首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eukaryotic chaperonin containing T-complex polypeptide 1 (CCT) is required in vivo for the production of native actin and tubulin. It is a 900-kDa oligomer formed from two back-to-back rings, each containing eight different subunits surrounding a central cavity in which interactions with substrates are thought to occur. Here, we show that a monoclonal antibody recognizing the C terminus of the CCTalpha subunit can bind inside, and partially occlude, both cavities of apo-CCT. Rabbit reticulocyte lysate was programmed to synthesize beta-actin and alpha-tubulin in the presence and absence of anti-CCTalpha antibody. The binding of the antibody inside the cavity and its occupancy of a large part of it does not prevent the folding of beta-actin and alpha-tubulin by CCT, despite the fact that all the CCT in the in vitro translation reactions was continuously bound by two antibody molecules. Furthermore, no differences in the protease susceptibility of actin bound to CCT in the presence and absence of the monoclonal antibody were detected, indicating that the antibody molecules do not perturb the conformation of actin folding intermediates substantially. These data indicate that complete sequestration of substrate by CCT may not be required for productive folding, suggesting that there are differences in its folding mechanism compared with the Group I chaperonins.  相似文献   

2.
The 30-A cryo-EM-derived structure of apo-CCT-alpha-actin shows actin opened up across its nucleotide-binding cleft and binding to either of two CCT subunit pairs, CCTbeta-CCTdelta or CCTepsilon-CCTdelta, in a similar 1:4 arrangement. The two main duplicated domains of native actin are linked twice, topologically, by the connecting residues, Q137-S145 and P333-S338, and are tightly held together by hydrogen bonding with bound adenine nucleotide. We carried out a mutational screen to find residues in actin that might be involved in the huge rotations observed in the CCT-bound folding intermediate. When two evolutionarily highly conserved glycine residues of beta-actin, G146 and G150, were changed to proline, both mutant actin proteins were poorly processed by CCT in in vitro translation assays; they become arrested on CCT. A three-dimensional reconstruction of the substrate-bound ring of the apo-CCT-beta-actin complex shows that beta-actin G150P is not able to bind across the chaperonin cavity to interact with the CCTdelta subunit. beta-actin G150P seems tightly packed and apparently bound only to the CCTbeta and CCTepsilon subunits, which further indicates that these CCT subunits drive the interaction between CCT and actin. Hinge opening seems to be critical for actin folding, and we suggest that residues G146 and G150 are important components of the hinge around which the rigid subdomains, presumably already present in early actin folding intermediates, rotate during CCT-assisted folding.  相似文献   

3.
To reach a functional and energetically stable conformation, many proteins need molecular helpers called chaperonins. Among the group II chaperonins, CCT proteins provide crucial machinery for the stabilization and proper folding of several proteins in the cytosol of eukaryotic cells through interactions that are subunit-specific and geometry-dependent. CCT proteins are made up of eight different subunits, all with similar sequences, positioned in a precise arrangement. Each subunit has been proposed to have a specialized function during the binding and folding of the CCT protein substrate. Here, we demonstrate that functional divergence occurred after several CCT duplication events due to the fixation of amino acid substitutions by positive selection. Sites critical for ATP binding and substrate binding were found to have undergone positive selection and functional divergence predominantly in subunits that bind tubulin but not actin. Furthermore, we show clear functional divergence between CCT subunits that bind the C-terminal domains of actin and tubulin and those that bind the N-terminal domains. Phylogenetic analyses could not resolve the deep relationships between most subunits, except for the groups alpha/beta/eta and delta/epsilon, suggesting several almost simultaneous ancient duplication events. Together, the results support the idea that, in contrast to homo-oligomeric chaperonins such as GroEL, the high divergence level between CCT subunits is the result of positive selection after each duplication event to provide a specialized role for each CCT subunit in the different steps of protein folding.  相似文献   

4.
The eukaryotic cytosolic chaperonin CCT is an essential ATP-dependent protein folding machine whose action is required for folding the cytoskeletal proteins actin and tubulin, and a small number of other substrates, including members of the WD40-propellor repeat-containing protein family. An efficient purification protocol for CCT from Saccharomyces cerevisiae has been developed. It uses the calmodulin binding peptide as an affinity tag in an internal loop in the apical domain of the CCT3 subunit, which is predicted to be located on the outside of the double-ring assembly. This purified yeast CCT was used for a novel quantitative actin-folding assay with human beta-actin or yeast ACT1p protein folding intermediates, Ac(I), pre-synthesised in an Escherichia coli translation system. The formation of native actin follows approximately a first-order reaction with a rate constant of about 0.03 min(-1). Yeast CCT catalyses the folding of yeast ACT1p and human beta-actin with nearly identical rate constants and yields. The results from this controlled CCT-actin folding assay are consistent with a model where CCT and Ac(I) are in a binding pre-equilibrium with a rate-limiting binding step, followed by a faster ATP-driven processing to native actin. In this pure in vitro system, the human beta-actin mutants, D244S and G150P, show impaired folding behaviour in the manner predicted by our sequence-specific recognition model for CCT-actin interaction.  相似文献   

