首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Onset of spermatogenesis is associated with a wave of apoptosis, which limits its efficacy during the first cycles in most mammals. After the first cycles, the actual efficacy of spermatogenesis always remains below the theoretical yield. Among the germinal cells, spermatogonia are the main targets of physiological apoptosis. This physiological apoptosis partly depends on the relationships between germ cells and Sertoli cells. The impact of the Sertoli cell/germ cell number ratio on the efficacy of spermatogenesis is well accepted, the concept of density-dependent regulation in the seminiferous tubule was proposed in the early eighties. Since the steps of spermatogenesis require a continuous progression of the cell cycle rather than an arrest, germ cells might therefore be more sensitive to apoptosis. This may also lead to severe disturbances between proliferation and cell death. The first experiments designed to elucidate the mechanisms of germ cell apoptosis were based on hormonal deprivation or cryptorchidism. However, the link between hormonal or cellular action and cell survival remained to be established. Analysis of signal transduction pathways involved in germ cell apoptosis and their regulation were the next steps. The involvement of bcl-2 family genes has been confirmed, although the expression of some of its members remains more controversial. Data derived from overexpression of some genes (Bcl-2, Bcl-xl) or resulting from gene inactivation (Bax) at the testicular level have highlighted the role of these genes in the control of germ cell apoptosis and have also provided some evidence for the strict requirement for density-dependent regulation of spermatogenesis. More recently, variations in the pattern of expression of these genes or proteins helped to explain some of the discrepancies in the literature. The place of the Fas/Fas ligand system during the first cycle of spermatogenesis remains a matter of debate, with controversies concerning the precise site of expression of this oncogene and its receptor. Conversely, its role in the testis after chemotoxic or radiotoxic treatments is well established. However, the normal fertility of animals with a spontaneous inactivation of Fas or Fas L genes does not support a physiological role of these factors during spermatogenesis. While factors involved in TNF/TNF R1 (Tumor Necrosis Factor) are under study, some data have been reported concerning the role of TRAIL (TNFalpha Related Apoptosis Inducing Ligand) and its active or decoy receptors in the testis. Among the oncogenes which may modulate the apoptotic process, Kit/Stem Cell Factor is particularly interesting, as Kit is expressed in some germ cells and Leydig cells, whereas SCF is expressed by Sertoli cells. Its impact during gonadal development and in the survival and proliferation of differentiated spermatogonia has been clearly established. Using a transgenic mice model, in which the Kit gene was inactivated by the insertion of a nls-lacZ sequence in its first exon, we showed that one single copy of the gene was unable to sustain physiological spermatogenesis and fertility in male mice. Our results also suggest that the Kit gene might be expressed at different steps of spermatogenesis, with different signal transduction pathways and biological actions. Finally, analysis of the signal transduction pathways involved in testicular apoptosis and their mechanisms of control is one of the key steps to a better understanding of both impairment of spermatogenesis and the pathogenesis of certain germ cell tumours.  相似文献   

2.
The discrimination and differentiation of germ cells from somatic cells is a fundamental issue during development. The early specification of mouse primordial germ cells (PGCs) is achieved by the induction of Blimp1, a key regulator of germ cells. Nanos3 is one of the genes activated in early PGCs and prevents apoptosis during their migration stage. Once PGCs enter the embryonic gonads, they differentiate according to the somatic sex of the organism. During this process, Nanos2 plays an important role as it promotes male germ cell pathway by suppressing the female fate. In this review, the process of germ cell development in the mouse is discussed with a particular focus on the functions of the key proteins, Blimp1, Nanos, and Dead end1.  相似文献   

