首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein phi 0 is a unique protein which is present in the sperm of the sea cucumber, Holothuria tubulosa. It associates with histones, but its physiological role is unknown. From its amino acid composition and sequence, protein phi 0 can be considered as an H1-related protein. In this paper, we have studied its interaction with chicken erythrocyte chromatin particles of different complexity, from core particles to polynucleosomes. Addition of protein phi 0 results in marked chromatin insolubilization. The higher the molecular weight of the chromatin fragment, the lower is the phi 0/nucleosome molar ratio at which precipitation occurs, so that complete insolubilization of polynucleosomes is achieved at a phi 0/nucleosome molar ratio which is identical to that found in mature H. tubulosa spermatozoa. We have also found that the interaction of protein phi 0 with chromatin is cooperative. These findings contribute to clarification of the peculiar physico-chemical properties shown by H. tubulosa sperm chromatin and the role played by the phi 0 protein.  相似文献   

2.
L Cornudella  E Rocha 《Biochemistry》1979,18(17):3724-3732
Conformational changes that occur in chromatin from developing germ cells of the echinoderm Holothuria tubulosa have been probed with micrococcal nuclease. The results indicate that the extent of DNA degradation to acid-soluble nucleotides is highest in chromatin at the early stages of gonad growth, being drastically subdued in the mature sperm cell. Production of nucleosomal particles also varies with development, involving at least 70% of the chromatin at the final stage of maturation, whereas in immature germ cells it remains much lower. In contrast, electrophoretic analysis for DNA size has shown that the average nucleosome repeat length, about 227 base pairs, does not change throughout the maturation process. However, kinetics of the enzyme reaction have revealed that, although brief digestion of chromatin from both immature gonads and sperm yields comparable series of higher oligomers, extensive digest patterns differ widely. Sperm chromatin, highly protected, releases a 275 base pair intermediate fragment, wholly absent in immature gonads. The 145 base pair core released in both chromatins is not further digested in sperm. In comparison to sperm chromatin, that of immature germ cells is much more susceptible to fragmentation, yielding the usual set of smaller subnucleosomal fragments. These data suggest the induction of differential accessibilities of chromatin DNA with maturation, which is not accompanied by displacement of the histone complement. The histone variants present in this species may well be instrumental in the process.  相似文献   

3.
Nuclei of spermatozoa of the sea cucumber Holothuria tubulosa contain the five somatic-type histones plus a sperm-specific histone H1 and a unique basic protein phi 0, which is related to H1 in amino acid composition. No proteins of the High Mobility Group (HMG) type have been detected. The structure of this chromatin has been probed nuclease digestion. Its behaviour is anomalous, since two distinct fractions of chromatin are recovered from these spermatozoa, which differ either in the presence or absence of the sperm-specific proteins H1 and phi 0. This heterogeneous distribution is not found in conventional materials, such as calf thymus or chicken erythrocytes. Proteins H1 and phi 0 are not uniformly distributed and may be localized in special regions of chromatin. Fragments containing long stretches of nucleosomes lacking both proteins can be recovered. At the same time, the chromatin fractions which contain these two proteins are shown to be less soluble. When an extensive digestion of chromatin is carried out yielding only nucleosomes and small oligomers, the H1 and phi 0 proteins redistribute themselves on chromatin, the two proteins acting in a cooperative fashion in this process. Cross-linking experiments carried out in whole cells indicate a proximity of phi 0 and H1, whereas no crosslinks have been detected between phi 0 and any of the four nucleosomal histones. The phi 0 protein may thus play a role similar to histone H1 and be only loosely associated with nucleosomal histones, but contribute to the structuration of chromatin during spermiogenesis.  相似文献   

4.
Chromosomal proteins in the spermatogenesis of Drosophila   总被引:1,自引:0,他引:1  
Hennig W 《Chromosoma》2003,111(8):489-494
  相似文献   

