首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compound eyes of most diurnal butterflies have a reflecting tapetum below the retina. Light that enters the eye is guided down the rhabdom, reflected by the tapetum, and then guided back up the rhabdom. The light that is not absorbed by the rhabdom is reemitted and gives rise to an eyeshine. We have measured the fraction of the incident light that is re-emitted, and also the degree to which this light retains its original polarization. The following conclusions are drawn:
1.  Even at the wavelength where the eyeshine is most intense, only a few percent of the incident photons are re-emitted.
2.  The tapetum acts as a plane mirror that preserves polarization.
3.  The light that passes through the rhabdom in second-order waveguide modes is depolarized to a greater extent than the light contained in first-order modes. The depolarization is expected to decrease only slightly the polarization sensitivity of the retina.
4.  Theoretical modelling of the waveguide properties of the rhabdom provided a way of using depolarization measurements for estimating the refractive index of the rhabdom. The measured amount of depolarization is consistent with the dispersion of phase velocities of different second-order modes propagating in a rhabdom of refractive index 1.363.
  相似文献   

2.
Summary Except for very special fused rhabdoms, e. g. those with orthogonal microvilli like the worker bee, the direction of the electric vector E of linear polarized light necessary for a maximum response from a retinula cell is not parallel (or perpendicular) to the microvilli of the recorded cell. This is because the rhabdomeres of a fused rhabdom are optically coupled, i. e. the properties of each rhabdomere influence the manner in which light is transmitted down the composite rhabdom structure. A rhabdom is analogous to a non-uniform absorbing optical crystal. Such a crystal has two coordinate (optical) axes along which E remains linear polarized as it propagates. Only when the microvilli of the recorded cell are parallel to one of these axes will the direction ofE for maximum retinula cell response be parallel to the microvilli. The locust-type of rhabdom is used as an example.  相似文献   

3.
Summary Light propagation within the worker bee ommatidium is analyzed. The angular sensitivity of the ommatidium can be separated into a product of the bee's dioptric apparatus and rhabdom angular sensitivities. The discrepancy in angular sensitivity between recent electrophysiological measurements and ray tracing procedures for the worker bee arises because the field of view of the rhabdom is smaller than that of the optical system in front of it.I thank G. A. Horridge for suggesting this research, Simon Laughlin for providing the results of his recordings from the worker bee and J. W. Blamey for helpful discussion on optical systems.  相似文献   

4.
Summary Even if the dioptric apparatus of the worker bee provided a crisp image at the entrance to the rhabdom, the detection of this image is theoretically impossible due to a phenomenon of mode propagation analogous to acoustic beating or interference.Queen Elizabeth II Research Fellow.We thank Professor G. A. Horridge and Simon Laughlin for their assistance with this study.  相似文献   

5.
Electron microscopic investigations on the eye of the worker bee showed that the ommatidia located in the uppermost part of the dorsal half of the eye are characterized by a distinct structural specialization: Nine visual cells contribute microvilli to the rhabdom over its full length. Within these rhabdoms the microvilli are arranged in at least three different directions. This specialization affects an area of at least 60 ommatidia. The most dorsal eye region differs, therefore, structurally from all other regions which have been investigated to date. Because the ommatidia in question are oriented skyward, their peculiar structure is discussed with respect to several concepts of polarized light detection by the bee.  相似文献   

6.
Summary This paper elucidates the influence of the structure of a rhabdom on the polarization sensitivity of its retinula cells. The terminology polarization sensitivity (PS) and dichroic sensitivity () needs clarification. expresses the directional property of the local microvillar medium and is independent of the gross morphology of the rhabdom. The PS of a retinula cell is that found by single cell electrophysiology and depends strongly on the gross morphology of the rhabdom. Both and PS are ratios of the effects of theE vector of linear polarized light parallel to, to that perpendicular to the microvilli. From the theoretical analysis and its correlation with experiments the following is concluded.  相似文献   

