首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Conventional gradient centrifugation has been used to separate cells according to their position in the cell cycle, and to obtain synchronously growing cells. Analysis of prelabelled cells by gradient centrifugation confirms that phospholipid, protein and RNA synthesis is continuous throughout the cell cycle and shows that the rate of synthesis begins to increase already during the G(1) phase. The pattern of phospholipid degradation follows that of synthesis. 2. The limitations of conventional gradient centrifugation have been overcome by use of a zonal rotor. Analysis of prelabelled cells confirms the results obtained by conventional centrifugation and in addition shows that the rates of phospholipid, protein and RNA synthesis decrease during the G(2) phase. The mean cell volume and the net amount of phospholipid, protein and RNA, unlike that of DNA, are found to increase continuously throughout the intermitotic period. 3. These results show that the synthesis of macromolecules, and probably that of membranes also, is controlled by a mechanism other than that of gene dosage.  相似文献   

2.
1. Membrane phospholipid and its fatty acid compositions have been analyzed in 3- and 9-week-old rat salivary glands. 2. When compared between the three major glands (parotid, submandibular, sublingual) in adult rats, phospholipid compositions were similar, but for their fatty acid, characteristic properties from each phospholipid were shown. 3. Alterations in their compositions were also observed during development of the salivary glands.  相似文献   

3.
Sakiyama et al. ('72) reported the isolation of a line of hamster cells (NIL 1c1) which contains only three glycolipids, hematoside, ceramide monohexoside and ceramide dihexoside. The incorporation of radiolabeled palmitate into hematoside during 24 hours was three fold higher in normal confluent, non growing cells than sparse, growing ones. Polyoma transformed cells did not exhibit this effect. We have continued studies with the untransformed cell line and have found that the higher incorporation of radiolabeled palmitate into hematoside by normal confluent cells is not due to a higher rate of turnover of hematoside at confluence but represents a true chemical increase. We have also found that this increase is not a gradual process during cell growth but instead occurs only when the cells become confluent and stop growing. The increase of hematoside at confluence is not due to a higher rate of synthesis of hematoside during G1, relative to the other phases of the cell cycle. We found the rate of synthesis of hematoside to be constant throughout the cell cycle. The rate of synthesis of phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositol and sphingomyelin was also studied as a function of the cell cycle. We found no large differences in the synthetic rate of any given phospholipid species throughout the cell cycle although the rate of synthesis of the glycerophospholipids was somewhat higher during late G1 and S. We did, however, find major differences in the rates of synthesis of the different phospholipid species.  相似文献   

4.
sn-Glycerol 3-phosphate (G3P) auxotrophs of Escherichia coli have been selected from a strain which cannot aerobically catabolize G3P. The auxotrophy resulted from loss of the biosynthetic G3P dehydrogenase (EC 1.1.1.8) or from a defective membranous G3P acyltransferase. The apparent K(m) of the acyltransferase for G3P was 11- to 14-fold higher (from about 90 mum to 1,000 to 1,250 mum) in membrane preparations from the mutants than those of the parent. All extracts prepared from revertants of the G3P dehydrogenase mutants showed G3P dehydrogenase activity, but most contained less than 10% of the wild-type level. Membrane preparations from revertants of the acyltransferase mutants had apparent K(m)'s for G3P similar to that of the parent. Strains have been derived in which the G3P requirement can be satisfied with glycerol in the presence of glucose, presumably because the glycerol kinase was desensitized to inhibition by fructose 1,6-diphosphate. Investigations on the growth and macromolecular synthesis in a G3P acyltransferase K(m) mutant revealed that upon glycerol deprivation, net phospholipid synthesis stopped immediately; growth continued for about one doubling; net ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein nearly doubled paralleling the growth curve; the rate of phospholipid synthesis assessed by labeling cells with (32)P-phosphate, (14)C-acetate, or (3)H-serine was reduced greater than 90%; the rates of RNA and DNA synthesis increased as the cells grew and then decreased as the cells stopped growing; the rate of protein synthesis showed no increase and declined more slowly than the rates of RNA and DNA synthesis when the cells stopped growing. The cells retained and gained in the capacity to synthesize phospholipids upon glycerol deprivation. These data indicate that net phospholipid synthesis is not required for continued macromolecular synthesis for about one doubling, and that the rates of these processes are not coupled during this time period.  相似文献   

