首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The synthesis, translocation, processing, and assembly of rat liver short chain acyl-CoA, medium chain acyl-CoA, long chain acyl-CoA, and isovaleryl-CoA dehydrogenases were studied. These four acyl-CoA dehydrogenases are homotetrameric flavoproteins which are located in the mitochondrial matrix. They were synthesized in a cell-free rabbit reticulocyte lysate system, programmed by rat liver polysomal RNA, as precursor polypeptides which are 2-4 kDa larger than their corresponding mature subunits (Mr 41,000-45,000). When the radiolabeled precursors were incubated with intact rat liver mitochondria, they appeared to bind tightly to the mitochondrial outer membrane. At this stage they were completely susceptible to the action of exogenous trypsin. The precursors bound to mitochondria at 0 degrees C were translocated into the mitochondria and processed when the temperature was raised to 30 degrees C. No reaction occurred when the temperature was kept at 0 degrees C, however, suggesting that the binding of the precursors is temperature independent while the subsequent steps of the pathway are energy dependent. Indeed, the translocation reaction was inhibited by compounds such as dinitrophenol and rhodamine 6G which inhibit mitochondrial energy metabolism. The newly imported (mature) enzymes were inaccessible to the proteolytic action of added trypsin. The processing of the precursors to mature subunits was proteolytically carried out in the mitochondrial matrix, and the processed mature subunits mostly assembled to their respective tetrameric forms. Newly synthesized larger precursors of each of the four acyl-CoA dehydrogenases were recovered from intact, cultured Buffalo rat liver cells in the presence of dinitrophenol. When dinitrophenol was removed in a pulse-chase protocol, the accumulated precursors were rapidly (t1/2 3-5 min) converted to their corresponding mature subunits. On the other hand, when the chase was performed in the presence of the inhibitor, the labeled precursors disappeared with t1/2 of greater than 4 h for long chain acyl-CoA dehydrogenase and 1-2 h for the other three enzyme precursors.  相似文献   

2.
We have studied the functional steps by which Saccharomyces cerevisiae mitochondria can synthesize FAD from cytosolic riboflavin (Rf). Riboflavin uptake into mitochondria took place via a mechanism that is consistent with the existence of (at least two) carrier systems. FAD was synthesized inside mitochondria by a mitochondrial FAD synthetase (EC 2.7.7.2), and it was exported into the cytosol via an export system that was inhibited by lumiflavin, and which was different from the riboflavin uptake system. To understand the role of the putative mitochondrial FAD carrier, Flx1p, in this pathway, an flx1Delta mutant strain was constructed. Coupled mitochondria isolated from flx1Delta mutant cells were compared with wild-type mitochondria with respect to the capability to take up Rf, to synthesize FAD from it, and to export FAD into the extramitochondrial phase. Mitochondria isolated from flx1Delta mutant cells specifically lost the ability to export FAD, but did not lose the ability to take up Rf, FAD, or FMN and to synthesize FAD from Rf. Hence, Flx1p is proposed to be the mitochondrial FAD export carrier. Moreover, deletion of the FLX1 gene resulted in a specific reduction of the activities of mitochondrial lipoamide dehydrogenase and succinate dehydrogenase, which are FAD-binding enzymes. For the flavoprotein subunit of succinate dehydrogenase we could demonstrate that this was not due to a changed level of mitochondrial FAD or to a change in the degree of flavinylation of the protein. Instead, the amount of the flavoprotein subunit of succinate dehydrogenase was strongly reduced, indicating an additional regulatory role for Flx1p in protein synthesis or degradation.  相似文献   