5.
6.
We have investigated the micrococcal nuclease digestion of chromatin from the spermatozoa of the sea cucumber Holothuria tubulosa. This chromatin contains minor protein variants related to histone H1 with a high proportion of basic amino acids. One of these variants, protein phi 0, represents about 4% of the total histones. It is 78 amino acids long and its amino acid composition and sequence are related to the very basic C-terminal region of histone H1. The presence of these proteins induces an unusual digestion pattern. Oligonucleosomal particles which are soluble at 150 mM NaCl are depleted of protein phi 0 and they are also defective in histone H1. A low percentage of the insoluble material can be solubilized at lower NaCl concentrations (50 mM). These oligonucleosomal particles show a very peculiar protein content, since at early digestion times, they contain histone H1 and protein phi 0 exclusively. We conclude that these particles arise from a cooperative displacement of core histones by protein phi 0 and histone H1. These results show that minor changes in histone H1 complement can result in the formation of artifactual particles upon microccocal nuclease digestion. These observations may be of interest in other systems which contain H1 variants.  相似文献   

7.
ADP-ribosylation of pancreatic histone H1 and of other histones   总被引:2,自引:0,他引:2  
Incubation of pancreatic nuclei with high NAD concentrations resulted in increased ADP-ribosylation of histone H1. Interaction of [3H]ADP-ribosylated histone H1 with chromatin was significantly different from unmodified histone H1. The presence of a protein which is eluted at a lower salt concentration and which is ADP-ribosylated was also noticed. Pancreatic histones were isolated by column chromatography and their degree of ADP-ribosylation evaluated both by gel electrophoresis and by chromatography: histone H1 was the main acceptor while the core histones H3, H2B, and H2A were lightly labelled. Histones H1 and H1(0) have a differential binding to pancreatic chromatin and histone H1(0) is not ADP-ribosylated.  相似文献   

8.
9.
10.
1. Histones H1 and H5 in chromatin and in free solution can be cross-linked to higher multimers. Is this due to a specific protein/protein interaction? If so, this interaction might be the structural basis of the condensation of the chromosomal nucleofilament, known to be mediated by histones H1 and H5. 2. Since only the central domain of H1 and H5 exhibits tertiary folding and globular structure, this is the most likely site of specific interaction. 3. Formaldehyde has been used to test whether the central domains of histone H1 from calf thymus or from sea urchin sperm or histone H5 from chicken erythrocytes self-interact. 4. The cross-linking shown by each globular peptide was compared with that of its parent histone. 5. In all three cases the peptide cross-linked to a much lower extent than its intact parent histone and the observed cross-linked rates were roughly in proportion to the relative number of lysine residues parent histone and peptide. 6. It is concluded that there is no specific self-interaction between the globular domains of either H1 or H5 molecules in free solution. 7. This result suggests that specific H1/H1 protein/protein interactions are not the basic cause of chromatin condensation.  相似文献   

11.
12.
Decondensation of compact and inactive sperm chromatin by egg cytoplasm at fertilization is necessary to convert the male germ cell chromatin to an active somatic form. We studied decondensation of sea urchin sperm nuclei in a cell-free extract of sea urchin eggs to define conditions promoting decondensation. We find that egg cytosol specifically phosphorylates two sperm-specific (Sp) histones in vitro in the same regions as in vivo. This activity is blocked by olomoucine, an inhibitor of cdc2-like kinases, but not by chelerythrine, an inhibitor of protein kinase C (PKC). PKC phosphorylates and solubilizes the sperm nuclear lamina, one requirement for decondensation. Olomoucine, which does not inhibit lamina removal, blocks sperm nuclear decondensation in the same concentration range over which it is effective in blocking Sp histone phosphorylation. In a system free of other soluble proteins, neither PKC nor cdc2 alone elicit sperm chromatin decondensation, but the two act synergistically to decondense sperm nuclei. We conclude that two kinases activities are sufficient for sea urchin male pronuclear decondensation in vitro, a lamin kinase (PKC) and a cdc2-like Sp histone kinase.  相似文献   

13.
Whole histones and histone fractions of the sea urchin, Arbacia lixula, embryos have been characterized by their appearance during development and by their amino acid composition. Comparison of electrophoretic mobility of the histone fractions from hatching blastula and gastrula stage embryos demonstrates the similarity of the basic proteins at these two stages. Histones F2a1 and F3 of hatching embryos are very similar to those of sperm, including the presence of cysteine in F2a1 from both sources. Both F2a1 and F3 display electrophoretic heterogeneity due to acetylation, not observed in the homologous sperm histones. F2a2 from embryos has different electrophoretic mobility than that from sperm, although their amino acid compositions are very similar. The relative proportion of F2a2 increases whereas that of F3 decreases during gastrulation. Slightly lysine-rich histone F2b could not be recovered from embryos by the standard methods of extraction. The very lysine-rich histone F1 of late embryos is partially phosphorylated and is remarkably different from that of sperm, notably by its higher electrophoretic mobility and lower content in arginine and proline. The significance of these results is discussed with regard to the structure and activity of chromatin.  相似文献   