7.
Single Golgi impregnated visual cells and their axons were treated from the retina to the first synaptic layer (lamina) in serial electron microscopic sections. This analysis of the retina-lamina projection was undertaken in the upper dorso-median eye region which is known to be involved in the perception of polarized light. For identification of individual visual cells and their fibres a numbering system was used which relates the number of each of the nine visual cells within one retinula to the transverse axis of the rhabdom (TRA) (Fig. 1). Because of the twist of the retinula along its course to the basement membrane (Fig. 6), individual visual cells change their position relative to any eye-constant co-ordinate system. Each axon bundle originating from one 9-celled retinula performs a 180 degrees-rotation before entering the lamina (Fig. 2). The direction of rotation (clockwise or counter-clockwise), which may differ even between adjacent bundles, is related to the two mirror-image types of rhabdoms in the corresponding retinulae and is opposite to the direction of rhabdom twist. Thus, even in small groups of the in total 5500 ommatidia in the eye of the bee, two types of retinulae exist which can be characterized by the geometry of the rhabdoms as well as by the direction of rotation of the retinulae and the axon bundles (Fig. 1). Visual cell numbers 1, 2, and 9, the microvilli of which are oriented in the direction of TRA, form three long visual fibres terminating in the second synaptic layer (medulla). In cross sections of laminar pseudocartridges they appear as the smallest fibre profiles arranged in a symmetrical line of the pseudocartridge bundle (=the transverse axis of the pseudocartridge; TPA) (Fig. 4). The remaining six fibres (cell numbers 3-8) only project to the lamina (short visual fibres; svf's). Two of them (cell numbers 5 and 6), which are the largest cells in the proximal retinula and have their microvilli perpendicularly arranged to TRA (Fig. 1), give rise to the two thickest axons of the underlaying pseudocartridge. In cross sections, t he connecting line of these two axons is orthogonally oriented to TPA (Fig. 5). A model was developed, in which all long visual fibres originate from ultraviolet receptors and in which the polarization sensitivity of the basal ninth cell is enhanced by the twist of the rhabdom. Finally, this model is discussed in light of behavioral experiments revealing the ultraviolet receptors as the only cells involved in the detection of polarized light.  相似文献   

8.
Many insects exploit sky light polarization for navigation or cruising-course control. The detection of polarized sky light is mediated by the ommatidia of a small specialized part of the compound eye: the dorsal rim area (DRA). We describe the morphology and fine structure of the DRA in monarch butterflies (Danaus plexippus). The DRA consists of approximately 100 ommatidia forming a narrow ribbon along the dorsal eye margin. Each ommatidium contains two types of photoreceptor with mutually orthogonal microvilli orientations occurring in a 2:6 ratio. Within each rhabdomere, the microvilli are well aligned. Rhabdom structure and orientation remain constant at all retinal levels, but the rhabdom profiles, as seen in tangential sections through the DRA, change their orientations in a fan-like fashion from the frontal to the caudal end of the DRA. Whereas these properties (two microvillar orientations per rhabdom, microvillar alignment along rhabdomeres, ommatidial fan array) are typical for insect DRAs in general, we also report and discuss here a novel feature. The ommatidia of monarch butterflies are equipped with reflecting tapeta, which are directly connected to the proximal ends of the rhabdoms. Although tapeta are also present in the DRA, they are separated from the rhabdoms by a space of approximately 55 μm effectively inactivating them. This reduces self-screening effects, keeping polarization sensitivity of all photoreceptors of the DRA ommatidia both high and approximately equal.  相似文献   

9.
Structural changes in dark-light adaptation of the compound eye of the beetle Creophilus erythrocephalus, have been investigated by electron microscopy. Their functional consequences have been studied by means of intracellular electrophysiological recordings from retinula cells. In the dark-adapted state the intercellular spaces between the retinula cells swell considerably and produce a palisade of extracellular origin around the rhabdom. Units from dark-adapted eyes are approximately ten times more sensitive than those from light-adapted animals and have larger acceptance angles (7·037° ± 1·23 S.D. compared with 5·135° ± 0·99 S.D. for the light-adapted insect). A spikegenerating unit, inhibited by light, was found once. Although the rhabdom is of the ‘banded’ type, polarization sensitivity was found to be unexpectedly low: 2·31 ± 1·54 S.D. It is concluded that electrical coupling, useful for dim light conditions and eyes with tiny apertures, most likely appears to be the reason for the low average polarization sensitivity.  相似文献   