3.
Recent advances in the field of cell death, primarily derived from gene-transfer experiments and manipulation of tumor cell lines in vitro, have identified key genes responsible for determining whether or not a given cell will initiate apoptosis. However, comparatively less is known of the role that the products of these genes play in physiological settings of cell death. In the ovary, a tremendous level of normal cell death takes place in the germline throughout the later stages of fetal development. This process is responsible for setting the absolute number of oocytes ('eggs') available for subsequent development and ovulation during adult life. Interestingly, death remains the fate of the vast majority of oocytes that survive the waves of attrition during fetal life and are endowed in the post-natal ovary as primordial follicles. This pool of oocytes is lost indirectly as a consequence of the death of the somatic (granulosa) cells that, in the case of a small percentage of the total follicles, support and nourish the oocyte until its release at ovulation. Due to the magnitude of cell death that occurs normally within the female gonad during both fetal development and post-natal life, the ovary has proven to be an excellent model to study the role of cell death genes in a physiological setting of endocrine-regulated apoptosis. It is now known that a diverse spectrum of pro- and anti-apoptosis susceptibility genes, including members of the bcl-2 and CASP (ced-3/Ice) gene families, are expressed in germ cells and/or somatic cells of the ovary. Many, but not all, of these genes are regulated by specific survival factors, such as gonadotropins and growth factors, and changes in the temporal patterns of cell death gene expression suggest an intimate association exists between the products of these genes and activation of cellular suicide. Moreover, pathological oocyte destruction, such as that triggered by exposure of female germ cells to chemotherapeutic compounds or environmental toxicants, may also be dependent upon gene-driven apoptosis. As such, this review will discuss data supporting the hypothesis that the susceptibility of ovarian cells to death induction is dependent upon the pattern of cell death gene expression occurring within those cells prior to and/or concomitant with receipt of the stimulus for apoptosis. Elucidation of the relationship between germ cell loss and cell death genes may allow future intervention into the process of oocyte depletion associated with normal and pathophysiological reproductive senescence.  相似文献   

4.
The commitment of germ cells to either oogenesis or spermatogenesis occurs during fetal gonad development: germ cells enter meiosis or mitotic arrest, depending on whether they reside within an ovary or a testis, respectively. Despite the critical importance of this step for sexual reproduction, gene networks underlying germ cell development have remained only partially understood. Taking advantage of the W(v) mouse model, in which gonads lack germ cells, we conducted a microarray study to identify genes expressed in fetal germ cells. In addition to distinguishing genes expressed by germ cells from those expressed by somatic cells within the developing gonads, we were able to highlight specific groups of genes expressed only in female or male germ cells. Our results provide an important resource for deciphering the molecular pathways driving proper germ cell development and sex determination and will improve our understanding of the etiology of human germ cell tumors that arise from dysregulation of germ cell differentiation.  相似文献   

5.
Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex‐specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours. Results. In order to unravel the mechanisms utilized by germ cells to achieve and maintain the correct cell cycle states, we analysed the expression of a large number of cell cycle genes in purified germ cells across the crucial time of sex differentiation. Our results revealed common signalling for both XX and XY germ cell survival involving calcium signalling. A robust mechanism for apoptosis and checkpoint control was observed in XY germ cells, characterized by p53 and Atm (ataxia telangiectasia mutated) expression. Additionally, a member of the retinoblastoma family and p21 were identified, linking these factors to XY germ cell G1/G0 arrest. Lastly, in XX germ cells we observed a down‐regulation of genes involved in both G1‐ and G2‐phases of the cell cycle consistent with their entry into meiosis. Conclusion. The present study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors warranting further investigation in order to understand cases of aberrant cell cycle control in these specialized cells.  相似文献   

6.
7.
M Zhang  M Jiang  Y Bi  H Zhu  Z Zhou  J Sha 《PloS one》2012,7(7):e41412
Testicular heating suppresses spermatogenesis which is marked by germ cell loss via apoptotic pathways. Recently, it is reported that autophagy also can be induced by heat treatment in somatic cells. In this study, the status of autophagy in germ cells after heat treatment, as well as the partnership between autophagy and apoptosis in these cells was investigated. The results demonstrated that besides initiating apoptotic pathways, heat also induced autophagic pathways in germ cells. Exposure of germ cells to hyperthermia resulted in several specific features of the autophagic process, including autophagosome formation and the conversion of LC3-I to LC3-II. Furthermore, the ubiquitin-like protein conjugation system was implicated as being likely responsible for heat-induced autophagy in germ cells since all genes involving this system were found to be expressed in the testes. In addition, the upstream protein in this system, Atg7 (Autophagy-related gene 7), was found to be expressed in all types of spermatogenic cells, and its expression level was positively correlated with the level of autophagy in germ cells. As a result, Atg7 was selected as the investigative target to further analyze the role of autophagy in heat-induced germ cell death. It was shown that down expression of Atg7 protein resulted in the notable decrease in the level of autophagy in heat-treated germ cells, and this down-regulation of autophagy caused by Atg7 knockdown further reduced the apoptotic rate of germ cells. These results suggest that autophagy plays a positive role in the process of germ cell apoptosis after heat treatment. In conclusion, this study demonstrates that heat triggers autophagy and apoptosis in germ cells. These two mechanisms might act as partners, not antagonist, to induce cell death and lead to eventual destruction of spermatogenesis.  相似文献   