3.
Microelectrospray ionization-mass spectrometry was used to directly observe electron transferring flavoprotein.flavoprotein dehydrogenase interactions. When electron transferring flavoprotein and porcine dimethylglycine dehydrogenase or sarcosine dehydrogenase were incubated together in the absence of substrate, a relative molecular mass corresponding to the flavoprotein.electron transferring flavoprotein complex was observed, providing the first direct observation of these mammalian complexes. When an acyl-CoA dehydrogenase family member, human short chain acyl-CoA dehydrogenase, was incubated with dimethylglycine dehydrogenase and electron transferring flavoprotein, the microelectrospray ionization-mass spectrometry signal for the dimethylglycine dehydrogenase.electron transferring flavoprotein complex decreased, indicating that the acyl-CoA dehydrogenases have the ability to compete with the dimethylglycine dehydrogenase/sarcosine dehydrogenase family for access to electron transferring flavoprotein. Surface plasmon resonance solution competition experiments revealed affinity constants of 2.0 and 5.0 microm for the dimethylglycine dehydrogenase-electron transferring flavoprotein and short chain acyl-CoA dehydrogenase-electron transferring flavoprotein interactions, respectively, suggesting the same or closely overlapping binding motif(s) on electron transferring flavoprotein for dehydrogenase interaction.  相似文献   

4.
Between the different types of Acyl-CoA dehydrogenases (ACADs), those specific for branched chain acyl-CoA derivatives are involved in the catabolism of amino acids. In mammals, isovaleryl-CoA dehydrogenase (IVD), an enzyme of the leucine catabolic pathway, is a mitochondrial protein, as other acyl-CoA dehydrogenases involved in fatty acid beta-oxidation. In plants, fatty acid beta-oxidation takes place mainly in peroxisomes, and the cellular location of the enzymes involved in the catabolism of branched-chain amino acids had not been definitely assigned. Here, we describe that highly purified potato mitochondria have important IVD activity. The enzyme was partially purified and cDNAs from two different genes were obtained. The partially purified enzyme has enzymatic constant values with respect to isovaleryl-CoA comparable to those of the mammalian enzyme. It is not active towards straight-chain acyl-CoA substrates tested, but significant activity was also found with isobutyryl-CoA, implying an additional role of the enzyme in the catabolism of valine. The present study confirms recent reports that in plants IVD activity resides in mitochondria and opens the way to a more detailed study of amino-acid catabolism in plant development.  相似文献   

5.
K Tanaka  Y Ikeda  Y Matsubara  D B Hyman 《Enzyme》1987,38(1-4):91-107
Our early study of isovaleric acidemia (IVA) indicated that isovaleryl-CoA is dehydrogenated by an enzyme that is specific for isovaleryl-CoA. We subsequently identified and purified isovaleryl-CoA dehydrogenase (IVD) and 2-methyl-branched chain acyl-CoA dehydrogenase, which were previously unknown. We also purified and characterized three previously known acyl-CoA dehydrogenases. Five acyl-CoA dehydrogenases share similar molecular features and reaction mechanisms, indicating a close evolutionary relationship. Using the tritium release assay and [35S]methionine labeling/immunoprecipitation, we showed that IVA is due to a mutation of IVD. We also demonstrated that there are at least 5 distinct forms of mutant IVD, indicating an extensive molecular heterogeneity. Furthermore, we cloned cDNAs encoding IVD and medium-chain acyl-CoA dehydrogenases. The comparison of their complete primary sequences revealed a high degree of homology, indicating that these enzymes belong to a gene family, the acyl-CoA dehydrogenase family.  相似文献   

6.
Freeze-thawed rat liver mitochondria were extensively washed with potassium phosphate, pH 7.5, and the residue was extracted with 10 mM potassium phosphate, pH 7.5, 1% (w/v) sodium cholate, 0.5 M KCl. The four beta-oxidation enzyme activities of the washes and the last extract were assayed with substrates of various carbon chain lengths. Our data suggest that the last extract contains a novel acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase. A novel acyl-CoA dehydrogenase was purified. The molecular masses of the native enzyme and the subunit were estimated to be 150 and 71 kDa, respectively. One mole of enzyme contained 2 mole of FAD. These properties and immunochemical properties of the enzyme differed from those of three other acyl-CoA dehydrogenases: short-, medium-, and long-chain acyl-CoA dehydrogenases. Carbon chain length specificity of the enzyme differed from that of other acyl-CoA dehydrogenases. The enzyme was active toward CoA esters of long- and very-long-chain fatty acids, but not toward those of medium- and short-chain fatty acids. The specific enzyme activity was greater than 10 times that of long-chain acyl-CoA dehydrogenase when palmitoyl-CoA was used as substrate. We propose the name "very-long-chain acyl-CoA dehydrogenase" for this enzyme.  相似文献   