5.
The chaperonin containing TCP-1 (CCT) is a molecular chaperone consisting of eight subunit species and assists in the folding of actin, tubulin and some other cytosolic proteins. We examined the stress response of CCT subunit proteins in mammalian cultured cells using chemical stressors that cause accumulation of unfolded proteins. Levels of CCT subunit proteins in HeLa cells were coordinately and transiently upregulated under continuous chemical stress with sodium arsenite. CCT subunit levels in several mammalian cell lines were also upregulated during recovery from chemical stress caused by sodium arsenite or a proline analogue, L-azetidine-2-carboxylic acid. Several unidentified proteins that were newly synthesized and associated with CCT were found to increase concomitantly with CCT subunits themselves and known substrates during recovery from the stress. These results suggest that CCT plays important roles in the recovery of cells from protein damage by assisting in the folding of proteins that are actively synthesized and/or renatured during this period.  相似文献   

6.
The cytosolic chaperonin CCT is a 1‐MDa protein‐folding machine essential for eukaryotic life. The CCT interactome shows involvement in folding and assembly of a small range of proteins linked to essential cellular processes such as cytoskeleton assembly and cell‐cycle regulation. CCT has a classic chaperonin architecture, with two heterogeneous 8‐membered rings stacked back‐to‐back, enclosing a folding cavity. However, the mechanism by which CCT assists folding is distinct from other chaperonins, with no hydrophobic wall lining a potential Anfinsen cage, and a sequential rather than concerted ATP hydrolysis mechanism. We have solved the crystal structure of yeast CCT in complex with actin at 3.8 Å resolution, revealing the subunit organisation and the location of discrete patches of co‐evolving ‘signature residues’ that mediate specific interactions between CCT and its substrates. The intrinsic asymmetry is revealed by the structural individuality of the CCT subunits, which display unique configurations, substrate binding properties, ATP‐binding heterogeneity and subunit–subunit interactions. The location of the evolutionarily conserved N‐terminus of Cct5 on the outside of the barrel, confirmed by mutational studies, is unique to eukaryotic cytosolic chaperonins.  相似文献   

7.
The three-dimensional reconstruction of apo-CCT-alpha-actin by cryoelectron microscopy shows that actin binds either the CCTbeta-CCTdelta or the CCTepsilon-CCTdelta subunit pairs of the chaperonin in an open and apparently quasi-native conformation. The CCT-binding sites are seen located at the tips of the two arms of actin and these same regions of actin have been implicated in CCT binding through beta-actin peptide-array screening. Three main CCT binding regions exist: actin Sites I, II, and III, which are composed of loops that are surface-exposed in native actin. Sixty-eight amino acid residues on beta-actin have been screened by mutagenesis for effects on CCT interaction in quantitative in vitro translation assays in rabbit reticulocyte lysate. Actin seems to be folding cooperatively on chaperonin, since certain mutants discriminate CCT binding from processing. Actin Site II, located at the tip of actin subdomain 4, is the major determinant for CCT binding. Site II is composed of two anti-parallel extended beta-strands, with F200-T203 and D244 contributing substantially to the binding site. The substrate recognition chemistry of CCT thus seems different from that of Group I chaperonins and probably reflects the fact that it needs to be highly specific to enable capture and folding of the actins and tubulins.  相似文献   

8.
The integrity of the cytoskeleton is closely linked to the oligomeric chaperonin containing TCP-1 (CCT) via the folding requirements of actin and tubulin, but the role of CCT in cytoskeletal organization remains unclear. We address this issue by analyzing the effects of targeting CCT subunits via siRNA and assessing their location/assembly state in cultured mammalian cells. Reducing levels of individual CCT subunits implicates CCT? in influencing cell shape and reduced levels of this subunit limit the cells' ability to recover from microfilament depolymerization. Conversely, cells displayed enhanced microtubule regrowth when CCT subunit levels were altered by siRNA. Some CCT subunits co-localize with F-actin, whilst all are predominantly monomeric in extracts enriched for the cytoskeleton. This provides compelling evidence that some CCT subunits as monomers can influence cytoskeletal organization/polymerization. Therefore the activity of CCT may well extend beyond the folding of newly synthesized polypeptides, representing a novel function for CCT subunits distinct from their role in the CCT oligomer.  相似文献   