5.
H Sugiyama  I Ito  M Watanabe 《Neuron》1989,3(1):129-132
Three major subtypes of glutamate receptors that are coupled to cation channels are known. Recently an additional subtype that is coupled to G proteins and stimulates inositol phospholipid metabolism (the metabotropic glutamate receptor) has been proposed. The pharmacological characteristics of this receptor have now been examined. Although it shares some agonists with N-methyl-D-aspartate- and quisqualate-subtype receptors, it shares virtually no antagonists with any of the three cation channel-coupled receptor subtypes. Thus the metabotropic glutamate receptor belongs to a receptor category that is completely different from that of the other three receptor subtypes, not only functionally, but also pharmacologically.  相似文献   

6.
We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth.  相似文献   

7.
In the purple membrane (PM) of Halobacterium salinarum is present a phospholipid dimer consisting of sulfo-triglycosyl-diether (S-TGD-1) esterified to the phosphate group of phosphatidic acid (PA), i.e., S-TGD-1-PA, called glycocardiolipin (GlyC) (Corcelli, A., M. Colella, G. Mascolo, F. P. Fanizzi, and M. Kates. A novel glycolipid and phospholipid in the purple membrane. 2000. Biochemistry. 39: 3318-3326). The GlyC content of whole cells, PM, and other cell fractions of H. salinarum have been analyzed. GlyC is a nonabundant phospholipid in H. salinarum cells, and it represents one of the major phospholipids of isolated PM. In this report, we show that a) GlyC is formed during the isolation of PM, b) GlyC increase in H. salinarum cells is specifically induced by osmotic shock, and c) in correspondence with GlyC increase, a decrease of S-TGD-1 levels occurs. The changes in membrane lipid composition observed during the isolation of PM are due to de novo synthesis of GlyC from S-TGD-1.  相似文献   

8.
The reconstitution of heterotrimeric G proteins into phospholipid vesicles has been widely used for the measurement of PLC-beta activity in vitro. We have developed an improved and sensitive method for the assay of PLC-beta activity. This approach involves reconstitution of purified betagamma dimers into extruded phospholipid vesicles containing phosphatidylinositol 4, 5-bisphosphate and using a gel-filtration technique to separate the reconstituted vesicles from monodispersed betagamma dimers and the detergent used to solubilize G proteins. The method provides physical information about the partitioning of betagamma dimers into phospholipid vesicles and was used to examine the effect of different prenyl groups on the gamma subunits in the activation of PLC-beta. The beta1gamma1 dimer (containing the farnesyl group) and the beta1gamma2 dimer (containing the geranylgeranyl group) were purified from baculovirus-infected Sf9 insect cells and were found to partition equally into phospholipid vesicles. The beta1gamma2 dimer is more potent and effective in stimulating PLC-beta activity than the beta1gamma1 dimer. The EC50 values of betagamma dimers for the activation of PLC-beta determined with this method were lower than those determined by previous methodology, showing that betagamma subunits have a subnanomolar affinity for PLC-beta.  相似文献   

9.
Cell cycle regulatory proteins have been characterized in somatic cells and exhibit phase-specific expression patterns. Changes in expression of these regulatory proteins have not been clearly characterized in early preimplantation mouse embryos. This study utilized indirect immunofluorescence to determine the expression pattern of G1/S phase cyclins D and E; S, G2/M phase cyclins A and B1, and cdk 2 during the first three cell cycles of mouse embryo development. Cyclin D demonstrated low expression throughout the first cell cycle but had a somatic-like pattern of expression in cycles 2 and 3 with peak expression at G1 declining through S phase to a low during G2. Cyclin E was present at peak levels in G1 declining through S to a low in G2 during both the first and third cell cycles, but remained at moderate levels during the entire second cell cycle. Cyclin A was maintained at moderate levels throughout the first two cell cycles but showed a somatic-like pattern with a low level in G1 increasing during S phase with peak levels during G2 of the third cell cycle. Cyclin B consistently demonstrated a pattern opposite to a somatic G2/M cyclin, with peak levels in G1 declining through S phase to a low in G2 during each of the three cell cycles examined. Cdk 2 was present at consistent levels during G1 and S phases of all three cell cycles declining slightly in G2.  相似文献   

