首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Fructose-2,6-bisphosphatase (EC 3.1.3.46), which hydrolyzes fructose 2,6-bisphosphate to fructose 6-phosphate and Pi, has been purified to apparent homogeneity from spinach leaves and found to be devoid of fructose-6-phosphate,2-kinase activity. The isolated enzyme is a dimer (76 kDa determined by gel filtration) composed of two 33-kDa subunits. The enzyme is highly specific and displays hyperbolic kinetics with its fructose 2,6-bisphosphate substrate (Km = 32 microM). The products of the reaction, fructose 6-phosphate and Pi, along with AMP and Mg2+ are inhibitors of the enzyme. Nonaqueous cell fractionation revealed that, like the fructose 2,6-bisphosphate substrate, fructose-2,6-bisphosphatase as well as fructose-6-phosphate,2-kinase occur in the cytosol of spinach leaves.  相似文献   

2.
The phosphorylation status of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase (EC 2.7.1.105/ EC 3.1.3.46) in rosette leaves of Arabidopsis was examined. Immunoblotting with specific antisera detected 96-kDa and 92-kDa bands in the crude protein extracts from rosette leaves of Arabidopsis. Incubation of protein samples with alkaline phosphatase before SDS-PAGE reduced the 96-kDa band with concomitant increase of the 92-kDa band, suggesting that the former is a phosphorylated form of the latter. In accordance with this result, 96-kDa and 92-kDa bands were immuno-precipitated from the crude protein extracts from [(32)P]orthophosphate-labeled rosettes of Arabidopsis; and, the former was heavily labeled, the latter faintly labeled. Analysis of phospho-amino acid residues derived from the [(32)P]-labeled 96-kDa band revealed that the phosphorylation occurred on serine and threonine residues, excluding the possibility that the phosphorylated band represent a phospho-histidine intermediate that is known to form in the phosphatase reaction. The relative level of the 96-kDa band over the 92-kDa band in whole rosette extracts changed diurnally and was highest at the beginning of nighttime. Furthermore, the 96-kDa band was highly enriched in the extracts of very young rosette leaves, suggesting that the phosphorylation status of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase is regulated physiologically and developmentally in Arabidopsis.  相似文献   

3.
The effects of tolbutamide on the activities of fructose-6-phosphate,2-kinase and fructose-2,6-bisphosphatase were examined using rat hepatocytes. Tolbutamide stimulated fructose-6-phosphate,2-kinase activity and inhibited fructose-2,6-bisphosphatase activity, resulting in an increase of fructose-2,6-bisphosphate level. Changes in the activities of the enzyme by tolbutamide were due to variation in the Km value, but not dependent on alteration of Vmax. Glucagon inhibition of fructose-2,6-bisphosphate formation resulting from an inactivation of fructose-6-phosphate,2-kinase and an activation of fructose-2,6-bisphosphatase was released by tolbutamide. Tolbutamide stimulation of fructose-2,6-bisphosphate formation through regulation of fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase may produce enhancement of glycolysis and inhibition of gluconeogenesis in the liver.  相似文献   