9.
The chaperonin-containing t-complex polypeptide 1 (CCT) is a cytosolic molecular chaperone composed of eight subunits that assists in the folding of actin, tubulin and other cytosolic proteins. We show here that the content of particular subunits of CCT within mammalian cells decreases concomitantly with the reduction of chaperone activity during cell cycle arrest at M phase. CCT recovers chaperone activity upon resumption of these subunits after release from M phase arrest or during arrest at S phase. The levels of alpha, delta and zeta-1 subunits decreased more rapidly than the other subunits during M phase arrest by colcemid treatment and recovered after release from the arrest. Gel filtration chromatography or native (nondenaturing) PAGE analysis followed by immunoblotting indicated that the alpha and delta subunit content in the 700- to 900-kDa CCT complex was appreciably lower in the M phase cells than in asynchronous cells. In vivo, the CCT complex of M-phase-arrested cells was found to bind lower amounts of tubulin than that of asynchronous cells. In vitro, the CCT complex of M phase-arrested cells was less active in binding and folding denatured actin than that of asynchronous cells. On the other hand, the CCT complex of asynchronous cells (a mixture of various phases of cell cycle) exhibited lower alpha and delta subunit content and lower chaperone activity than that of S-phase-arrested cells obtained by excess thymidine treatment. In addition, turnover (synthesis and degradation) rates of the alpha and delta subunits in vivo were more rapid than those of most other subunits. These results suggest that the content of alpha and delta subunits of CCT reduces from the complete active complex in S phase cells to incomplete inactive complex in M phase cells.  相似文献   

10.
CCT is a member of the chaperonin family of molecular chaperones and consists of eight distinct subunit species which occupy fixed positions within the chaperonin rings. The activity of CCT is closely linked to the integrity of the cytoskeleton as newly synthesized actin and tubulin monomers are dependent upon CCT to reach their native conformations. Furthermore, an additional role for CCT involving interactions with assembling/assembled microfilaments and microtubules is emerging. CCT is also known to interact with other proteins, only some of which will be genuine folding substrates. Here, we identify the actin filament remodeling protein gelsolin as a CCT-binding partner, and although it does not behave as a classical folding substrate, gelsolin binds to CCT with a degree of specificity. In cultured cells, the levels of CCT monomers affect levels of gelsolin, suggesting an additional link between CCT and the actin cytoskeleton that is mediated via the actin filament severing and capping protein gelsolin.  相似文献   

11.
The eukaryotic cytoplasmic chaperonin-containing TCP-1 (CCT) is a complex formed by two back-to-back stacked hetero-octameric rings that assists the folding of actins, tubulins, and other proteins in an ATP-dependent manner. Here, we tested the significance of the hetero-oligomeric nature of CCT in its function by introducing, in each of the eight subunits in turn, an identical mutation at a position that is conserved in all the subunits and is involved in ATP hydrolysis, in order to establish the extent of ‘individuality’ of the various subunits. Our results show that these identical mutations lead to dramatically different phenotypes. For example, Saccharomyces cerevisiae yeast cells with the mutation in subunit CCT2 display heat sensitivity and cold sensitivity for growth, have an excess of actin patches, and are the only strain here generated that is pseudo-diploid. By contrast, cells with the mutation in subunit CCT7 are the only ones to accumulate juxtanuclear protein aggregates that may reflect an impaired stress response in this strain. System-level analysis of the strains using RNA microarrays reveals connections between CCT and several cellular networks, including ribosome biogenesis and TOR2, that help to explain the phenotypic variability observed.  相似文献   

12.
13.
14.
Chaperonins are a family of chaperones that encapsulate their substrates and assist their folding in an ATP-dependent manner. The ubiquitous eukaryotic chaperonin, TCP-1 ring complex (TRiC), is a hetero-oligomeric complex composed of two rings, each formed from eight different CCT (chaperonin containing TCP-1) subunits. Each CCT subunit may have distinct substrate recognition and ATP hydrolysis properties. We have expressed each human CCT subunit individually in Escherichia coli to investigate whether they form chaperonin-like double ring complexes. CCT4 and CCT5, but not the other six CCT subunits, formed high molecular weight complexes within the E. coli cells that sedimented about 20S in sucrose gradients. When CCT4 and CCT5 were purified, they were both organized as two back-to-back rings of eight subunits each, as seen by negative stain and cryo-electron microscopy. This morphology is consistent with that of the hetero-oligomeric double-ring TRiC purified from bovine testes and HeLa cells. Both CCT4 and CCT5 homo-oligomers hydrolyzed ATP at a rate similar to human TRiC and were active as assayed by luciferase refolding and human γD-crystallin aggregation suppression and refolding. Thus, both CCT4 and CCT5 homo-oligomers have the property of forming 8-fold double rings absent the other subunits, and these complexes carry out chaperonin reactions without other partner subunits.  相似文献   