10.
Biliary lipids, water and cholesterol gallstones   总被引:8,自引:0,他引:8  
Cholesterol supersaturation, hydrophobic bile salts, pronucleating proteins and impaired gall-bladder motility may contribute to gallstone pathogenesis. We here show that both gallstone-susceptible C57L and gallstone-resistant AKR male inbred mice exhibit supersaturated gall-bladder biles during early lithogenesis, whereas bile-salt composition becomes hydrophobic only in susceptible C57L mice. In vitro, cholesterol crystallization occurs depending on relative amounts of lipids; excess cholesterol may exceed solubilizing capacity of mixed bile salt-phospholipid micelles, whereas excess bile salts compared with phospholipids leads to deficient cholesterol-storage capacity in vesicles. In vivo, bile lipid contents are mainly determined at the level of the hepatocyte canalicular membrane, where specific transport proteins enable lipid secretion [ABCG5/G8 (ATP-binding cassette transporter G5/G8) for cholesterol, MDR3 (multi-drug resistant 3) for phospholipid, BSEP (bile salt export pump)]. These transport proteins are regulated by farnesoid X and liver X nuclear receptors. After nascent bile formation, modulation of bile water contents in biliary tract and gall-bladder exerts critical effects on cholesterol crystallization. During progressive bile concentration (particularly in the fasting gall-bladder), cholesterol and, preferentially, phospholipid transfer occurs from cholesterol-unsaturated vesicles to emerging mixed micelles. The remaining unstable cholesterol-enriched vesicles may nucleate crystals. Various aquaporins have recently been discovered throughout the biliary tract, with potential relevance for gallstone formation.  相似文献   

11.
Electron-spin resonance-spin trapping has been used to detect lipid-derived radicals in liposomes. Using the lipid-soluble spin trap 2-methyl-nitrosopropane (MNP), we have detected both the lipid and hydrogen-atom spin adducts in liposomes composed of a fully saturated phospholipid (dimyristoylphosphatidylcholine, DMPC) with various mol fractions of unsaturated phospholipid (1-palmitoyl-2-arachidonoylphosphatidylcholine, PAPC) or fatty acid (arachidonic acid, AA). The lipid-derived spin adduct formed during autoxidation of liposomes was separated by thin-layer chromatography and found to co-migrate with the product(s) formed by direct addition of MNP to the corresponding unsaturated lipid or fatty acid. Both the MNP-PAPC and MNP-AA spin adducts showed some restriction of rotational motion when in the liposome bilayer (rotational correlation times 0.72 and 0.69.10(-9) s, respectively), and nitrogen hyperfine coupling constants (14.94-14.96 G) consistent with a hydrophobic localization. Radical versus non-radical mechanisms of spin adduct formation during liposome autoxidation were separated using alpha-tocopherol as a radical scavenger. The utility of nitroso spin traps in trapping of radicals in liposomes is discussed.  相似文献   

12.
The role of a specific guanine nucleotide binding (G protein) protein in coupling murine B lymphocyte receptor immunoglobulin to inositol phospholipid hydrolysis was investigated. Using an in vitro system with isolated membranes, we have observed specific enhancement of GTP binding subsequent to ligand-induced receptor crosslinking. Induced increases were inhibited by pretreatment with pertussis toxin which catalyzed ADP-ribosylation of a 43 kDa substrate. Involvement of this G protein with receptor immunoglobulin-induced inositol phospholipid hydrolysis was evidenced by the ability of pertussis toxin to block this response. This report, then, indicates that the B lymphocyte antigen receptor belongs to a family of receptors which are linked to inositol phospholipid hydrolysis through a G protein.  相似文献   

13.
A spontaneous membrane assembly process has been postulated to account for the rapid perigranular membrane enlargement which occurs during mast cell secretory granule activation. This process requires the presence of a phospholipid store in the quiescent granule. By using purified granules with intact membranes we have determined the total phospholipid content of the average quiescent granule. The results suggest that the average quiescent granule contains sufficient phospholipid to sustain at least a trebling of its perigranular membrane surface area during activation. As much as two-thirds of the total cellular phospholipid is found in the granules, and since a large portion of this phospholipid is extruded into the extracellular space along with the granule matrix during exocytosis, it is implied that this phospholipid can serve as the substrate for the formation of the lipid-derived mediators of inflammation.  相似文献   