8.
The spermatogenic and oogenic lineages originate from bipotential primordial germ cells in response to signalling in the foetal testis or ovary, respectively. The signals required for male germ cell commitment and their entry into mitotic arrest remain largely unknown. Recent data show that the ligand GDNF is up regulated in the foetal testis indicating that it may be involved in male germ cell development. In this study genetic analysis of GDNF-RET signalling shows that RET is required for germ cell survival. Affected germ cells in Ret-/- mice lose expression of key germ cell markers, abnormally express cell cycle markers and undergo apoptosis. Surprisingly, a similar phenotype was not detected in Gdnf-/- mice indicating that either redundancy with a Gdnf related gene might compensate for its loss, or that RET operates in a GDNF independent manner in mouse foetal germ cells. Either way, this study identifies the proto-oncogene RET as a novel component of the foetal male germ cell development pathway.  相似文献   

9.
Ahmed S 《Aging cell》2006,5(6):559-563
A dichotomy exists between germ and somatic cells in most organisms, such that somatic cell lineages proliferate for a single generation, whereas the germ cell lineage has the capacity to proliferate from one generation to the next, indefinitely. Several theories have been proposed to explain the unlimited replicative life span of germ cells, including the elimination of damaged germ cells by apoptosis or expression of high levels of gene products that prevent aging in somatic cells. These theories were tested in the nematode Caenorhabditis elegans by examining the consequences of eliminating either apoptosis or the daf-16, daf-18 or sir-2.1 genes that promote longevity of postmitotic somatic cells. However, germ cells of strains deficient for these activities displayed an unlimited proliferative capacity. Thus, C. elegans germ cells retain their youthful character via alternative pathways that prevent or eliminate damage that accumulates as a consequence of cell proliferation.  相似文献   

10.
In the present study we employed a two-step culture system to study the expression of Fas, p53 and alpha-fetoprotein (AFP) in the development in vitro of human fetal germ cells. p53 mRNA was determined by Northern blotting, and Fas content was assessed by western blotting. RT-nested polymerase chain reaction (RT-nPCR) analysis was performed to determine the expression of AFP mRNA in different stages of fetal follicular development. Follicular cell apoptosis was evaluated by DNA fragmentation analyses (DNA ladder). The results showed that by day 7 of culture approximately one-sixth of fetal germ cells grew to class C oocytes (primary oocytes) from class B oocytes (primordial oocytes) or class A oocytes. On day 45 of culture, one-third of these primary follicles doubled in size. In the meantime, there was a high proportion apoptosis of follicular cells on days 35 or 45 of culture, as evident by a clear ladder pattern of DNA fragmentation upon electrophoretic analysis. Expression of Fas antigen and p53 mRNA increased in a time-dependent manner, while AFP mRNA was expressed on days 10 to 35, and disappeared on day 45. These results indicate that human fetal germ cells can develop in a two-step culture system and AFP may play an active role in the proliferation of these germ cells. At the late stage of follicular development in vitro, a number of follicular cells became apoptotic. Moreover, apoptosis may be the mechanism responsible for fetal germ cell regression and the Fas antigen and/or p53-mediated death pathway may be central in the induction of germ cell regression.  相似文献   