4.
Fructose 2,6-bisphosphate is the most potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. This study was prompted by the finding that the content of fructose 2,6-bisphosphate in frog skeletal muscle was dramatically increased at the initiation of exercise and was closely correlated with the glycolytic flux during exercise. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme system catalyzing the synthesis and degradation of fructose 2,6-bisphosphate, was purified from frog (Rana esculenta) skeletal muscle and its properties were compared with those of the rat muscle type enzyme expressed in Escherichia coli using recombinant DNA techniques. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was purified 5600-fold. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities could not be separated, indicating that the frog muscle enzyme is bifunctional. The enzyme preparation from frog muscle showed two bands on sodium dodecylsulphate polyacrylamide gel electrophoresis. The minor band had a relative molecular mass of 55800 and was identified as a liver (L-type) isoenzyme. It was recognized by an antiserum raised against a specific amino-terminal amino acid sequence of the L-type isoenzyme and was phosphorylated by the cyclic AMP-dependent protein kinase. The major band in the preparations from frog muscle (relative molecular mass = 53900) was slightly larger than the recombinant rat muscle (M-type) isoenzyme (relative molecular mass = 53300). The pH profiles of the frog muscle enzyme were similar to those of the rat M-type isoenzyme, 6-phosphofructo-2-kinase activity was optimal at pH 9.3, whereas fructose-2,6-bisphosphatase activity was optimal at pH 5.5. However, the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle differed from other M-type isoenzymes in that, at physiological pH, the maximum activity of 6-phosphofructo-2-kinase exceeded that of fructose-2,6-bisphosphatase, the activity ratio being 1.7 (at pH 7.2) compared to 0.2 in the rat M-type isoenzyme. 6-Phosphofructo-2-kinase activity from the frog and rat muscle enzymes was strongly inhibited by citrate and by phosphoenolpyruvate whereas glycerol 3-phosphate had no effect. Fructose-2,6-bisphosphatase activity from frog muscle was very sensitive to the non-competitive inhibitor fructose 6-phosphate (inhibitor concentration causing 50% decrease in activity = 2 mol · l-1). The inhibition was counteracted by inorganic phosphate and, particularly, by glycerol 3-phosphate. In the presence of inorganic phosphate and glycerol 3-phosphate the frog muscle fructose-2,6-bisphosphatase was much more sensitive to fructose 6-phosphate inhibition than was the rat M-type fructose-2,6-bisphosphatase. No change in kinetics and no phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was observed after incubation with protein kinase C and a Ca2+/calmodulin-dependent protein kinase. The kinetics of frog muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, although they would favour an initial increase in fructose 2,6-bisphosphate in exercising frog muscle, cannot fully account for the changes in fructose 2,6-bisphosphate observed in muscle of exercising frog. Regulatory mechanisms not yet studied must be involved in working frog muscle in vivo.Abbreviations BSA bovine serum albumin - Ca/CAMK Ca2+/calmodulin-dependent protein kinase (EC 2.7.1.37) - CL anti-l-type PFK-21 FBPase-2 antiserum - DTT dithiothreitol - EP phosphorylated enzyme intermediate - FBPase-2 fructose-2,6-bisphosphatase (EC 3.1.3.46) - F2,6P2 fructose 2,6-bisphosphate - I0,5 inhibitor concentration required to decrease enzyme activity by 50% - MCL-2 anti-PFK-2/FBPase-2 antiserum - Mr relative molecular mass - PEG polyethylene glycol - PFK-1 6-phosphofructo-1-kinase (EC 2.7.1.11) - PKF-2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PKA protein kinase A = cyclic AMP-dependent protein kinase (EC 2.7.1.37) - PKC protein kinase C (EC 2.7.1.37) - SDS sodium dodecylsulphate - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - U unit of enzyme activity  相似文献   

5.
A cDNA encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was isolated from a Spinacia oleracea leaf library and used to express a recombinant enzyme in Escherichia coli and Spodoptera frugiperda cells. The insoluble protein expressed in E. coli was purified and used to raise antibodies. Western blot analysis of a protein extract from spinach leaf showed a single band of 90.8 kDa. Soluble protein was purified to homogeneity from S. frugiperda cells infected with recombinant baculovirus harboring the isolated cDNA. The soluble protein had a molecular mass of 320 kDa, estimated by gel filtration chromatography, and a subunit size of 90.8 kDa. The purified protein had activity of both 6-phosphofructo-2-kinase specific activity 10.4-15.9 nmol min(-1) x mg protein (-1) and fructose-2,6-bisphosphatase (specific activity 1.65-1.75 nmol x mol(-1) mg protein(-1). The 6-phosphofructo-2-kinase activity was activated by inorganic phosphate, and inhibited by 3-carbon phosphorylated metabolites and pyrophosphate. In the presence of phosphate, 3-phosphoglycerate was a mixed inhibitor with respect to both fructose 6-phosphate and ATP. Fructose-2,6-bisphosphatase activity was sensitive to product inhibition; inhibition by inorganic phosphate was uncompetitive, whereas inhibition by fructose 6-phosphate was mixed. These kinetic properties support the view that the level of fructose 2,6-bisphosphate in leaves is determined by the relative concentrations of hexose phosphates, three-carbon phosphate esters and inorganic phosphate in the cytosol through reciprocal modulation of 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities of the bifunctional enzyme.  相似文献   

