as CotACD) were isolated with ahydroxyapatite column, and were used for in situ hybridizationon hexaploid A. sativa chromosomes. Probe CotACD labelled allchromosomes evenly throughout their length at the same intensity.Probe CotA labelled the 28 A and D genome chromosomes stronglyand the 14 C genome chromosomes weakly. Three cloned repetitivesequences, pAvKB9 (126 bp), pAvKB26 (223 bp) and pAvKB32 (721bp) were characterized in the A, B, C and D Avena genomes andthe genus Arrhenatherum using molecular and cytological methods.Clones pAvKB9 and pAvKB26 were absent from the Avena C genome,while both could identify the presence of the D genome by Southernhybridization. In situ hybridization to diploid and tetraploidAvena species revealed that the probes showed a dispersed genomicorganization and that they are present on both arms of all chromosomes.These sequences were excluded from areas where tandem repeats,such as rRNA genes and telomeres, are present. These resultsindicate the close relationship between A and D genomes andthe presence of common DNA sequences between A and C Avena genomes.All three clones hybridized to Southern blots containingArrhenatherumdigested genomic DNA, indicating Arrhenatherum’s closeaffinity to A, B and D Avena genomes. Copyright 2000 Annalsof Botany Company Cereals, DNA, hydroxyapatite, in situ hybridization, oats, reassociation kinetics, repetitive DNA  相似文献   

4.
The physical localization of three tandemly-organized repetitiveDNA sequences was investigated byin situ hybridization to metaphasechromosomes of 11 Crocus vernus accessions. The sequences includedwere the 18S–25S rDNA, the 5S rDNA and a tandemly-repeatedsequence cloned from C. vernus(clone pCvKB8). Ten 2n = 8 karyotypesfrom accessions ranging across the Alps and the Pyrenees couldbe interpreted as variations of a standard karyotype. Polymorphismswere found involving size of the satellite chromosomes, extra5S rDNA sites, and extensive differences in size and numberof pCvKB8 loci. The 2 n = 16 type did not correspond to anypossible tetraploid derived from the 2 n = 8 types. Copyright2000 Annals of Botany Company Evolution, phylogeny, Crocus vernus Hill (Iridaceae), in situ hybridization, chromosomal polymorphism, karyotype evolution, repetitive DNA  相似文献   

5.
The origin of the two common cultivars of Crocus, C. 'Stellaris'(2n = 2x = 10) and C. 'Golden Yellow' (2n = 3x = 14) was investigatedby fluorescent in situ hybridization using both total genomicDNA and cloned DNA sequences as probes. The clear differentiationbetween the chromosomes after genomic in situ hybridizationsupports the proposals of a hybrid origin of the cultivars andshows that they have the same parental genomes originating fromC. flavus (2n = 8) and C. angustifolius (2n = 12). C. 'Stellaris'has four chromosomes of C. flavus origin and six chromosomesof C. angustifolius origin. C. 'Golden Yellow' has eight chromosomesof C. flavus origin and six chromosomes of C. angustifoliusorigin. The number and location of 18S-5·8S-26S rRNAgenes on the chromosomes of the hybrids and of the parentalspecies agree with the results from the genomic probings. Hybridizationto Southern membranes also supports the hybrid origin of C.'Golden Yellow'.Copyright 1995, 1999 Academic Press Taxonomy, cytology, rDNA sites, in situ hybridization, Southern hybridization, Crocus  相似文献   