10.
The afocal apposition optics of butterfly eyes was examined from both a geometrical optics and a wave optics point of view. We used several different species of butterfly but put special emphasis on a common Australian nymphalid,Heteronympha merope. From the anatomy of the retina, the optics of isolated components of the eye and the ophthalmoscopy of the intact living eye we derived the following.
1.  The proximal part of the crystalline cone behaves as a powerful lens which, according to our measurements of optical power, turns the complete optical system into an afocal telescope with an angular magnification of 6.4 (inHeteronympha). The rhabdom tip lies in the exit pupil of the telescope and is imaged into the cornea with a magnification of 9.1 (in the same species).
2.  Using light reflected from the eye's tapetum, we studied the waveguide mode phenomena of the rhabdom. Different butterflies showed either one, two or three waveguide modes, depending on the rhabdom diameter. The mode patterns were observed at four different optical planes: at the cornea, at infinity, at the back focal plane of the corneal lens — which, for this measurement, was optically neutralised — and at the plane of the deep pseudopupil.
3.  During light adaptation the closure of the pupil caused the modes to disappear in sequence, starting with the highest order. The behaviour of the fading modes indicates that the pupil acts by absorption rather than by a change of refractive index around the rhabdom.
4.  The modes were used to measure the waveguide parameter of the rhabdom, from which its refractive index was deduced to be 1.36.
5.  The distinction between near-field and farfield versions of the mode patterns provided further evidence in favour of an afocal optical system.
Two different interpretations of the butterfly optical system are discussed and we present a hypothesis to explain how both afocal apposition and refracting superposition optical systems evolved in insect eyes.  相似文献   

11.
Summary Structurally specialized ommatidia at the dorsal rim of the compound eyes of honey bees have been shown to be indispensable for polarized skylight navigation. In this study numerous other hymenopteran genera belonging to various superfamilies are shown to exhibit similar specializations in this part of the eye: (1) The cornea is penetrated by pore canals, which affect the optics of the ommatidia by scattering the light falling into the eye. In Andrena and Ammophila the cornea contains extensive cavities. (2) Each retinula contains 9 long receptor cells as opposed to 8 long ones in the adjacent dorsal area, and the rhabdom area is increased by a factor of up to 2. In all ant species examined there are no corneal but only retinal specializations at the dorsal rim of the eye. They include a specially shaped rhabdom as in Cataglyphis, in which polarization vision has also been demonstrated.  相似文献   

12.
The rhabdoms of the larval ocelli of the mosquito Aedes aegypti undergo morphological light and dark adaptation over periods of hours. The rhabdom enlarges during dark adaptation and grows smaller during light adaptation. Diminution is exponential, enlargement linear, and rates of change are proportional to log light intensity. Rhabdoms maintained at a constant intensity level off at a constant volume proportional to log intensity. We argue that changes in rhabdom volume after changes in light intensity reflect an influence of light on the turnover of photoreceptro membrane, and that the volumes at which rhabdoms level off represent equilibria between opposed processes of membrane loss and renewal.  相似文献   

13.
Processionary caterpillars of Thaumetopoea pityocampa (in Europe) and Ochrogaster lunifer (in Australia) (Lepidoptera: Notodontidae) form single files of larvae crawling head-to-tail when moving to feeding and pupation sites. We investigated if the processions are guided by polarization vision. The heading orientation of processions could be manipulated with linear polarizing filters held above the leading caterpillar. Exposure to changes in the angle of polarization around the caterpillars resulted in corresponding changes in heading angles. Anatomical analysis indicated specializations for polarization vision of stemma I in both species. Stemma I has a rhabdom with orthogonal and aligned microvilli, and an opaque and rugged surface, which are optimizations for skylight polarization vision, similar to the dorsal rim of adult insects. Stemmata II-VI have a smooth and shiny surface and lobed rhabdoms with non-orthogonal and non-aligned microvilli; they are thus optimized for general vision with minimal polarization sensitivity. Behavioural and anatomical evidence reveal that polarized light cues are important for larval orientation and can be robustly detected with a simple visual system.  相似文献   