6.
通过RT-PCR,结合RACE技术,得到了玉米(Zea mays L.)果糖-6-磷酸,2-激酶/果糖-2,6-二磷酸酶的全长cDNA克隆,命名为mF2KP.氨基酸序列同源性比较发现,mF2KP蛋白可以分为两个部分:C端包含高度保守的催化功能区,N端为植物中特有的多肽.将mF2KP基因中一段包含完整催化功能区的片段在大肠杆菌(Escherichia coli)中表达,融合蛋白具有果糖-6-磷酸,2-激酶/果糖-2,6-二磷酸酶活性.Northern杂交证明在种子活力不同的幼苗中,mF2KP的转录水平存在明显差异.种子活力越高,幼苗中mF2KP的转录水平越低.  相似文献   

7.
Glycogen and fructose 2,6-bisphosphate levels in rat liver decreased quickly after partial hepatectomy. After 7 days the glycogen level was normalized and fructose 2,6-bisphosphate concentration still remained low. The 'active' (non-phosphorylated) form of 6-phosphofructo-2-kinase varied in parallel with fructose 2,6-bisphosphate levels, whereas the 'total' activity of the enzyme decreased only after 24 h, similarly to glucokinase. The response of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from hepatectomized rats (96 h) to sn-glycerol 3-phosphate and to cyclic AMP-dependent protein kinase was different from that of the enzyme from control animals and similar to that of the foetal isoenzyme.  相似文献   

8.
Upon differential centrifugation of cell-free extracts of Trypanosoma brucei, 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase behaved as cytosolic enzymes. The two activities could be separated from each other by chromatography on both blue Sepharose and anion exchangers. 6-phosphofructo-2-kinase had a Km for both its substrates in the millimolar range. Its activity was dependent on the presence of inorganic phosphate and was inhibited by phosphoenolpyruvate but not by citrate or glycerol 3-phosphate. The Km of fructose-2,6-bisphosphatase was 7 microM; this enzyme was inhibited by fructose 1,6-bisphosphate (Ki = 10 microM) and, less potently, by fructose 6-phosphate, phosphoenolpyruvate and glycerol 3-phosphate. Melarsen oxide inhibited 6-phosphofructo-2-kinase (Ki less than 1 microM) and fructose-2,6-bisphosphatase (Ki = 2 microM) much more potently than pyruvate kinase (Ki greater than 100 microM). The intracellular concentrations of fructose 2,6-bisphosphate and hexose 6-phosphate were highest with glucose, intermediate with fructose and lowest with glycerol and dihydroxyacetone as glycolytic substrates. When added with glucose, salicylhydroxamic acid caused a decrease in the concentration of fructose 2,6-bisphosphate, ATP, hexose 6-phosphate and fructose 1,6-bisphosphate. These studies indicate that the concentration of fructose 2,6-bisphosphate is mainly controlled by the concentration of the substrates of 6-phosphofructo-2-kinase. The changes in the concentration of phosphoenolpyruvate were in agreement with the stimulatory effect of fructose 2,6-bisphosphate on pyruvate kinase. At micromolar concentrations, melarsen oxide blocked almost completely the formation of fructose 2,6-bisphosphate induced by glucose, without changing the intracellular concentrations of ATP and of hexose 6-phosphates. At higher concentrations (3-10 microM), this drug caused cell lysis, a proportional decrease in the glycolytic flux, as well as an increase in the phosphoenolypyruvate concentrations which was restricted to the extracellular compartment. Similar changes were induced by digitonin. It is concluded that the lytic effect of melarsen oxide on the bloodstream form of T. brucei is not the result of an inhibition of pyruvate kinase.  相似文献   