6.
In situ hybridization of total genomic DNA was used to analyselines derived from an amphiploid between tetraploid wheat,Triticumdurum Desf. (2n =4x =28), and the wheatgrassesThinopyrum distichum(Thunb.) A. Löve (2n =4x =28) andLophopyrum elongatum (Host)A. Löve (2n =2x =14). A range of chromosome numbers wasdetected, arising from loss or gain of chromosomes. Total genomicDNA probes fromThinopyrum species,L. elongatum andTriticum monococcumL. were able to discriminate chromosomes from the A and B genomesof tetraploid wheat and those of wheatgrass-origin. The methoddid not discriminate the two wheatgrass genomes, J and E, indicatingtheir close similarity. Chromosomal aberrations—includingtelocentric and ring chromosomes—were frequent. Distalinter-genomic translocations of parts of A and B genome chromosomearms, unusual in wheat itself, were more frequent than translocationsbetweenT. durum and wheatgrass.In situ hybridization of an rDNAprobe most frequently revealed four sites associated with secondaryconstrictions onT. durum chromosomes and four onTh. distichumorL. elongatum chromosomes, although there was variation inthe number of loci between and within plants. Within interphaseand prophase nuclei, the three genomes were not intermixed andoften lay in distinct sectors. Wheat; hybrids; Triticum ; Triticeae; evolution; introgression; nuclear architecture; rDNA; in situ hybridization  相似文献   

7.
Chromosome number variations play an important role in the genus Medicago. In addition to polyploidy there are cases of dysploidy as evidenced by two basic numbers, x = 8 and x = 7, the latter limited to five annual species having 2n = 14. Annuals are diploid with the exception of Medicago scutellata and Medicago rugosa which have 2n = 30 and are considered the result of crosses between the 2n = 16 and 2n = 14 species. However, this hypothesis has never been tested. This study was carried out to investigate the 2n = 14 and 2n = 30 karyotypes and verify the allopolyploid origin of M. scutellata and M. rugosa. Fluorescence in situ hybridization (FISH) of rDNA probes and genomic in situ hybridization (GISH) were performed. FISH showed that all five diploids with 2n = 14 have one pair of 45S and one pair of 5S rDNA sites. M. scutellata displayed four sites of 45S and four sites of 5S rDNA, while in M. rugosa only one pair of each of these sites was found. GISH did not produce signals useful to identify the presumed progenitors with 14 chromosomes. This result suggests alternative evolutionary pathways, such as the formation of tetraploids (2n = 32) and subsequent dysploidy events leading to the chromosome number reduction.  相似文献   

8.
The chromosomal locations of the 45S (18S-5.8S-26S) and 5S ribosomal DNA in theBrachyscome lineariloba complex and two related species have been determined by the use of multicolor fluorescencein situ hybridization (McFISH). TheBrachyscome lineariloba complex includes five cytodemes with 2n=4, 8, 10, 12 and 16. Each of the 5S and 45S rDNA loci occurs at two sites on chromosomes in cytodemes with 2n=4. While in cytodemes with 2n=8, 10, 12 and 16, the number of 5S rDNA sites increases from four to eight paralleled to the genomic addition of diploid (4 chromosomes) or haploid (2 chromosomes) dosage. Of the 5S rDNA sites, only one pair is major, except for the cytodeme with 2n=10. The remaining 5S rDNA sites are minor and seem to have reduced the unit number of the 5S rDNA during the successive genomic additions. The 45S rDNA site is detected only at two nucleolar organizing regions in all cytodemes regardless of successive genomic addition. The loss or diminution of 45S rDNA sequences seem to have proceeded more rapidly than 5S rDNA sequences in theB. lineariloba complex.  相似文献   

9.
Genome relationships between the genera Leymus Hochst., PsathyrostachysNevski and Hordeum L. (Poaceae, Triticeae) were investigatedby fluorescent in situ hybridization using both total genomicDNA and cloned DNA sequences as probes. In hybrids between speciesof Hordeum and Leymus there was a clear differentiation betweenthe H genomes of Hordeum species and the genomes of Leymus speciesafter probing with genomic Hordeum or Leymus DNA. Chromosomesof species of Leymus and Psathyrostachys were also differentiatedby subtelomeric heterochromatic segments or by negative bandsalong their length. The number and location of 18S-5·8S-26SrRNA genes varied between the investigated genera. Unusually,L. angustus and P. stoloniformis rDNA sites were localized onboth ends of some chromosomes. Interphase nuclei of the Hordeumx Leymus hybrids had groups of chromosomes from both parentalgenomes in discrete, non-intermixed domains.Copyright 1994,1999 Academic Press Taxonomy, evolution, molecular evolution, repetitive DNA, rDNA sites, in situ hybridization, Triticeae, Leymus, Hordeum, Psathyrostachys  相似文献   