7.
Protein misfolding is a hallmark of a number of metabolic diseases, in which fatty acid oxidation defects are included. The latter result from genetic deficiencies in transport proteins and enzymes of the mitochondrial β-oxidation, and milder disease conditions frequently result from conformational destabilization and decreased enzymatic function of the affected proteins. Small molecules which have the ability to raise the functional levels of the affected protein above a certain disease threshold are thus valuable tools for effective drug design. In this work we have investigated the effect of mitochondrial cofactors and metabolites as potential stabilizers in two β-oxidation acyl-CoA dehydrogenases: short chain acyl-CoA dehydrogenase and the medium chain acyl-CoA dehydrogenase as well as glutaryl-CoA dehydrogenase, which is involved in lysine and tryptophan metabolism. We found that near physiological concentrations (low micromolar) of FAD resulted in a spectacular enhancement of the thermal stabilities of these enzymes and prevented enzymatic activity loss during a 1h incubation at 40°C. A clear effect of the respective substrate, which was additive to that of the FAD effect, was also observed for short- and medium-chain acyl-CoA dehydrogenase but not for glutaryl-CoA dehydrogenase. In conclusion, riboflavin may be beneficial during feverish crises in patients with short- and medium-chain acyl-CoA dehydrogenase as well as in glutaryl-CoA dehydrogenase deficiencies, and treatment with substrate analogs to butyryl- and octanoyl-CoAs could theoretically enhance enzyme activity for some enzyme proteins with inherited folding difficulties.  相似文献   

8.
The characteristic green colour of native short-chain acyl-CoA dehydrogenases (EC 1.3.99.2) results from a charge transfer complex between the FAD prosthetic group and a tightly bound molecule of CoA-persulphide. The native enzyme from ox liver mitochondria was found to have about 60% of its FAD cofactor liganded with CoA-persulphide. When artificially fully liganded with CoA-persulphide, this enzyme was inhibited by 90% in comparison to unliganded enzyme. Enzymic activity could be slowly restored by displacing the CoA-persulphide with high concentrations of butyryl-CoA, the enzyme's physiological substrate. The results show that CoA-persulphide is a potent inhibitor of short-chain acyl-CoA dehydrogenase and may have a physiological role in the regulation of beta-oxidation.  相似文献   

9.
cDNAs encoding the entire coding regions of the precursors (p) of rat long chain acyl-CoA (LCAD), short chain acyl-CoA (SCAD) and isovaleryl-CoA dehydrogenase (IVD) have been cloned and sequenced. Three cDNAs for rat liver LCAD together cover a 1440-base pair region. These cDNAs encode the entire 430-amino acid sequence of pLCAD, including the 30-amino acid leader peptide and the 400-amino acid mature LCAD. A single 1773 base pair cDNA for rat SCAD covers the entire coding region (414 amino acids), including the 26-amino acid leader peptide and the 388-amino acid mature peptide. Four identified IVD cDNAs, when combined, encompass a 2104 base region, and encode 424 amino acids including a 30-amino acid leader peptide and the 394-amino acid mature peptide. The identities of all cDNA clones have been confirmed by matching the amino acid sequences predicted from the respective cDNAs to the amino-terminal and tryptic peptide sequences derived from the corresponding purified rat enzyme. Comparison of the sequences of four rat acyl-CoA dehydrogenases, including LCAD, MCAD, SCAD, and IVD, and two of their human counterparts (MCAD and SCAD) reveals a high degree of homology (57 invariant and 92 near invariant residues: 30.6-35.4% of identical residues in pairwise comparisons), suggesting that these enzymes belong to a gene family and have evolved from a common ancestral gene.  相似文献   