9.
To identify those residues involved in fructose 6-phosphate binding to the kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase site-directed mutations were engineered at Lys194, Arg195, Arg230, and Arg238. The mutant enzymes were purified to homogeneity by anion exchange and Blue-Sepharose chromatography and/or substrate elution from phosphocellulose columns. Circular dichroism experiments demonstrated that all of the single amino acid mutations had no effect on the secondary structure of the protein. In addition, when fructose-2,6-bisphosphatase activity was measured, all mutants had Km values for fructose 2,6-bisphosphate, Ki values for fructose 6-phosphate, and maximal velocities similar to that of the wild-type enzyme. Mutation of Arg195----Ala, or His, had little or no effect on the maximal velocity of the kinase but increased the Km for fructose 6-phosphate greater than 3,000-fold. Furthermore, the Ka for phosphate for Arg195Ala was increased 100-fold compared with the wild-type enzyme. Mutation of Lys194----Ala had no effect on maximal velocity or the Km for fructose 6-phosphate. Mutation of either Arg230 or Arg238----Ala increased the maximal velocity and the Km for fructose-6 phosphate of the kinase by 2-3-fold but had no effect on fructose-2,6-bisphosphatase. However, the Km values for ATP of the Arg230Ala and Arg238Ala mutants were 30-40-fold higher than that for the wild-type enzyme. Mutation of Gly48----Ala resulted in a form with no kinase activity, but fructose-2,6-bisphosphatase activity was identical to that of the wild-type enzyme. The results indicate that: 1) Arg195 is a critical residue for the binding of fructose 6-phosphate to the 6-phospho-fructo-2-kinase domain, and that interaction of the sugar phosphate with Arg195 is highly specific since mutation of the adjacent Lys194----Ala had no effect on fructose 6-phosphate binding; 2) Arg195 also play an important role in the binding of inorganic phosphate; and 3) Gly48 is an important residue in the nucleotide binding fold of 6-phosphofructo-2-kinase and that both Arg230 and Arg238 are also involved in ATP binding; and 4) the bifunctional enzyme has two separate and independent fructose 6-phosphate binding sites.  相似文献   

10.
Phosphofructokinase 2 from Saccharomyces cerevisiae was purified 8500-fold by chromatography on blue Trisacryl, gel filtration on Superose 6B and chromatography on ATP-agarose. Its apparent molecular mass was close to 600 kDa. The purified enzyme could be activated fivefold upon incubation in the presence of [gamma-32P]ATP-Mg and the catalytic subunit of cyclic-AMP-dependent protein kinase from beef heart; there was a parallel incorporation of 32P into a 105-kDa peptide and also, but only faintly, into a 162-kDa subunit. A low-Km (0.1 microM) fructose-2,6-bisphosphatase could be identified both by its ability to hydrolyze fructose 2,6-[2-32P]bisphosphate and to form in its presence an intermediary radioactive phosphoprotein. This enzyme was purified 300-fold, had an apparent molecular mass of 110 kDa and was made of two 56-kDa subunits. It was inhibited by fructose 6-phosphate (Ki = 5 microM) and stimulated 2-3-fold by 50 mM benzoate or 20 mM salicylate. Remarkably, and in deep contrast to what is known of mammalian and plant enzymes, phosphofructokinase 2 and the low-Km fructose-2,6-bisphosphatase clearly separated from each other in all purification procedures used. A high-Km (approximately equal to 100 microM), apparently specific, fructose 2,6-bisphosphatase was separated by anion-exchange chromatography. This enzyme could play a major role in the physiological degradation of fructose 2,6-bisphosphate, which it converts to fructose 6-phosphate and Pi, because it is not inhibited by fructose 6-phosphate, glucose 6-phosphate or Pi. Several other phosphatases able to hydrolyze fructose 2,6-bisphosphate into a mixture of fructose 2-phosphate, fructose 6-phosphate and eventually fructose were identified. They have a low affinity for fructose 2,6-bisphosphate (Km greater than 50 microM), are most active at pH 6 and are deeply inhibited by inorganic phosphate and various phosphate esters.  相似文献   

11.
6-Phosphofructo-2-kinase was purified from rat liver and hepatoma (HTC) cells. The HTC cell enzyme had kinetic properties different from those of the liver enzyme (more sensitive to inhibition by citrate and not inhibited by sn-glycerol 3-phosphate) and was not a substrate of the cyclic-AMP-dependent protein kinase. Unlike the liver enzyme, which is bifunctional and phosphorylated by fructose 2,6-[2-32P]bisphosphate, the HTC cell enzyme contained no detectable fructose-2,6-bisphosphatase activity and phosphorylation by fructose 2,6-[2-32P]-bisphosphate could not be detected. HTC cell fructose-2,6-bisphosphatase could be separated from 6-phosphofructo-2-kinase activity by purification. Antibodies raised against liver 6-phosphofructo-2-kinase did not precipitate HTC cell fructose-2,6-bisphosphatase whose kinetic properties were completely different from those of the liver enzyme.  相似文献   