10.
Genomes of opisthorchid species are characterized by small size, suggesting a reduced amount of repetitive DNA in their genomes. Distribution of repetitive DNA sequences in the chromosomes of five species of the family Opisthorchiidae (Opisthorchis felineus 2n = 14 (Rivolta, 1884), Opisthorchis viverrini 2n = 12 (Poirier, 1886), Metorchis xanthosomus 2n = 14 (Creplin, 1846), Metorchis bilis 2n = 14 (Braun, 1890), Clonorchis sinensis 2n = 14 (Cobbold, 1875)) was studied with C- and AgNOR-banding, generation of microdissected DNA probes from individual chromosomes and fluorescent in situ hybridization on mitotic and meiotic chromosomes. Small-sized C-bands were discovered in pericentric regions of chromosomes. Ag-NOR staining of opisthorchid chromosomes and FISH with ribosomal DNA probe showed that karyotypes of all studied species were characterized by the only nucleolus organizer region in one of small chromosomes. The generation of DNA probes from chromosomes 1 and 2 of O. felineus and M. xanthosomus was performed with chromosome microdissection followed by DOP-PCR. FISH of obtained microdissected DNA probes on chromosomes of these species revealed chromosome specific DNA repeats in pericentric C-bands. It was also shown that microdissected DNA probes generated from chromosomes could be used as the Whole Chromosome Painting Probes without suppression of repetitive DNA hybridization. Chromosome painting using microdissected chromosome specific DNA probes showed the overall repeat distribution in opisthorchid chromosomes.  相似文献   

11.
The genomic constitutions of someMusaL. lines (bananas, plantainsand artificial hybrids) were identified using molecular cytogenetictechniques. Double targetin situDNA:DNA hybridization to chromosomespreads using as probes, total genomic DNA isolated from diploidMusalinesof known AA (labelled with biotin-11-dUTP) and BB (labelledwith digoxigenin-11-dUTP) genome constitution was carried out.The use of 60% acetic acid combined with heating over a flamegave high quality chromosome spreads free of cytoplasm forinsituhybridization. Total genomic A DNA labelled broad centromericregions of all 22 chromosomes of the diploid line, Calcutta4 (M. acuminataColla. ssp.burmanniccoides; A genome) with somechromosomes showing stronger hybridization. Labelled DNA fromthe B genome hybridized strongly to the centromeric regionsof all 22 chromosomes of Butohan 2 (M. balbisianaColla; B genome).The two satellited chromosomes of genome B labelled stronglywith genomic A DNA.In situhybridization of labelled A and Bgenomic DNA to metaphase chromosomes of triploid AAB and ABBcultivars discriminated between A and B genome chromosomes.The plantains Agbagba, Obino l'Ewai and Mbi Egome showed 22genome A and 11 genome B chromosomes while the cooking bananasBluggoe and Fougamou showed 11 genome A and 22 genome B chromosomes.Hybridization of labelled A and B genomic DNA to chromosomesof the hybrids showed that TMP2x 2829-62 has all 22 genome Achromosomes while TMPx 4698-1 has 33 genome A and 11 genomeB chromosomes.In situhybridization of labelled total genomicDNA to chromosomes has immense potential for identificationof chromosome origin and can be used to characterize cultivarsand hybrids produced inMusabreeding.Copyright 1997 Annals ofBotany Company Genomicin situhybridization; banana; plantain; hybrids; plant breeding; genome organization; biodiversity  相似文献   