10.
Ye X  Ji C  Zhou C  Zeng L  Gu S  Ying K  Xie Y  Mao Y 《Molecular biology reports》2004,31(3):191-195
Mitochondrial fatty acid -oxidation is an important energy resource for many mammal tissues. Acyl-CoA dehydrogenases (ACADs) are a family of flavoproteins that are involved in the -oxidation of the fatty acyl-CoA derivatives. Deficiency of these ACADs can cause metabolic disorders including muscle fatigue, hypoglycaemia, hepatic lipidosis and so on. By large scale sequencing, we identified a cDNA sequence of 3960 base pairs with a typical acyl-CoA dehydrogenase function domain. RT-PCR result shows that it is widely expressed in human tissues, especially high in liver, kidney, pancreas and spleen. It is hypothesized that this is a novel member of ACADs family. Abbreviations: ACADs – acyl-CoA dehydrogenases, FAD – flavinadenine dinucleotide, SCAD – short-chain acyl-CoA dehydrogenase,MCAD – medium-chain acyl-CoA dehydrogenase, LCAD – long-chain acyl-CoAdehydrogenase, VLCAD – very long- chain acyl-CoA dehydrogenase, IVD –isocalery-CoA dehydrogenase, SBCAD – short/branched chain acyl-CoAdehydrogenase, GCD – glutaryl- CoA dehydrogenase, ETF – electron transferflavoprotein, ACAD8 – acyl-CoA dehydrogenase 8, ACAD9 – acyl-CoAdehydrogenase 9, ACAD10 – acyl-CoA dehydrogenase 10.  相似文献   

11.
Short chain acyl-CoA (SCA), medium chain acyl-CoA (MCA), and isovaleryl-CoA (IV) dehydrogenases were purified to homogeneity from human liver using ammonium sulfate fractionation followed by DEAE-Sephadex A-50, hydroxyapatite, Matrex Gel Blue A, agarose-hexane-CoA, and Bio-Gel A-0.5 column chromatographies. The specific activities of the final preparations were enriched 507-, 750-, and 588-fold over those from the second ammonium sulfate fractionation step. The native molecular weights were estimated to be 168,000, 178,000, and 172,000, respectively, by gel filtration. Each of them exhibited, on sodium dodecyl sulfate/polyacrylamide gel electrophoresis, a single protein band with molecular weights of 41,000, 44,000, and 42,000, respectively, indicating a homotetrameric structure. UV/visual spectra, fluorescence spectra, and other evidence indicated that each contains 1 mol of FAD per subunit. They all utilized electron transfer flavoprotein (ETF) or phenazine methosulfate (PMS) as an electron acceptor. The products of SCA dehydrogenase/butyryl-CoA, MCA dehydrogenase/octanoyl-CoA, and IV dehydrogenase/isovaleryl-CoA reactions were identified as crotonyl-CoA, 2-octenoyl-CoA, and 3-methylcrotonyl-CoA, respectively, using gas chromatography. Kinetic parameters Vappmax and Kappm) of these enzymes for various acyl-CoA substrates, as well as Kappm values for ETF and PMS are presented. In general, the substrate specificities of human SCA, MCA, and IV dehydrogenases are slightly less stringent than those of their rat counterparts and resemble those of their bovine and porcine counterparts. The pattern of substrate specificity for these enzymes determined using ETF as electron acceptor significantly differed from that determined using PMS. All of them were severely inhibited by (methylenecyclopropyl)acetyl-CoA.  相似文献   

12.
An acyl-coenzyme A dehydrogenase assay utilizing the ferricenium ion   总被引:9,自引:0,他引:9  
A sensitive assay for medium chain acyl-CoA dehydrogenase has been developed by substituting ferricenium hexafluorophosphate for the physiological acceptor, electron transferring flavoprotein. The ferricenium ion is a facile oxidant of the octanoyl-CoA-reduced enzyme with a Vmax of 1400 min-1 and a KM of 55 microM at pH 7.6. The ferricenium assay does not require additional mediator dyes, exhibits low background rates, and avoids the necessity of purifying substantial amounts of electron transferring flavoprotein. Unlike the fluorescence-based electron transferring flavoprotein assay, this new procedure can be performed aerobically. Both assays give comparable results when tested with crude fibroblast homogenates from normal and medium chain acyl-CoA dehydrogenase deficient patients. The convenience of the ferricenium method suggests it may be generally useful as a screening assay for a number of acyl-CoA dehydrogenases.  相似文献   