14.
Interspecific variations in rhabdom structure between various oplophorid shrimps are described and the differences are related to the light environment at different depths within the mesopelagic zone. The ultrastructure of the distal rhabdom in these species is described for the first time. Quantitative measurements show that the proportion of the rhabdom layer occupied by the distal rhabdom varies from 3.5-25% in the dorsoventral plane of the eye of Systellaspis debilis. The distal rhabdom occupies less than 1% of the rhabdoms in the eye of Acanthephyra pelagica, where it can only be seen by using the electron microscope. It is suggested that the rhabdoms of those species that remain within the photic zone (such as S. debilis) are adapted to maximize contrast, whereas in those whose depth ranges extend into the aphotic zone (such as A. pelagica) they are adapted for maximum sensitivity.  相似文献   

15.
The apposition compound eye of a nocturnal bee, the halictid Megalopta genalis, is described for the first time. Compared to the compound eye of the worker honeybee Apis mellifera and the diurnal halictid bee Lasioglossum leucozonium, the eye of M. genalis shows specific retinal and optical adaptations for vision in dim light. The major anatomical adaptations within the eye of the nocturnal bee are (1) nearly twofold larger ommatidial facets and (2) a 4–5 times wider rhabdom diameter than found in the diurnal bees studied. Optically, the apposition eye of M. genalis is 27 times more sensitive to light than the eyes of the diurnal bees. This increased optical sensitivity represents a clear optical adaptation to low light intensities. Although this unique nocturnal apposition eye has a greatly improved ability to catch light, a 27-fold increase in sensitivity alone cannot account for nocturnal vision at light intensities that are 8 log units dimmer than during daytime. New evidence suggests that additional neuronal spatial summation within the first optic ganglion, the lamina, is involved.B.G. is thankful for travel awards from the Royal Physiographic Society, the Per Westlings Fond, the Foundation of Dagny and Eilert Ekvall and the Royal Swedish Academy of Sciences. E.J.W. is grateful for the support of a Smithsonian Short-Term Research Fellowship, the Swedish Research Council, the Crafoord Foundation, the Wenner-Gren Foundation and the Royal Physiographic Society of Lund for their ongoing support  相似文献   

16.
The fine structure of the Squilla ommatidium suggests that elastic scattering of light may occur in the rhabdom. A detailed study of this phenomenon allows us to interpret the movement of the pigment granules of the retinula cells and the corresponding change of the rhabdom shape in light — and dark — adaptation.  相似文献   

17.
We have conducted a polarized fluorescence photobleaching recovery (FPR) study of the rotational dynamics of ethidium azide labeled DNA. Polarized photobleaching experiments provide data on microsecond and millisecond molecular reorientation that complement the information available from nanosecond fluorescence depolarization studies. In polarized FPR experiments an anisotropic angular concentration of fluorophore is created by bleaching dye molecules in a preferred orientation with a short, intense pulse of polarized light. The sample is then weakly illuminated, and the temporal variation in the emitted fluorescence is monitored. The fluorescence signal will systematically change as molecules undergo post-bleach reorientation and the angular distribution of dye tends toward isotropy. We have observed that the time dependence of our microsecond FPR curves is also determined in part by nonrotational phenomena. To isolate the reorientational recovery we conduct our FPR experiments in two modes (called parallel and perpendicular) that differ only in the polarization of the bleaching light. A quotient function, R(t), is constructed from the data obtained in these two modes; the variation with time of this new quantity is governed solely by processes that are sensitive to the polarization of the incident light (e.g., molecular rotation). It is found experimentally that R(t) remains constant, as expected, for rotationally restricted DNA systems despite a temporal recovery in the parallel and perpendicular FPR curves. We also follow the dynamics of solutions of phage lambda DNA as revealed in the temporal dependence of R(t). This DNA system rotationally relaxes after approximately 100 microseconds and the dye/DNA complex reorients substantially during the 10-microseconds bleach period. Our FPR data are interpreted in terms of dynamic models of DNA motion.  相似文献   

