首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
对虾白斑综合征杆状病毒体内增殖模型的建立   总被引:3,自引:0,他引:3  
应用对虾白斑综合征杆状病毒(WSSV),对淡水克氏螯虾、罗氏沼虾、日本沼虾和两种淡水蟹(中华绒螯蟹、长江华溪蟹)进行人工感染实验。结果除淡水克氏螯虾之外,其它受试的虾蟹均不能感染WSSV。克氏螯虾3个不同剂量级感染至12d平均死亡率为94%。从发病或死亡个体采集血淋巴,经电镜负染色可观察到完整的病毒粒子,其形态大小、靶细胞组织病理均与从中国对虾中分离的WSSV相似或相同。同时,通过原位杂交技术进一步证明该实验的可靠性。克氏螯虾重复感染效果良好,有可能成为研究WSSV的一种理想的病毒体内增殖模型。  相似文献   

2.
比较我国沿海不同海域对虾白斑综合征杆状病毒三个分离株:即唐海分离株(渤海湾)、宁波分离株(东海),深圳分离株(南海)的同源性。三个WSSV分离株基因组的限制笥内切酶(Sac Ⅰ,HindⅢ,PstⅠ)酶切多态(RFLP)以及病毒结构蛋白图谱完全一致,证实造成我国从南对北对虾爆发性流行病的对虾白斑杆状病毒为同一种病毒。利用高保真Taq酶,分别以报道的日本对虾杆状病毒(RV-PJ-PRDV),斑节对虾白斑综合征杆状病毒(WSBV-PmNOBⅢ)基因组核酸片段特异性引物进行PCR扩增,结果均能从中国一杆状病毒(WSSV)基因组中扩增得到相应大小的PCR产物,扩增产物序列分析表明中国对虾白斑杆状病毒(WSSV)与斑节对虾白斑综合征杆状病毒(WSBV-PmNOBⅢ),日本对虾相状RV-PJ=PRDV)同源率分别为100%与97%,其结果为证实亚洲及太平洋地区对虾白斑综合征杆状病毒为同一种病毒或同一种病毒的不同株系提供了依据。  相似文献   

3.
对虾白斑综合征杆状病毒同源性比较的研究   总被引:3,自引:1,他引:3  
比较我国沿海不同海域对虾白斑综合征杆状病毒三个分离株即唐海分离株(渤海湾),宁波分离株(东海),深圳分离株(南海)的同源性。三个WSSV分离株基因组的限制性内切酶(Sac I,Hind III,Pst I)酶切多态(RFLP)以及病毒结构蛋白图谱完全一致,证实造成我国从南至北对虾爆发性流行病的对虾白斑杆状病毒为同一种病毒。利用高保真Taq酶,分别以报道的日本对虾杆状病毒(RV-PJ=PRDV),斑节对虾白斑综合征杆状病毒(WSBV=PmNOBIII)基因组核酸片段特异性引物进行PCR扩增,结果均能从中国对虾白斑杆状病毒(WSSV)基因组中扩增得到相应大小的PCR产物,扩增产物序列分析表明中国对虾白斑杆状病毒(WSSV)与斑节对虾白斑综合征杆状病毒(WSBV=PmNOBIII),日本对虾杆状病毒(RV-PJ=PRDV)同源率分别为100%与97%,其结果为证实亚洲及太平洋地区对虾白斑综合征杆状病毒为同一种病毒或同一种病毒的不同株系提供了证据。  相似文献   

4.
对虾白斑综合征病毒厦门分离株ORF220编码真核生物GP130受体同源蛋白。将ORF220和绿色荧光蛋白编码基因融合在一起克隆到昆虫杆状病毒表达载体pFastBacI,然后与AcBacmid共同转染DH10B细胞。用PCR鉴定含有ORF220和EGFP基因的重组质粒,提取纯化重组质粒并转染昆虫细胞进行表达。结果发现,DNA转染后3-5d可以在荧光显微镜下观察到绿色荧光,表明融合蛋白在昆虫系统内成功表达。用病毒上清液感染昆虫细胞进行时相观察,结果表明,ORF220蛋白在昆虫细胞的细胞质和细胞核内呈随机分布,没有特异的细胞定位。  相似文献   