13.
Medium-chain and long-chain acyl-CoA dehydrogenases from rat liver have been purified in two forms, holoenzymes containing FAD and apoenzymes which do not contain this cofactor. In contrast, short-chain acyl-CoA dehydrogenase can only be isolated as the holoenzyme. Marked differences in the reactivity to organic sulfhydryl reagents were observed between the apo and holo forms of these enzymes. While the two apoenzymes were severely inactivated by N-ethylmaleimide (NEM), p-chloromercuribenzoate (pCMB), and iodoacetate (IAA), the two corresponding holoenzymes were not susceptible to these reagents. The inactivation of the two apoenzymes by NEM followed pseudo-first order kinetics. Incubation of the apoenzymes with FAD completely prevented the inactivation by the organic sulfhydryl reagents. Methylmercury halides (iodide or chloride) inactivated both the apo and holo forms of medium-chain and long-chain acyl-CoA dehydrogenases. On the other hand, holo-short-chain acyl-CoA dehydrogenase behaved somewhat differently from the other two holoenzymes in that it was inactivated by pCMB (but not NEM or IAA) following a pseudo-first order process. The titration of the two apoenzymes with [14C]NEM and that of the holo-short-chain acyl-CoA dehydrogenase with [14C]pCMB indicated that all three acyl-CoA dehydrogenases contain a single essential cysteine residue/subunit. In the inactivation of holo-medium-chain and holo-long-chain acyl-CoA dehydrogenases with methylmercury halide, the same essential cysteine residue was modified without perturbing or releasing the enzyme-bound FAD. The inactivations of the three holoenzymes by appropriate organic sulfhydryl reagents were prevented by prior incubation with substrate. These experimental results indicate that the essential cysteine residue is located in the vicinity of the FAD- and substrate-binding sites within the active center of the enzymes. It appears, however, that this cysteine residue does not participate directly in FAD binding.  相似文献   

14.
Short/branched chain acyl-CoA dehydrogenase (SBCAD), isovaleryl-CoA dehydrogenase (IVD), and isobutyryl-CoA dehydrogenase (IBD) are involved in metabolism of isoleucine, leucine, and valine, respectively. These three enzymes all belong to acyl-CoA dehydrogenase (ACD) family, and catalyze the dehydrogenation of monomethyl branched-chain fatty acid (mmBCFA) thioester derivatives. In the present work, the catalytic properties of rat SBCAD, IVD, and IBD, including their substrate specificity, isomerase activity, and enzyme inhibition, were comparatively studied. Our results indicated that SBCAD has its catalytic properties relatively similar to those of straight-chain acyl-CoA dehydrogenases in terms of their isomerase activity and enzyme inhibition, while IVD and IBD are different. IVD has relatively broader substrate specificity than those of the other two enzymes in accommodating various substrate analogs. The present study increased our understanding for the metabolism of monomethyl branched-chain fatty acids (mmBCFAs) and branched-chain amino acids (BCAAs), which should also be useful for selective control of a particular reaction through the design of specific inhibitors.  相似文献   

15.
K Y Tserng  S J Jin  C L Hoppel 《Biochemistry》1991,30(44):10755-10760
To study the structure-activity relationship between pentanoic acid analogues and the inhibition of fatty acid oxidation, a number of 4-pentenoic and methylenecyclopropaneacetic acid derivatives were prepared. All compounds inhibited palmitoylcarnitine oxidation in rat liver mitochondria, with 50% inhibition occurring at a concentration between 6 and 100 microM. However, only methylenecyclopropaneacetic acid (MCPA) and spiropentaneacetic acid (SPA) showed in vivo inhibitory activity in rats as indicated by the occurrence of dicarboxylic aciduria. Rats treated with SPA excreted metabolites derived only from fatty acid oxidation whereas MCPA-treated rats also excreted metabolites derived from branch-chained amino acid and lysine metabolism. SPA is a specific inhibitor of fatty acid oxidation without affecting amino acid metabolism. The site of inhibition is medium-chain acyl-CoA dehydrogenase (MCAD). In contrast, MCPA inhibited both MCAD and short-chain acyl-CoA dehydrogenase with a stronger inhibition toward the latter. The inhibition of fatty acid oxidation by both inhibitors was partially reversible by glycine or l-carnitine. Since SPA does not form a ring-opened nucleophile such as that proposed for MCPA in the inhibition of FAD prosthetic group in acyl-CoA dehydrogenases, we propose that the irreversible inhibition by SPA occurs by a tight complex without forming a covalent bond to the isoalloxazine ring in FAD.  相似文献   