14.
The involvement of GTP-binding proteins (G proteins) in insulin action has been investigated in an in vitro system. Insulin receptors that have been purified by wheat germ lectin chromatography and either tyrosine-agarose chromatography, sucrose density centrifugation, or insulin-Sepharose chromatography have been co-inserted into phospholipid vesicles with different purified G proteins. The results of these studies indicate that a specific insulin-promoted phosphorylation of two G proteins, Go and Gi, can occur in these phospholipid vesicles. Bovine retinal transducin is a poor substitute for Go and Gi, being only weakly phosphorylated by the insulin receptor, and bovine brain Gs is not a substrate. The phosphorylation of Gi and Go occurs primarily on the alpha-subunits. Under optimal conditions, about one alpha o- or alpha i-subunit is phosphorylated on a tyrosine residue for every two beta-subunits of the insulin receptor, suggesting a 1:1 interaction between these G proteins and the heterotetrameric (alpha 2 beta 2) insulin receptor molecular. The inactive (GDP-bound) form of the alpha-subunits appears to be the preferred substrate, with the phosphorylation being significantly reduced in alpha o and alpha i upon the binding of guanosine 5'-O-thiotriphosphate (GTP gamma S) and completely eliminated in the pure alpha-GTP gamma S complex of transducin. The Gi and Go proteins also cause an enhancement of the insulin-stimulated receptor autophosphorylation. This enhancement is a reflection of an increased incorporation of the insulin receptor into lipid vesicles which is induced by these G proteins. Taken together these results provide evidence for the interactions of G proteins with the insulin receptor in a lipid milieu.  相似文献   

15.
Very little is known about the metabolism of phospholipids in the G2 and M phases of the cell cycle, but limited studies have led to the postulation that phospholipid synthesis ceases during this period. To investigate whether phospholipids are synthesized in the G2/M phase of the cell cycle, protocols were developed to produce synchronized MCF-7 cell populations with greater than 80% of the cells in G1/S or G2/M phases that moved in synchrony following removal of the blocking agent. Analysis of the activities of key phosphatidylcholine and phosphatidylethanolamine biosynthetic enzymes in subcellular fractions obtained from MCF-7 cells at different cell cycle phases revealed that there was robust activity of key enzymes in the fractions prepared from MCF-7 cells in G2/M phase. Radiolabeled choline and ethanolamine were rapidly incorporated into cells maintained at G2/M phase with nocodazole, and the rates of incorporation were similar to those obtained in cells allowed to progress into the G1 phase. Furthermore, radiolabeled glycerol was incorporated into phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and phosphatidic acid in MCF-7 cells maintained at G2/M phase with nocodazole. Similar results were obtained in CHO cells. These results demonstrate that glycerophospholipid synthesis is very active in the G2/M phase of these cells. Therefore, the postulated cessation of phospholipid synthesis in G2/M phases is not applicable to all cell types.  相似文献   

16.
Three model membrane systems have been characterized in terms of their interaction with phospholipid exchange proteins. Large unilamellar vesicles of phosphatidylcholine prepared by ether vaporization are shown to be homogeneous by gel filtration. Phospholipid exchange proteins from three sources are capable of catalyzing the rapid exchange of approximately half of the phospholipid from these vesicles. The remaining pool of radioactive phospholipid is virtually nonexchangeable (t1/2 of several days). Small unilamellar vesicles of phosphatidylcholine prepared by cholate dialysis also exhibit two pools of phospholipid (65% rapidly exchangable, 35% very slowly exchangeable) when incubated with beef liver phospholipid exchange protein. Cytochrome oxidase vesicles prepared both by a cholate dialysis method and by a direct incorporation method have been fractionated on a Ficoll discontinuous gradient, and tested for interaction with beef heart exchange protein. Two pools of phospholipid are once again observed (70% rapidly exchangable, 30% nonexchangeable), even for vesicles which have incorporated the transmembranous enzyme at a phospholipid to protein weight ratio of 2. The size of the rapidly exchangeable pool of phosphatidylcholine for each of the vesicle systems is consistent with the calculated fraction of phospholipid in the outer monolayer. The extremely slow rate of exchange of the second pool of the second pool of phospholipid reflects the virtual nonexistence of phospholipid flip-flop in any of these model membranes.  相似文献   

17.
Mastoparan-X, a tetradecapeptide from wasp venom, has been proposed to cause secretion from various kinds of cells by the direct activation of GTP-binding regulatory proteins (G proteins) that couple to phospholipase C. The mechanism of the activation has been shown to be very similar to that of G-protein-coupled receptors in vitro, and the interaction with membranes seems to be very important for the activation of G proteins that are membrane-bound [Higashijima, T., Uzu, S., Nakajima, T., & Ross, E. M. (1988) J. Biol. Chem. 263, 6491-6494]. We report here the precise vesicle-bound conformation of mastoparan-X in the presence of perdeuterated phospholipid vesicles, determined by two-dimensional 1H-NMR analyses of transferred nuclear Overhauser effects, combined with distance geometry and molecular dynamics calculations. Of 14 amino acid residues, the C-terminal 12 residues take an alpha-helical conformation upon binding to the phospholipid bilayer. The overall structure of the alpha-helix is amphiphilic, with three lysine side chains located on one side and with hydrophobic side chains on the other side. This conformation of mastoparan-X was maintained both in the gel and in the liquid-crystalline phases of the membranes. The conformation described herein will provide a useful basis for understanding conformation-activity relationships of mastoparan analogs as activators of G proteins. These studies will help to design novel potent analogs for the regulation of G proteins and to analyze receptor-G-protein interactions.  相似文献   