12.
Treatment of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase with the arginine-specific reagent, phenylglyoxal, irreversibly inactivated both 6-phosphofructo-2-kinase and fructose-6-bisphosphatase in a time-dependent and dose-dependent manner. Fructose 6-phosphate protected against 2,6-phosphofructo-2-kinase inactivation, whereas MgGTP protected against fructose-2,6-bisphosphatase inactivation. Semi-logarithmic plots of the time course of inactivation by different phenylglyoxal concentrations were non-linear, suggesting that more than one arginine residue was modified. The stoichiometry of phenylglyoxal incorporation indicated that at least 2 mol/mol enzyme subunit were incorporated. Enzyme which had been phosphorylated by cyclic-AMP-dependent protein kinase was inactivated to a lesser degree by phenylglyoxal, suggesting that the serine residue (Ser32) phosphorylated by cyclic-AMP-dependent protein kinase interacts with a modified arginine residue. Chymotryptic cleavage of the modified protein and microsequencing showed that Arg225, in the 6-phosphofructo-2-kinase domain, was one of the residues modified by phenylglyoxal. The protection by fructose 6-phosphate against the labelling of chymotryptic fragments containing Arg225, suggests that this residue is involved in fructose 6-phosphate binding in the 6-phosphofructo-2-kinase domain of the bifunctional enzyme.  相似文献   

13.
In order to study the regulation of carbohydrate metabolism in leaf tissue the activity of fructose-6-phosphate,2-kinase was determined in individual sections of developing primary leaves of barley. Activity was about 25-fold higher in the leaf tip than in the leaf sheath when measured on a fresh weight basis. There was a gradual increase in enzyme activity from the leaf base to the leaf tip. The higher activity of fructose-6-phosphate,2-kinase in the apical parts of the leaf was associated with higher levels of fructose-2,6-bisphosphate. This was especially pronounced when isolated leaf segments were treated with vanadate and kept in darkness. As compared to the kinase, little difference was observed in the fructose-2,6-bisphospatase activity among leaf sections. The significance of these patterns for regulation of carbohydrate metabolism in different tissues is discussed.  相似文献   

14.
15.
通过RT-PCR,结果RACE技术,得到了玉米(Zea maysL.)果糖-6-磷酸,2-激酶/果糖-2,6-二磷酸酶的全长cDNA克隆。命名为mF2KP,氨基酸序列同源性比较发现,mF2KP蛋白可以分为两个部分;C端包含高度保守的催化功能区。N端为植物中特有的多肽,将mF2KP基因中一段包含完整催化功能区的片段在大肠杆菌(Escherichia coli)中表达,融合蛋白具有果糖-6-磷酸,2-激酶/果糖-2,6-二磷酸酶活性,Northern杂交证明在种子活力不同的幼苗中,mF2KP的转录水平存在明显差异。种子活力越高,幼苗中mF2KP的转录水平越低。  相似文献   

16.
Treatment of carrot roots with ethylene led to: (a) a doubling of the fructose-2,6-bisphosphate content; (b) a general increase in the concentration of glycolytic intermediates; and (c) an increase in the extractable activity of fructose-6-phosphate,2-kinase, the enzyme synthesizing fructose-2,6-bisphosphate from fructose-6-phosphate and adenosine triphosphate.  相似文献   

17.
G Paravicini  M Kretschmer 《Biochemistry》1992,31(31):7126-7133
Sequencing of an open reading frame 450 bp downstream from the yeast VPS35 gene revealed a putative peptide of 452 amino acids and 52.7 kDa. The predicted amino acid sequence has 45% identity with the 55-kDa subunit of the 6-phosphofructo-2-kinase/fructose-2,6- bisphosphatase (EC 2.7.1.105/EC 3.1.3.46) from rat liver and 42% identity with 480 amino acids in the center of the recently reported 93.5-kDa subunit of yeast 6-phosphofructo-2-kinase (EC 2.7.1.105). The product of the new yeast gene is similar to the entire sequence of the bifunctional rat liver enzyme and, unlike yeast 6-phosphofructo-2-kinase, has the histidine residue essential for fructose-2,6-bisphosphatase activity. Extracts from a chromosomal null mutant strain, fbp26::HIS3, incubated in the presence of [2-32P]fructose 2,6-P2, lacked in autoradiograms the characteristic 56-kDa labeled band observed in wild-type. The same band was intensified 3-fold over wild-type level with the FBP26 gene introduced on multicopy in the fbp26::HIS3 background. A similar increase was found for fructose-2,6-bisphosphatase activity in the same extracts. The FBP26 gene did not cause detectable increase in 6-phosphofructo-2-kinase activity when introduced on multicopy in a pfk26::LEU2 mutant, indicating that its gene product is predominantly a fructose-2,6-bisphosphatase. Growth on glucose, fructose, galactose, pyruvate, and glycerol/lactate was not impaired in strains carrying the fbp26::HIS3 allele.  相似文献   