16.
S M Lau  P Powell  H Buettner  S Ghisla  C Thorpe 《Biochemistry》1986,25(15):4184-4189
The flavoprotein medium-chain acyl coenzyme A (acyl-CoA) dehydrogenase from pig kidney exhibits an intrinsic hydratase activity toward crotonyl-CoA yielding L-3-hydroxybutyryl-CoA. The maximal turnover number of about 0.5 min-1 is 500-1000-fold slower than the dehydrogenation of butyryl-CoA using electron-transferring flavoprotein as terminal acceptor. trans-2-Octenoyl- and trans-2-hexadecenoyl-CoA are not hydrated significantly. Hydration is not due to contamination with the short-chain enoyl-CoA hydratase crotonase. Several lines of evidence suggest that hydration and dehydrogenation reactions probably utilize the same active site. These two activities are coordinately inhibited by 2-octynoyl-CoA and (methylenecyclopropyl)acetyl-CoA [whose targets are the protein and flavin adenine dinucleotide (FAD) moieties of the dehydrogenase, respectively]. The hydration of crotonyl-CoA is severely inhibited by octanoyl-CoA, a good substrate of the dehydrogenase. The apoenzyme is inactive as a hydratase but recovers activity on the addition of FAD. Compared with the hydratase activity of the native enzyme, the 8-fluoro-FAD enzyme exhibits a roughly 2-fold increased activity, whereas the 5-deaza-FAD dehydrogenase is only 20% as active. A mechanism for this unanticipated secondary activity of the acyl-CoA dehydrogenase is suggested.  相似文献   

17.
2-Methyl-branched chain acyl-CoA dehydrogenase was purified to homogeneity from rat liver mitochondria. The native molecular weight of the enzyme was estimated to be 170,000 by gel filtration. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis both with and without 2-mercaptoethanol, the enzyme showed a single protein band with Mr = 41,500, suggesting that this enzyme is composed of four subunits of equal size. Its isoelectric point was 5.50 +/- 0.2, and A1%280 nm was 12.5. This enzyme contained protein-bound FAD. The purified enzyme dehydrogenated S-2-methylbutyryl-CoA and isobutyryl-CoA with equal activity. The activities with each of these compounds were co-purified throughout the entire purification procedure. This enzyme also dehydrogenated R-2-methylbutyryl-CoA, but the specific activity was considerably lower (22%) than that for the S-enantiomer. The enzyme did not dehydrogenate other acyl-CoAs, including isovaleryl-CoA, propionyl-CoA, butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA, at any significant rate. Apparent Km and Vmax values for S-2-methylbutyryl-CoA were 20 microM and 2.2 mumol min-1 mg-1, respectively, while those for isobutyryl-CoA were 89 microM and 2.0 mumol min-1 mg-1 using phenazine methosulfate as an artificial electron acceptor. The enzyme was also active with electron transfer flavoprotein. Tiglyl-CoA and methacrylyl-CoA were identified as the reaction products from S-2-methylbutyryl-CoA and isobutyryl-CoA, respectively. 2-Ethylacrylyl-CoA was produced from R-2-methylbutyryl-CoA. Tiglyl-CoA competitively inhibited the activity with both S-2-methylbutyryl-CoA and isobutyryl-CoA with a similar Ki. The enzyme activity was also severely inhibited by several organic sulfhydryl reagents such as N-ethylmaleimide, p-hydroxymercuribenzoate, and methyl mercury iodide. The pattern and degree of inhibition were essentially identical for both substrates. The purified 2-methyl-branched chain acyl-CoA dehydrogenase was immunologically distinct from isovaleryl-CoA-, short chain acyl-CoA-, medium chain acyl-CoA-, or long chain acyl-CoA dehydrogenase.  相似文献   