15.
The eukaryotic cytosolic chaperonin CCT (chaperonin-containing TCP-1) assists folding of newly synthesized polypeptides. The fully functional CCT is built from two identical rings, each composed of single copies of eight distinct subunits. To study the structure and function of the CCT complex and the role of each subunit, a rapid and efficient method for preparing a recombinant CCT complex is needed. In this work, we established an efficient expression and purification method to obtain human recombinant CCT. BHK-21 cells were infected with a vaccinia virus expressing T7 RNA polymerase and transfected with eight plasmids, each encoding any one of the eight CCT subunits in the T7 RNA polymerase promoter/terminator unit. The CCT1 subunit was engineered to carry a hexa-histidine tag or FLAG tag in the internal loop region. Three days later, cells were harvested for purification of the CCT complex through tag-dependent affinity chromatography and gel filtration. The purified recombinant CCT complexes were indistinguishable from the endogenous CCT purified from HeLa cells in terms of morphology and function. In conclusion, the co-expression system established in this study should be a simple and powerful tool for reconstitution of a large multi-subunit complex.  相似文献   

16.
The eukaryotic cytosolic chaperonin CCT is a molecular machine involved in assisting the folding of proteins involved in important cellular processes. Like other chaperonins, CCT is formed by a double‐ring structure but, unlike all of them, each ring is composed of eight different, albeit homologous subunits. This complexity has probably to do with the specificity in substrate interaction and with the mechanism of protein folding that takes place during the chaperonin functional cycle, but its detailed molecular basis remains unknown. We have analyzed the known proteomes in search of residues that are differentially conserved in the eight subunits, as predictors of functional specificity (specificity‐determining positions; SDPs). We have found that most of these SDPs are located near the ATP binding site, and that they define four CCT clusters, corresponding to subunits CCT3, CCT6, CCT8 and CCT1/2/4/5/7. Our results point to a spatial organisation of the CCT subunits in two opposite areas of the ring and provide a molecular explanation for the previously described asymmetry in the hydrolysis of ATP. Proteins 2014; 82:703–707. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
The chaperones prefoldin and the cytosolic chaperonin CCT-containing TCP-1 (CCT) guide the cytoskeletal protein actin to its native conformation. Performing an alanine scan of actin, we identified discrete recognition determinants for CCT interaction. Interestingly, one of these is similar and functional in the non-homologous protein Cdc20, suggesting that some of the binding information in the CCT target proteins is shared. The information in actin for recognition by CCT and for folding is different, as all but one of the mutants in the recognition determinants are folding-competent. In addition, some other actin mutants remain CCT-arrested and are not released in a native conformation, whereas others do fold but remain bound to CAP. Kinetic experiments provide evidence that CCT-mediated folding of non-native actin occurs in at least two steps, in which initially the recognition determinant 245-249 contacts CCT and the other determinants interact at later stages. Actin mutants that are CCT-arrested demonstrate that some regions neighbouring the recognition determinants are involved in modulating the correct folding transitions of actin on CCT, or its release from this chaperonin. Further, we found that the ATP binding of actin is not a prerequisite for its release, and we suggest that CAP may be involved in charging the nucleotide. Based on the kinetics of CCT binding and folding of actin and actin mutants, we propose a multi-step recognition-transition-release model. This also implies that the currently accepted notion of CCT-mediated actin folding is probably more complex.  相似文献   

18.
19.
Many ATP-dependent molecular chaperones, including Hsp70, Hsp90, and the chaperonins GroEL/Hsp60, require cofactor proteins to regulate their ATPase activities and thus folding functions in vivo. One conspicuous exception has been the eukaryotic chaperonin CCT, for which no regulator of its ATPase activity, other than non-native substrate proteins, is known. We identify the evolutionarily conserved PhLP3 (phosducin-like protein 3) as a modulator of CCT function in vitro and in vivo. PhLP3 binds CCT, spanning the cylindrical chaperonin cavity and contacting at least two subunits. When present in a ternary complex with CCT and an actin or tubulin substrate, PhLP3 significantly diminishes the chaperonin ATPase activity, and accordingly, excess PhLP3 perturbs actin or tubulin folding in vitro. Most interestingly, however, the Saccharomyces cerevisiae PhLP3 homologue is required for proper actin and tubulin function. This cellular role of PhLP3 is most apparent in a strain that also lacks prefoldin, a chaperone that facilitates CCT-mediated actin and tubulin folding. We propose that the antagonistic actions of PhLP3 and prefoldin serve to modulate CCT activity and play a key role in establishing a functional cytoskeleton in vivo.  相似文献   

20.
A malfunction in the yeast HAC1 causes the unfolding-protein response in the endoplasmic reticulum, resulting in stress-sensitive and inositol auxotrophic phenotypes. Chaperonin-containing TCP1 (CCT) is necessary for the folding of actin and tubulin in the cytosol. The introduction of the truncated human CCT epsilon subunit into yeast cells of which hac1 was disrupted clearly suppressed not only its inositol auxotrophic phenotype but also its stress-sensitive phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号