12.
Motivation: Staining the human metaphase chromosomes revealscharacteristic banding patterns known as cytogenetic bands orcytobands. Using technologies based on metaphase chromosomes,researchers have accumulated much knowledge about the correlationsbetween human diseases and specific cytoband aberrations, indicatingthe presence of disease-associated genes in those bands. Withthe progress of human genome project and techniques such asfluorescent in situ hybridization, many genes have been assignedto the cytobands and annotated in public databases, making itpossible to find all genes in the disease-related cytobandsthrough database queries. However, finding genes in cytobandsremains an imprecise process, partly due to the insufficiencyof current methods for cytoband queries, especially for thosebased on cytogenetic annotations. Results: By transforming the cytoband annotations into numericalsegments, a new query method is developed that is able to accuratelydefine any cytogenetic ranges in human chromosomes. A querysystem (designated cytoband query sys CQS) is implemented usingcytogenetic annotations in the public domain. Judged by a performancetest, CQS executed as accurately as expected using cytogeneticannotations from NCBI Map Viewer. The new method is scalableand can be applied to genomes from other species. Availability: The CQS is freely accessible over the Internetat http://moris.csie.ncku.edu.tw/cqs/ Contact: clh9{at}mail.ncku.edu.tw Supplementary information: http://moris.csie.ncku.edu.tw/cqs/  相似文献   

13.
Odor Perception Phenotypes: Multiple, Specific Hyperosmias to Musks   总被引:1,自引:0,他引:1  
Olfactory detection thresholds for 11 structurally diverse muskodorants and one non-musk odorant were obtained from 32 subjects.Hierarchical cluster analysis produced four groups of subjects.One group (n = 12) was uniformly sensitive to all musks; another(n = 16) was uniformly insensitive. Two groups of subjects containedotherwise insensitive individuals who were exceptionally sensitiveto cyclopentadecanone and musk xylol (n = 2) and to delta9-hexadecenolactoneand tonalid (n = 2) respectively. We propose that the lattertwo groups are odor perception phenotypes (MSHM1 and MSHM2)that consist of multiple, specific hyperosmias to musk odorants.Chem. Senses 21: 411– 416, 1996. 1Present address: Synesthetics, Inc., Montclair, NJ 07043, USA  相似文献   

14.
The genusAvena L. (Poaceae) consists of diploid, tetraploid,and hexaploid species, with the B genome known only in tetraploidspecies and the D genome in the hexaploid species. DNA:DNAinsitu hybridization, using total genomic DNA from diploidAvenastrigosa Schreb. (Asgenome) as a probe, labelled all 28 chromosomesof the AB tetraploidAvena vaviloviana (Malz.) Mordv. stronglyand uniformly, revealing the close relationship between thesetwo genomes. Comparison of patterns of size-separated DNA restrictionfragments between the diploidA. strigosa and the tetraploidA.vaviloviana , using 32 different restriction enzymes, revealedno differences. Southern hybridization using total AB genomicDNA as a probe also gave no differences in banding patternsbetween the two genomes, even when a large excess of A genomicDNA was used as a block. From anA. vaviloviana genomic library,1800 colonies were blotted and probed sequentially with A andAB genomic DNA, but no colony was identified to be B genomespecific. DNA digests of AB genome tetraploids with restrictionenzymeHae III gave a strong band at 4.2 kb. Clone pAbKB3, derivedfrom the 4.2 kb band, was found to be part of aTy1-copia -likeretrotransposon present in A and B genome chromosomes. ClonedrRNA genes were used forin situ hybridization and showed thatdiploidA. strigosa has four major sites for 18S-25S rDNA andtwo pairs of sites for 5S rDNA (pairs on the same satellitedchromosome, on different chromosome arms), while 4xA. vavilovianahas eight major sites for 18S-25S rDNA and four pairs of sitesfor 5S rDNA (pairs on the same satellited chromosome, on differentchromosome arms). A repetitive sequence from rye pSc119.2, showeddispersed hybridization, while the telomeric sequence in clonepLT11 hybridized to telomeres. Again no discrimination was possiblebetween A and B genome chromosomes. The molecular similaritiesbetween the diploidA. strigosa and thebarbata group tetraploidsclearly indicate that thebarbata group of tetraploids arosefrom Asdiploids through autotetraploidization. Avena ; evolution; repetitive sequences; in situ hybridization; retrotransposons; genome organization  相似文献   