14.
Messenger RNA has been isolated from the postribosomal supernatant of Spisula solidissima eggs. This mRNA directs the synthesis of several proteins when added to the ascites or wheat germ cell free system. No histone except F1 is coded for by Spisula egg mRNA, in contrast to what has been reported previously for sea urchin egg mRNA. In sea urchin eggs histone mRNA is among the abundant species of maternal mRNA.Histones have been prepared from Spisula embryos at different development stages and histone synthesis followed by incubation with (14C)lysine. The analysis by electrophoresis on acrylamide gels indicates that the pattern of synthesis of histones changes during development and that a new histone F1 fraction is actively synthesized from the 32–64 cells stage. In earlier embryos a different F1 histone is synthesized and the mRNA for this protein may be the only histone mRNA present in eggs.  相似文献   

15.
In recent years, much knowledge about the functions of defined genes in spermatogenesis has been gained by making use of mouse transgenic and gene knockout models. Single null mutations in mouse genes encoding four male germ cell proteins, transition protein 2 (Tnp-2), proacrosin (Acr), histone H1.1 (H1.1), and histone H1t (H1t), have been generated and analyzed. Tnp-2 is believed to participate in the removal of the nuclear histones and initial condensation of the spermatid nucleus. Proacrosin is an acrosomal protease synthesized as a proenzyme and activated into acrosin during the acrosome reaction. The linker histone subtype H1.1 belongs to the group of main-type histones and is synthesized in somatic tissues and germ cells during the S-phase of the cell cycle. The histone gene H1t is expressed exclusively in spermatocytes and may have a function in establishing an open chromatin structure for the replacement of histones by transition proteins and protamines. Male mutant mice lacking any of these proteins show no apparent defects in spermatogenesis or fertility. To examine the synergistic effects of these proteins in spermatogenesis and during fertilization, two lines of triple null mice (Tnp-2-/-/Acr-/-/H1.1-/- and Tnp-2-/-/Acr-/-/H1t-/-) were established. Both lines are fertile and show normal sperm parameters, which clearly demonstrate the functional redundancy of these proteins in male mouse fertility. However, sperm only deficient for Acr (Acr-/-) are able to compete significantly with sperm from triple knockout mice Tnp-2-/-/Acr-/-/H1.1-/- (70.7% vs. 29.3%) but not with sperm from triple knockout mice Tnp-2-/-/Acr-/-/H1t-/- (53.6% vs. 46.4%). These results are consistent with a model that suggests that some sperm proteins play a role during sperm competition.  相似文献   

16.
17.
T M Cao  M T Sung 《Biochemistry》1982,21(14):3419-3427
Histones have been cross-linked to DNA in chicken erythrocyte nuclei and chromatin by using ultraviolet light irradiation at 254 nm. Following irradiation, cross-linked histone-DNA adducts were isolated and purified by hydroxylapatite chromatography, and the DNA component was subjected to acid hydrolysis. Of several hydrolysis techniques investigated, trichloroacetic hydrolysis of the DNA component of the adducts was found to be most effective. Histones isolated from hydrolyzed histone-DNA adducts were characterized by gel electrophoresis and fingerprint analysis. No histone-histone protein adducts were observed. All histone fractions have been shown to cross-link DNA in nuclei or chromatin by utilizing the technique employed, but with different propensities. The order of observed cross-linking, deduced from kinetic experiments, is H1 + H5, H3 greater than H4 greater than H2A much greater than H2B. The preferential binding of the core histone H3, as compared to the other core histones, is discussed in light of recent data concerning histone-DNA interactions and nucleosome structure. The use of the ultraviolet light technique as a conformational probe to study chromatin is also discussed.  相似文献   