18.
We have re-investigated the organization of ocelli in honeybee workers and drones. Ocellar lenses are divided into a dorsal and a ventral part by a cusp-shaped indentation. The retina is also divided, with a ventral retina looking skywards and a dorsal retina looking at the horizon. The focal plane of lenses lies behind the retina in lateral ocelli, but within the dorsal retina in the median ocellus of both workers and drones. Ventral retinula cells are ca. 25 μm long with dense screening pigments. Dorsal retinula cells are ca. 60 μm long with sparse pigmentation mainly restricted to their proximal parts. Pairs of retinula cells form flat, non-twisting rhabdom sheets with elongated, straight, rectangular cross-sections, on average 8.7 μm long and 1 μm wide. Honeybee ocellar rhabdoms have shorter and straighter cross-sections than those recently described in the night-active bee Megalopta genalis. Across the retina, rhabdoms form a fan-shaped pattern of orientations. In each ocellus, ventral and dorsal retinula cell axons project into two separate neuropils, converging on few large neurons in the dorsal, and on many small neurons in the ventral neuropil. The divided nature of the ocelli, together with the particular construction and arrangement of rhabdoms, suggest that ocelli are not only involved in attitude control, but might also provide skylight polarization compass information.  相似文献   

19.
Retinal fine structure and optics of the eye of the dung beetle Euoniticellus africanus have been studied and compared with those of three other scarabaeid beetles: Repsimus manicatus, Anoplognathus pallidicollis and Sericesthis geminata. The eye of Euoniticellus, in common with that of the other three species, possesses a dioptric system in which light first passes through a thick optically homogeneous cornea, and then enters a non-homogeneous crystalline cone. The lens cylinder properties of the latter cause the light rays to become partially focused across the clear-zone upon the rhabdom layer. Rays traced through a large scale drawing of the eye, with refractive indices measured for each component, predict an acceptance angle of approximately 26°. Since no significant aperture changes, lengthening of crystalline thread, cell or pigment migrations appear to be associated with dark/light adaptation, the eye may be assumed to be permanently poorly focused. In optomotor experiments the beetles did not show their characteristic antennal following response to black and white stripes when the latter had repeat periods of <30°. Structurally the eye of Euoniticellus differs markedly from that of other scarabaeids. It is totally divided into dorsal and ventral eye which are of a different size (the dorsal eye is smaller), but whose structural organization is basically the same. Principal pigment cells (they do not fully surround the cone) as well as accessory pigment cells (they accompany the retinula cells in an extraordinarily regular fashion as far as to the basement membrane) exhibit some unusual features. On the proximal side of the clear-zone, at a level where all retinula cell membranes form complex meanders and convolutions, cell 1 is the first to possess a rhabdomere. In it, all microvilli run parallel. This rhabdomere becomes part of the rectangular proximal rhabdom over the upper 20% of its length. Below this level the rhabdom consists of 6 rhabdomeres, but throughout its length microvilli are oriented in 2 orthogonal directions. It is thought that polarization sensitivity in dung beetles generally is related to the rhabdom organization described for Euoniticellus. An eighth (basal) cell is present in each ommatidium, but it lacks a rhabdomere. A tracheal tapetum is not developed. Finally, the point is made not to regard all different eye structures in insects as perfect adaptations to a particular environment or way of living, for specializations of photoreceptors may either follow, parallel or precede any ecological adaptation.  相似文献   

20.
The fine structure of the compound eyes of the adult diving beetle Agabus japonicus is described with light, scanning, and transmission electron microscopy. The eye of A. japonicus is mango‐shaped and consists of about 985 ommatidia. Each ommatidium is composed of a corneal facet lens, an eucone type of crystalline cone, a fused layered rhabdom with a basal rhabdomere, seven retinula cells (including six distal cells and one basal cell), two primary pigment cells and an undetermined number of secondary pigment cells that are restricted to the distalmost region of the eye. A clear‐zone, separating dioptric apparatus from photoreceptive structures, is not developed and the eye thus resembles an apposition eye. The cross‐sectional areas of the rhabdoms are relatively large indicative of enhanced light‐sensitivity. The distal and central region of the rhabdom is layered with interdigitating microvilli suggesting polarization sensitivity. According to the features mentioned above, we suggest that 1) the eye, seemingly of the apposition type, occurs in a taxon for which the clear‐zone (superposition) eye is characteristic; 2) the eye possesses adaptations to function in a dim‐light environment; 3) the eye may be sensitive to underwater polarized light or linearly water‐reflected polarized light. J. Morphol. 275:1273–1283, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号