18.
To investigate altered fructose-2,6-bisphosphate (fructose-2,6-P2) metabolism, we measured fructose-2,6-P2 levels and fructose-6-phosphate,2-kinase (fructose-6-P,2-kinase) activities in various tissues, including liver, kidney, heart, and skeletal muscle, of ventromedial hypothalamus (VMH)-lesioned rats during feeding and starvation. The plasma insulin level was 6 times or more higher in these rats than in the controls. The fructose-2,6-P2 level in liver was much greater in VMH-lesioned rats than in the controls: 15.1 +/- 2.2 nmol/g tissue versus 7.7 +/- 0.7 in the fed state, 5.3 +/- 1.1 versus 1.6 +/- 0.4 in the starved state. In kidney, heart, and skeletal muscle, fructose-2,6-P2 levels were not different between the two animal groups. The activity of hepatic fructose-6-P,2-kinase remained high after 20 h of starvation in VMH-lesioned rats, whereas it was decreased markedly in the controls. The hepatic concentration of fructose-6-phosphate was also high in VMH-lesioned rats. Both fructose-6-P,2-kinase activity and fructose-6-phosphate concentration in the liver of starved VMH-lesioned rats were comparable to those of control rats in fed conditions. These results indicate that the alteration of fructose-2,6-P2 metabolism is characteristic of liver in VMH-lesioned rats, and that the increase in hepatic fructose-2,6-P2 may activate hepatic glycolysis not only during feeding but also during starvation, leading to the enhanced lipogenesis in these obese rats.  相似文献   

19.
Fructose-2,6-bisphosphate concentration and fructose-6-phosphate,2-kinase activity were measured in yeast cells grown aerobically or anaerobically using glucose as a carbon source. A new improved analytical method using HPLC was employed to measure fructose-2,6-P2 concentration. Anaerobically-grown yeast cells contain approximately 4-fold higher levels of fructose-2,6-P2 as compared to aerobically-grown cells in the growth phase of culture. Similarly, fructose-6-P,2-kinase activity is approximately 7-fold higher in the anaerobically-grown cells. These results suggest that the presence of oxygen in the growth medium decreases the content of fructose-2,6-P2 through inactivation of fructose-6-P,2-kinase.  相似文献   

20.
Yeast 6-phosphofructo-2-kinase: sequence and mutant.   总被引:4,自引:0,他引:4  
M Kretschmer  D G Fraenkel 《Biochemistry》1991,30(44):10663-10672
We have reported yeast 6-phosphofructo-2-kinase (EC 2.7.1.105) as having a ca. 96-kDa subunit size, as well as isolation of its structural gene, PFK26. Sequencing now shows an open reading frame of 827 amino acids and 93.5 kDa. The deduced amino acid sequence has 42% identity with the 55-kDa subunit of the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from rat liver with extra material at both ends. Although the yeast sequence is especially similar to the liver one in its bisphosphatase domain, the essential His-258 of the liver enzyme is, in yeast, a serine, which may explain the apparent lack of bisphosphatase activity. Also, the yeast enzyme known to be activated via protein kinase A, has a putative phosphorylation site near its C-terminus and lacks the N-terminal phosphorylation sequence involved in inhibition of the liver enzyme. In a chromosomal null mutant strain, pfk26::LEU2, activity was marginal and the protein was not detectable as antigen. The mutant strain grew well on glucose and contained a near-normal level of fructose 2,6-P2. But in its growth on pyruvate, by contrast with the wild-type strain, no fructose 2,6-P2 was detectable, and it did not form after glucose addition in the presence of cycloheximide either. Such resting cells, however, metabolized glucose at the normal high rate. Glucose addition to the pfk26 mutant strain in the absence of cycloheximide, on the other hand, caused a ca. 10% normal rate of fructose 2,6-P2 accumulation, presumably employing a glucose-inducible second enzyme. Using strains also lacking 6-phosphofructo-1-kinase, affinity chromatography revealed the second enzyme as a minor peak amounting to 6% of 6-phosphofructo-2-kinase activity in a PFK26 strain and as the sole peak, in similar amount, in a pfk26 mutant strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号