18.
Histones are the most abundant protein family in the cells of complex organisms such as mammals and, together with DNA, they define the backbone of chromatin. Histone PTMs are key players of chromatin biology, as they function as anchors for proteins that bind and modulate chromatin readout, including gene expression. Middle‐down mass spectrometry (MS) has been optimized for about 10 years to study histone N‐terminal tails, but it has been rarely applied to identify the role of coexisting histone marks in biology. In this work, Jiang et al. used middle‐down MS to study the dynamics of coexisting PTMs on histone H4 in two breast cancer cell lines. 1 They found that overall serine 1 phosphorylation (S1ph) is mildly regulated during the cell cycle, but S1ph coexistence frequency with acetylations and methylations on the lysine residues of the N‐terminal tail is remarkably tuned during S phase and G2/M phase. Together, the team placed another benchmark proving that MS analysis of combinatorial histone PTMs provides a more comprehensive view on chromatin state than studying individual marks. We should then constantly question ourselves regarding the limitations of analyzing single PTMs when we attempt to define their effect on protein functions.  相似文献   

19.
Over 200 genes have been shown to be associated with infertility in mouse models. However, knockout mice reveal unexpected functional redundancy of some germ cell expressed genes. Single null mutations in mouse genes encoding four male germ cell proteins, transition protein 2 (Tnp2), proacrosin (Acr), histone H1.1 (H1.1), histone H1t (H1t) and sperm mitochondria-associated cysteine-rich protein (Smcp) have been generated and analysed. Tnp2 is believed to participate in the removal of the nuclear histones and initial condensation of the spermatid nucleus. Proacrosin is an acrosomal protease synthesized as a proenzyme and activated into acrosin during the acrosome reaction. The linker histone subtype H1.1 belongs to the group of main-type histones and is synthesized in somatic tissues as well as in germ cells during the S-phase of the cell cycle. The histone gene Hist1h1t is expressed exclusively in spermatocytes and may have a function in establishing an open chromatin structure for the replacement of histones by transition proteins and protamines. Sperm mitochondria-associated cysteine-rich protein (Smcp) is a major structural element of the mitochondria in the midpiece of the sperm tail. Male mutant mice lacking any of these proteins show no apparent defects in spermatogenesis or fertility. To examine the synergistic effects of these proteins in spermatogenesis and during fertilization four lines of double knockout mice Hist1h1a/Mcsp, Hist1h1t/Mcsp, Tnp2/Mcsp and Acr/Mcsp were established. It was found that even when knockout mice are heterozygous for one allele (-/+) and homozygous for the other allele (-/-), mice were subfertile. Homozygous double knockout mice of all four lines are nearly infertile. However, in the four homozygous double knockout mouse lines, different characteristic abnormalities are prominently manifested: In Hist1h1a-/-/Mcsp-/- the migration of spermatozoa is disturbed in female genital tract, in Hist1h1t-/-/Mcsp-/- spermatozoa show morphological head abnormalities, in Tnp2-/-/Mcsp-/- the motility of sperm is affected, and in Acr-/-/Mcsp-/- the sperm-oocyte interaction is impaired. These findings indicate strongly that male germ cell expressed genes have synergistic effects on male fertility.  相似文献   

20.
At intermediate stages of male pronucleus formation, sperm-derived chromatin is composed of hybrid nucleoprotein particles formed by sperm H1 (SpH1), dimers of sperm H2A-H2B (SpH2A-SpH2B), and a subset of maternal cleavage stage (CS) histone variants. At this stage in vivo, the CS histone variants are poly(ADP-ribosylated), while SpH2B and SpH1 are phosphorylated. We have postulated previously that the final steps of sperm chromatin remodeling involve a cysteine-protease (SpH-protease) that degrades sperm histones in a specific manner, leaving the maternal CS histone variants unaffected. More recently we have reported that the protection of CS histones from degradation is determined by the poly(ADP-ribose) moiety of these proteins. Because of the selectivity displayed by the SpH-protease, the coexistence of a subset of SpH together with CS histone variants at intermediate stages of male pronucleus remodeling remains intriguing. Consequently, we have investigated the phosphorylation state of SpH1 and SpH2B in relation to the possible protection of these proteins from proteolytic degradation. Histones H1 and H2B were purified from sperm, phosphorylated in vitro using the recombinant alpha-subunit of casein kinase 2, and then used as substrates in the standard assay of the SpH-protease. The phosphorylated forms of SpH1 and SpH2B were found to remain unaltered, while the nonphosphorylated forms were degraded. On the basis of this result, we postulate a novel role for the phosphorylation of SpH1 and SpH2B that occurs in vivo after fertilization, namely to protect these histones against degradation at intermediate stages of male chromatin remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号