11.
Although the identification of specific genes that regulate apoptosis has been a topic of intense study, little is known of the role that background genetic variance plays in modulating cell death. Using germ cells from inbred mouse strains, we found that apoptosis in mature (metaphase II) oocytes is affected by genetic background through at least two different mechanisms. The first, manifested in AKR/J mice, results in genomic instability. This is reflected by numerous DNA double-strand breaks in freshly isolated oocytes, causing a high apoptosis susceptibility and impaired embryonic development following fertilization. Microinjection of Rad51 reduces DNA damage, suppresses apoptosis and improves embryonic development. The second, manifested in FVB mice, results in dramatic dimorphisms in mitochondrial ultrastructure. This is correlated with cytochrome c release and a high apoptosis susceptibility, the latter of which is suppressed by pyruvate treatment, Smac/DIABLO deficiency, or microinjection of 'normal' mitochondria. Therefore, background genetic variance can profoundly affect apoptosis in female germ cells by disrupting both genomic DNA and mitochondrial integrity.  相似文献   

12.
13.
It is important for human life in space to study the effects of environmental factors during spaceflight on a number of physiological phenomena. Apoptosis plays important roles in development and tissue homeostasis in metazoans. In this study, we have analyzed apoptotic activity in germ cells of the nematode C. elegans, following spacefight. Comparison of the number of cell corpses in wild type or ced-1 mutants, grown under either ground or spaceflight conditions, showed that both pachytene-checkpoint apoptosis and physiological apoptosis in germ cells occurred normally under spaceflight conditions. In addition, the expression levels of the checkpoint and apoptosis related genes are comparable between spaceflight and ground conditions. This is the first report documenting the occurrence of checkpoint apoptosis in the space environment and suggests that metazoans, including humans, would be able to eliminate cells that have failed to repair DNA lesions introduced by cosmic radiation during spaceflight.  相似文献   

14.
15.
Steroidogenesis and apoptosis in the mammalian ovary   总被引:5,自引:0,他引:5  
Ovarian cell death is an essential process for the homeostasis of ovarian function in human and other mammalian species. It ensures the selection of the dominant follicle and the demise of excess follicles. In turn, this process minimizes the possibility of multiple embryo development during pregnancy and assures the development of few, but healthy embryos. Degeneration of the old corpora lutea in each estrous/menstrual cycle by programmed cell death is essential to maintain the normal cyclicity of ovarian steroidogenesis. Although there are multiple pathways that can determine cell death or survival, crosstalk among endocrine, paracrine and autocrine factors, as well as among protooncogenes, tumor suppressor genes, survival genes and death genes, plays an important role in determining the fate of ovarian somatic and germ cells. The establishment of immortalized rat and human steroidogenic granulosa cell lines and the investigation of pure populations of primary granulosa cells allows systematic studies of the mechanisms that control steroidogenesis and apoptosis in granulosa cells. We have discovered that during initial stages of granulosa cell apoptosis progesterone production does not decrease. In contrast, we found that it is elevated up to 24h following the onset of the apoptotic stimuli exerted by starvation, cAMP, p53 or TNF-alpha stimulation, before total cell collapse. These observations raise the possibility for an alternative unique apoptotic pathway, one not involving mitochondrial Cyt C release associated with the destruction of mitochondrial structure and steroidogenic function. Using mRNA from apoptotic cells and affymetrix DNA microarray technology we discovered that granzyme B, a protease that normally resides in T cytotoxic lymphocytes and natural killer cells of the immune system is expressed and activated in granulosa cells. Thus, the apoptotic signals could bypass mitochondrial signals for apoptosis, which can preserve their steroidogenic activity until complete cell destruction. This unique apoptotic pathway assures cyclicity of estradiol and progesterone release in the estrous/menstruous cycle even during the initial stages of apoptosis.  相似文献   