15.
Background and Aims: Earlier studies have suggested that the tetraploid Primula egaliksensis(2n = 40) originated from hybridization between the diploidsP. mistassinica (2n = 18) and P. nutans (2n = 22), which werehypothesized to be the maternal and paternal parent, respectively.The present paper is aimed at verifying the hybrid nature ofP. egaliksensis using cytogenetic tools, and to investigatethe extent to which the parental genomes have undergone genomicreorganization. Methods: Genomic in situ hybridization (GISH) and fluorescent in situhybridization (FISH) with ribosomal DNA (rDNA) probes, togetherwith sequencing of the internal transcribed spacer (ITS) regionof the rDNA, were used to identify the origin of P. egaliksensisand to explore its genomic organization, particularly at rDNAloci. Key Results: GISH showed that P. egaliksensis inherited all chromosomes fromP. mistassinica and P. nutans and did not reveal major intergenomicrearrangements between the parental genomes (e.g. interchromosomaltranslocations). However, karyological comparisons and FISHexperiments suggested small-scale rearrangements, particularlyat rDNA sites. Primula egaliksensis lacked the ITS-bearing heterochromaticknobs characteristic of the maternal parent P. mistassinicaand maintained only the rDNA loci of P. nutans. These resultscorroborated sequence data indicating that most ITS sequencesof P. egaliksensis were of the paternal repeat type. Conclusions: The lack of major rearrangements may be a consequence of theconsiderable genetic divergence between the putative parents,while the rapid elimination of the ITS repeats from the maternalprogenitor may be explained by the subterminal location of ITSloci or a potential role of nucleolar dominance in chromosomestabilization. These small-scale rearrangements may be indicativeof genome diploidization, but further investigations are neededto confirm this assumption.  相似文献   

16.
Somatic chromosomes ofStangeria eriopus (Stangeriaceae, Cycadales) were investigated by fluorescentin situ hybridization (FISH) using an 18S ribosomal DNA (rDNA) probe.Stangeria eriopus showed a chromosome number of 2n=16 with a karyotype of 12 median-, 2 subterminal-, and 2 terminal-centromeric chromosomes. FISH study ofS. eriopus revealed 16 signals made up of rDNA sites located on the terminal regions of the long arms of the 7 median- and 2 subterminal-centromeric chromosomes, on terminal region of the short arm of the 1 median-centromeric chromosome, on the terminal regions of the long and the short arms of 1 median- and 2 terminal-centromeric chromosomes. This result suggests that, not only karyomorphologically but also molecular-cytologically, the genusStangeria may be more closely related to the genusCeratozamia than the genusBowenia or the genusMicrocycas previously hypothesized.  相似文献   

17.
B chromosomes are non-essential additional genomic elements present in several animal and plant species. In fishes, species of the genus Psalidodon (Characiformes, Characidae) harbor great karyotype diversity, and multiple populations carry different types of non-essential B chromosomes. This study analyzed how the dispensable supernumerary B chromosome of Psalidodon paranae behaves during meiosis to overcome checkpoints and express its own meiosis-specific genes. We visualized the synaptonemal complexes of P. paranae individuals with zero, one, or two B chromosomes using immunodetection with anti-medaka SYCP3 antibody and fluorescence in situ hybridization with a (CA)15 microsatellite probe. Our results showed that B chromosomes self-pair in cells containing only one B chromosome. In cells with two identical B chromosomes, these elements remain as separate synaptonemal complexes or close self-paired elements in the nucleus territory. Overall, we reveal that B chromosomes can escape meiotic silencing of unsynapsed chromatin through a self-pairing process, allowing expression of their own genes to facilitate regular meiosis resulting in fertile individuals. This behavior, also seen in other congeneric species, might be related to their maintenance throughout the evolutionary history of Psalidodon.  相似文献   