5.
原位杂交研究对虾白斑杆状病毒在虾体内感染过程   总被引:7,自引:0,他引:7  
应用地高辛标记的对虾白斑杆状病毒(white spot syndrome baculovirus,WSSV)核酸探针,与人工感染后不同时间采集的对虾组织样品进行原位杂交,以动态研究病毒从侵染至对虾以病死亡的过程。将典型感染WSSV的病虾组织投喂健康对虾,结果显示:WSSV道德通过侵染消化道上皮进入虾体内增殖,此后随着细胞裂解、病毒粒子释放,游离的粒子伴随血淋巴循环进而杂其它靶组织,直至对虾发病死亡  相似文献   

6.
为了揭示对虾白斑杆状病毒的致病机理,将该病毒基因组中推测的DNA聚合酶上游调控序列克隆进荧光素酶报告基因载体中,以便寻找一个能表达该病毒基因的细胞系统.  相似文献   

7.
对虾白斑综合征病毒厦门分离株ORF220编码真核生物GP130受体同源蛋白.将ORF220和绿色荧光蛋白编码基因融合在一起克隆到昆虫杆状病毒表达载体pFastBacI,然后与AcBacmid共同转染DH10B细胞.用PCR鉴定含有ORF220和EGFP基因的重组质粒,提取纯化重组质粒并转染昆虫细胞进行表达.结果发现,DNA转染后3-5d可以在荧光显微镜下观察到绿色荧光,表明融合蛋白在昆虫系统内成功表达.用病毒上清液感染昆虫细胞进行时相观察,结果表明,ORF220蛋白在昆虫细胞的细胞质和细胞核内呈随机分布,没有特异的细胞定位.  相似文献   

8.
9.
分子信标探针用于PCR检测对虾白斑杆状病毒   总被引:8,自引:0,他引:8  
将对虾白斑杆状病毒的一段特异性DNA设计成分子信标探针,用于该病毒的PCR检测.温度与荧光强度之间的关系表明,所设计探针的发夹既可以形成也可以打开,符合PCR对分子信标探针的要求.结果表明,在PCR同时加入分子信标探针不影响PCR扩增,分子信标探针只能与目的DNA杂交,具有较高的特异性.随着PCR循环数的增加以及含目的DNA的质粒拷贝数的增加,荧光强度都随之增强.  相似文献   

10.
The envelope proteins of White spot syndrome virus (WSSV) are very fragile and easy to be destroyed during purification. It was difficult to obtain a large quantity of intact virions by routine sucrose gradient centrifugation. After modifying the sucrose gradient by adding citrate sodium, we can obtain a large quantity of intact virions and nucleocapsids. This purified virions and nucleocapsids were subsequently used for analyzing viral structural proteins and DNA extraction. The result showed that this modified techniaue is very efficient for virus purification.  相似文献   

11.
12.
13.
The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453.  相似文献   

14.
15.
对虾白斑综合征病毒(white spot syndrome virus,WSSV)是一种能够感染虾类并且造成其大面积死亡的环状双链DNA病毒。WSSV有多种分离株,其毒力有所差异。从克氏原螯虾(Procambarus clarkii)中分离得到1株WSSV新分离株WSSV-CN-Pc,其毒力尚不清楚。本研究采用肌肉注射和经口注射的方法,以WSSVTW型作为阳性对照,分别对克氏原螯虾(P.clarkii)和罗氏沼虾(Macrobrachium rosenbergii)进行活体实验。实验结果显示:肌肉注射WSSV-CN-Pc和WSSV-TW的克氏原螯虾均在第6天出现100%的死亡;罗氏沼虾在肌肉注射WSSV-TW后未出现死亡,但在注射WSSV-CN-Pc后的第9天死亡率达100%。经口注射WSSV-CN-Pc和WSSV-TW的克氏原螯虾均在第16天出现100%的死亡;罗氏沼虾经口注射WSSV-CN-Pc后的第19天死亡率为100%,但注射WSSV-TW的实验组并未出现死亡。结果表明,对于克氏原螯虾,WSSV-CN-Pc具有和WSSV-TW相似的毒力,而对罗氏沼虾存在明显的毒力差异。提示克氏原螯虾是WSSV传播途径中的重要因素。  相似文献   