16.
Cell cycle progression is prevented by signal transduction pathways known as checkpoints which are activated in response to replication interference and DNA damage. We cloned a G2/M cell cycle phase-related checkpoint gene from a neonatal mouse testis cDNA library which was identified as mouse claspin, a proposed adaptor protein for Chk1. As part of a study on germ cell differentiation we examined the expression of the checkpoint gene, Chk1, and claspin at 12.5 and 14.5 days post coitum (dpc) and in the post-natal phase. Chk1 mRNA expression increased from 12.5 to 14.5 dpc in female gonads and was strong in males at both time points. Claspin however, was not detected until 14.5 dpc. This suggests there may be some dissociation of claspin expression from Chk1 in fetal germ cell development. Chk1 and claspin expression was also studied in testis over the first 3 days following birth, when apoptosis regulates germ stem cell number. We modulated checkpoint-related gene expression in testis using the anti-metabolite, 5-fluorouracil, resulting in increased apoptosis and upregulation of Chk1 (P<0.0001) and Cdc2 (P<0.02) mRNA. Although we do not fully understand the role checkpoint gene expression has during mammalian germ cell development this report is the first to show the expression of checkpoint-related genes in early mammalian germ cells.  相似文献   

17.
Early in postnatal life the first phase of spermatogenesis is accompanied by an initial wave of germ cell apoptosis. This wave of germ cell death is thought to reflect an adjustment of germ cell numbers that can be adequately maintained by Sertoli cells. Caspase 2 is an initiator caspase whose activation has been found to stimulate apoptosis through the mitochondria. The present study investigates if germ cell apoptosis during the first phase of spermatogenesis involves activation of caspase 2. Germ cell apoptosis was found to peak at Postnatal Days (pnds) 15 and 16 in male C57BL/6 mice. Western blot analysis revealed that caspase 2 also increased in the testes at pnd 16. Immunolocalization of total caspase 2 showed staining of germ cells in the periphery of the seminiferous tubules as well as germ cells more centrally located in an area where apoptotic germ cells were observed. Cytoplasmic as well as nuclear staining was observed. Western blot analysis of cytoplasmic and nuclear proteins from pnd 16 testis revealed pro-caspase 2 in both fractions. Further Western blot analysis for caspase 2 detected an increase in the activation of caspase 2 at pnd 16 in proteins isolated from the cytoplasm but not from the nucleus. Proteins isolated from mitochondria from pnd 16 testes revealed an increase in pro-caspase 2 as well as activated caspase 2 corresponding with an increase in cytochrome c in cytoplasmic fractions. Injection of the caspase 2-specific inhibitor z-VDVAD-fmk directly into the testis significantly reduced the observed germ cell apoptosis at pnds 15 and 16. These results suggest that caspase 2 is present in germ cells in the murine testis in early postnatal life and increases in expression in correspondence to the initial wave of germ cell apoptosis. Caspase 2 also localizes to mitochondria, where it is correlated with a release of cytochrome c and germ cell apoptosis. Blockade of caspase 2 activation reduced the number of apoptotic germ cells in the initial wave of germ cell apoptosis, indicating that caspase 2 plays an important role upstream of the mitochondria in germ cell apoptosis during the first phase of spermatogenesis.  相似文献   

18.
19.
20.
Developmental potential of mouse primordial germ cells   总被引:9,自引:0,他引:9  
There are distinctive and characteristic genomic modifications in primordial germ cells that distinguish the germ cell lineage from somatic cells. These modifications include, genome-wide demethylation, erasure of allele-specific methylation associated with imprinted genes, and the re-activation of the X chromosome. The allele-specific differential methylation is involved in regulating the monoallelic expression, and thus the gene dosage, of imprinted genes, which underlies functional differences between parental genomes. However, when the imprints are erased in the germ line, the parental genomes acquire an equivalent epigenetic and functional state. Therefore, one of the reasons why primordial germ cells are unique is because this is the only time in mammals when the distinction between parental genomes ceases to exist. To test how the potentially imprint-free primordial germ cell nuclei affect embryonic development, we transplanted them into enucleated oocytes. Here we show that the reconstituted oocyte developed to day 9.5 of gestation, consistently as a small embryo and a characteristic abnormal placenta. The embryo proper also did not progress much further even when the inner cell mass was 'rescued' from the abnormal placenta by transfer into a tetraploid host blastocyst. We found that development of the experimental conceptus was affected, at least in part, by a lack of gametic imprints, as judged by DNA methylation and expression analysis of several imprinted genes. The evidence suggests that gametic imprints are essential for normal development, and that they can neither be initiated nor erased in mature oocytes; these properties are unique to the developing germ line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号