18.
In situ hybridization with cloned, repetitive DNA probes andtotal genomic DNA enables the parental origin of all chromosomesto be established in metaphases of triticale tritordeum F1hybrids (2n=6x=42). Nuclei contain seven chromosomes of Hordeumchilense origin, seven from Secale cereale and 28 of wheat origin.When used as a probe, total genomic rye DNA labelled the ryechromosomes strongly and uniformly along their lengths, withbrighter regions coincident with the terminal heterochromatin.The probe labelled the wheat-origin chromosomes weakly and wasalmost undetectable on the H. chilense-origin chromosomes. Incontrast, under the same conditions, H. chilense DNA hybridizedstrongly to the H. chilense- and, with intermediate strength,to the S. cereale-origin chromosomes, excluding the subtelomericheterochromatin: it hybridized only weakly to the wheat chromosomes,in some experiments revealing characteristic bands on wheatchromosomes. Cloned repetitive DNA probes from rye and H. chilensewere used as probes to identify the linkage groups of all oftheir own-species chromosomes. Analysis of hybridization patternsof various probes to prophase and interphase nuclei indicatedthat there are many non-random features in the localizationof both repetitive DNA and whole chromosomes, although generalpatterns of nuclear organization have yet to emerge. Both theparticular lines used and the techniques developed here arelikely to be valuable for production and characterization ofplant breeding material. Key words: In situ hybridization, triticale, cytogenetics, plant breeding, Hordeum chilense  相似文献   

19.
为探讨国产毛茛科(Ranunculaceae)驴蹄草属(Caltha L.)植物的细胞学特征,对驴蹄草(C.palustris L.)3个居群和花葶驴蹄草(C.scaposa Hook.f.&Thoms.)5个居群进行了细胞学研究。驴蹄草贵州纳雍居群的染色体数目为2n=32(四倍体),两个云南中甸居群的染色体数目均为2n=64(八倍体)。花葶驴蹄草四川红原、康定、石渠居群的染色体数目均为2n=32(四倍体),该数目为首次报道;西藏林芝和云南德钦居群的染色体数目均为2n=64(八倍体)。驴蹄草的染色体比花葶驴蹄草大。这两种植物的32或64条染色体分别以4条或8条为单位大致能够排列为8组同源染色体,但同一组内的染色体经常具有明显的异形性(heteromorphy),不同居群的核型组成多少具有差异。同时,还分析了驴蹄草和花葶驴蹄草的不同倍性细胞型在我国的地理分布式样。  相似文献   

20.
A Nicotiana gametosomatic hybrid between N. tabacum and N. glutinosawas studied. It was shown to have a stable somatic chromosomecomplement of 2n=5x=60. Karyotypes and measures of DNA contentshow that there have been no major changes in the parental chromosomenumbers or morphology accompanying hybridization. Forty-eightchromosomes are derived from N. tabacum (2n=4x=48); 12 fromN. glutinosa (2n=2x=24). Homologous pairs of N. tabacum chromosomesusually pair normally at meiosis. Trivalents incorporating aglutinosa chromosome do occur but usually these remain as univalents. The fertility of the hybrid is low but some products of self-pollinationwere obtained. These carry the complete N. tabacum genome witha few glutinosa chromosomes, some of which form supplementarybivalents at meiosis. All derivatives studied were mixoploidbut progressive selfing reduces the extent of abnormality ofmitotic divisions. The study of morphological and developmentaltraits indicates that the addition of even a few chromosomesof N. glutinosa to the N. tabacum complement can modify thetabacum phenotype substantially. There is considerable variationamong the derivatives and scope for fixing desirable qualitiesthrough selection. The presence of only a haploid set of glutinosachromosomes in the original hybrid makes the return to a desirablegenotype more efficient than that achieved through more conventionalbreeding methods. Key words: Nicotiana, gametosomatic hybrid, selfed progeny, cytology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号