16.
White spot syndrome virus (WSSV) is currently the most serious global threat for cultured shrimp production. Although its large, double-stranded DNA genome has been completely characterized, most putative protein functions remain obscure. To provide more informative knowledge about this virus, a proteomic-scale network of WSSV-WSSV protein interactions was carried out using a comprehensive yeast two-hybrid analysis. An array of yeast transformants containing each WSSV open reading frame fused with GAL4 DNA binding domain and GAL4 activation domain was constructed yielding 187 bait and 182 prey constructs, respectively. On screening of ∼28,000 pairwise combinations, 710 interactions were obtained from 143 baits. An independent coimmunoprecipitation assay (co-IP) was performed to validate the selected protein interaction pairs identified from the yeast two-hybrid approach. The program Cytoscape was employed to create a WSSV protein–protein interaction (PPI) network. The topology of the WSSV PPI network was based on the Barabási-Albert model and consisted of a scale-free network that resembled other established viral protein interaction networks. Using the RNA interference approach, knocking down either of two candidate hub proteins gave shrimp more protection against WSSV than knocking down a nonhub gene. The WSSV protein interaction map established in this study provides novel guidance for further studies on shrimp viral pathogenesis, host-viral protein interaction and potential targets for therapeutic and preventative antiviral strategies in shrimp aquaculture.White spot syndrome virus (WSSV)1 is the causative agent of white spot disease (WSD) and is one of the most serious viral pathogens that threaten the shrimp culture industry worldwide. Because WSD causes rapid and high mortality up to 100% within 3–10 days after viral infection (1), it causes dramatic economic losses on farms. WSSV is a large enveloped, ovoid to bacilliform, double-stranded DNA (dsDNA) virus with a genome of ∼300 kb (See reviews in (2, 3)). The WSSV genome has been completely characterized for isolates from Thailand (GenBank accession number AF369029), China (accession number AF332093) and Taiwan (accession number AF440570). To expand its basic genetic information, various genomic and proteomic approaches have been applied to gain more insight into the molecular mechanisms of WSSV pathogenesis (See reviews in (2, 3)). However, the roles of most of the WSSV proteins still remain to be elucidated. This is due to the fact that many of its putative open reading frames (ORFs) lack homology to known proteins in the database. Protein–protein interaction studies can provide a valuable framework for understanding the roles of protein functions. Interaction studies of WSSV proteins have particularly focused on viral structural proteins (415). However, so far there has been no report on a protein–protein interaction (PPI) network for WSSV or any other crustacean virus. By contrast, several PPI networks for cellular organisms such as Saccharomyces cerevisiae (16, 17), Helicobacter pylori (18), Drosophila melanogaster (19), Caenarhabitis elegans (20), Plasmodium falciparum (21), and Homo sapiens (22, 23) and pathogens such as bacteriophage T7 (24), vaccinia virus (25), hepatitis C virus (26), and herpesviruses (2729) have already been established. Therefore, the present study aimed to obtain a more fundamental understanding of WSSV protein interactions. A comprehensive yeast two-hybrid assay was employed to generate viral fusion proteins with DNA binding (BD) and activation (AD) domains in an array format that effectively allowed searching every possible binary interaction in WSSV. The interaction results from the yeast two-hybrid assays were subsequently validated by coimmunoprecipitation (co-IP). Topological properties of the WSSV PPI network were assessed and compared with previously published viral networks. Candidate viral hub proteins with high numbers of interacting partners were identified in this study and their significance was investigated using an RNA interference approach.  相似文献   

17.
18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号