18.
The synthesis and behavior of Amoeba proteus nuclear envelope (NE) phospholipids were studied. Most NE phospholipid synthesis occurs during G2 and little during mitosis or S. (A. proteus has no G1 phase). Autoradiographic observations after implantation of [3-H] choline nuclei into unlabeled cells reveal little turnover of NE phospholipid during interphase but during mitosis all the label is dispersed through the cytoplasm. Beginning at telophase all the label is dispersed through the cytoplasm. Beginning at telophase all the NE phospholipid label returns to the daughter NEs. This observation, along with the finding that no NE phospholipid synthesis occurs during mitosis or S, indicates that no de novo NE phospholipid production is required for newly forming NEs. Similarlyemetine, at concentrations that inhibit 97 percent of protein synthesis, does not prevent the post mitotic formation of NEs, suggesting that previously manufactured proteins are used in making new NEs. If a nucleus containing labeled NE phospholipids is transplanted into an unlabeled nucleate cell and the cell is allowed to grow and divide, the resultant four nuclei are equally labeled. This finding supports, but does not prove (see next paragraph), the conclusion that there probably is no continuity of the A. proteus NE during mitosis. When a phospholipid-labeled nucleus is implanted into a cell in mitosis, the grafted nucleus is not induced to enter mitosis. There is, however, a marked increase in the turnover of that nucleus's NE phospholipids with no apparent breakdown of the NE; this indicated that the mitotic cytoplasm possesses a factor that stimulates NE phospholipid exchange with the cytoplasm. That enhanced turnover is not accompanied by visible structural alteration makes less certain the earlier conclusion that no NE continuity exists during mitosis. Perhaps the most important finding in this study is that there are present, at restricted times in the cell cycle, factors capable of inducing accelerated exchange of structural components without microscopically detectable disruptions of structure.  相似文献   

19.
T K Ray  J E Cronan  Jr 《Journal of bacteriology》1987,169(6):2896-2898
The inhibition of phospholipid synthesis engendered by starving glycerol 3-phosphate (G3P) auxotrophs of Escherichia coli (plsB or gpsA) for G3P is incomplete; 5 to 10% of the normal rate of phospholipid synthesis remains, even after prolonged starvation. We report that G3P starvation of a strain having lesions in both the gpsA and plsB genes resulted in essentially complete (greater than 98.5%) inhibition of phospholipid synthesis, indicating that all de novo glycerolipid synthesis in E. coli proceeds by acylation of G3P.  相似文献   

20.
Mimicry of the nonthrombogenic surface of the erythrocyte has been advocated as the starting point for the development of nonthrombogenic biomaterials. Phosphorylcholine forms 88% of the outer surface of the erythrocyte, and so materials containing it should be nonthrombogenic. We have evaluated the thrombogenicity of such materials and compared them with Dacron and PTFE. Three materials containing phosphorylcholine were used: a naturally occurring phospholipid (dipalmitoyl-phosphatidylcholine, DPPC), a polymerized phospholipid (diacetylenic phosphatidylcholine, DAPC) and a polyester polyurethane (Polyester G). The thrombogenic potential of these materials was assessed by material thrombelastography (MTEG). This technique uses human whole blood at 37°c, without an air interface, and records the elasticity of the blood clot produced. Since each material is evaluated with a control surface, extraneous differences due to factors other than the test material are eliminated. Analysis, and examples of the MTEG traces are shown and discussed. The phosphorylcholine containing materials were found to have a reduced amount of clotting factor activation, but only DPPC was better than Dacron and PTFE. MTEG demonstrated the known thrombogenicity of Dacron towards platelets. A striking reduction in platelet activation was shown for the three phosphorylcholine containing materials. These three materials show only 25% of the platelet activation of PTFE. These materials warrant further investigation as potentially very useful biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号