18.
Rao KS  Albro M  Dwyer TM  Frerman FE 《Biochemistry》2006,45(51):15853-15861
Glutaryl-CoA dehydrogenase (GCD) is a homotetrameric enzyme containing one noncovalently bound FAD per monomer that oxidatively decarboxylates glutaryl-CoA to crotonyl-CoA and CO2. GCD belongs to the family of acyl-CoA dehydrogenases that are evolutionarily conserved in their sequence, structure, and function. However, there are differences in the kinetic mechanisms among the different acyl-CoA dehydrogenases. One of the unanswered aspects is that of the rate-determining step in the steady-state turnover of GCD. In the present investigation, the major rate-determining step is identified to be the release of crotonyl-CoA product because the chemical steps and reoxidation of reduced FAD are much faster than the turnover of the wild-type GCD. Other steps are only partially rate-determining. This conclusion is based on the transit times of the individual reactions occurring in the active site of GCD.  相似文献   

19.
Isovaleric acidemia is a rare inborn error of metabolism caused by a deficiency of isovaleryl-CoA dehydrogenase (IVD), a nucleus-encoded, homotetrameric, mitochondrial flavoenzyme that catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA. We have previously identified a nucleotide deletion in the gene for IVD in fibroblasts from a patient with isovaleric acidemia leading to a shift in reading frame and premature termination of translation. The mutant IVD precursor is imported and processed to mature size, but no active enzyme is detected in mutant fibroblasts or expressed in Escherichia coli. Examination of the crystal structure of human IVD reveals that the C terminus is involved in tetramer stability. In vitro mitochondrial import experiments show that wild type IVD protein rapidly and stably forms mature homotetramer following import, whereas Type III mutant protein never forms stable oligomers. An additional series of mutant proteins with truncations and/or alterations in the C-terminal sequence implicates the C terminus of IVD in both enzyme activity and tetramer stability. Importantly, a dimeric intermediate in the folding pathway for wild type IVD has been identified in the in vitro mitochondrial import experiments, the first report of such an intermediate in the biogenesis of an acyl-CoA dehydrogenase.  相似文献   

20.
Summary The acyl-CoA dehydrogenases are a family of mitochondrial flavoenzymes required for fatty acid beta-oxidation and branched-chain amino acid degradation. The hepatic activity of these enzymes, particularly the short-chain acyl-coenzyme A (CoA) dehydrogenase, is markedly decreased in riboflavin deficient rats. We now report that the in vivo effects of riboflavin deficiency on the beta-oxidation enzymes of this group are reproduced in FAO rat hepatoma cells cultured in riboflavin-deficient medium. Although it has been long known that hepatic short-chain acyl-CoA dehydrogenase activity is the most severely affected of the straight-chain specific enzymes in riboflavin deficiency, the mechanism by which its activity is decreased has not been reported. We have used this new cell culture system to characterize further this mechanism. Whole cell extracts from riboflavin-deficient and control cells were subjected to analysis by denaturing polyacrylamide gel electrophoresis. The contents of the gels were then electroblotted onto nitrocellulose filters and probed with short-chain acyl-CoA dehydrogenase-specific antiserum. The relative abundance of enzyme antigen was estimated autoradiographically. Our findings indicate that short-chain acyl-CoA dehydrogenase activity changes in parallel with its antigen, suggesting that riboflavin deprivation does not affect the activity of individual enzyme molecules. Further, no evidence of extramitochondrial enzyme precursor was found on the blots, making unlikely a significant block in the mitochondrial uptake process. These findings suggest that changes in short-chain acyl-CoA dehydrogenase activity in riboflavin deficiency result from either increased synthesis or decreased degradation of the enzyme. This work was supported by grants from the VA Medical Research Service, the Diabetes Association of Greater Cleveland, and the National Institutes of Health (HD25299), Bethesda, MD. Portions of the work presented here were presented at the 71st meeting of the Endocrine Society, Seattle, WA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号