首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A remarkable correlation has been discovered between fluorescence lifetimes of bound NADPH and rates of hydride transfer among mutants of dihydrofolate reductase (DHFR) from Escherichia coli. Rates of hydride transfer from NADPH to dihydrofolate change by a factor of 1,000 for the series of mutant enzymes. Since binding constants for the initial complex between coenzyme and DHFR change by only a factor of 10, the major portion of the change in hydride transfer must be attributed to losses in transition-state stabilization. The time course of fluorescence decay for NADPH bound to DHFR is biphasic. Lifetimes ranging from 0.3 to 0.5 ns are attributed to a solvent-exposed dihydronicotinamide conformation of bound coenzyme which is presumably not active in catalysis, while decay times (tau 2) in the range of 1.3 to 2.3 ns are assigned to a more tightly bound species of NADPH in which dihydronicotinamide is sequestered from solvent. It is this slower component that is of interest. Ternary complexes with three different inhibitors, methotrexate, 5-deazafolate, and trimethoprim, were investigated, along with the holoenzyme complex; 3-acetylNADPH was also investigated. Fluorescence polarization decay, excitation polarization spectra, the temperature variation of fluorescence lifetimes, fluorescence amplitudes, and wavelength of absorbance maxima were measured. We suggest that dynamic quenching or internal conversion promotes decay of the excited state in NADPH-DHFR. When rates of hydride transfer are plotted against the fluorescence lifetime (tau 2) of tightly bound NADPH, an unusual correlation is observed. The fluorescence lifetime becomes longer as the rate of catalysis decreases for most mutants studied. However, the fluorescence lifetime is unchanged for those mutations that principally alter the binding of dihydrofolate while leaving most dihydronicotinamide interactions relatively undisturbed. The data are interpreted in terms of possible dynamic motions of a flexible loop region in DHFR which closes over both substrate and coenzyme binding sites. These motions could lead to faster rates of fluorescence decay in holoenzyme complexes and, when correlated over time, may be involved in other motions which give rise to enhanced rates of catalysis in DHFR.  相似文献   

2.
The fluorescence decay time of spinach chloroplasts at 77 degrees K was determined at 735 nm (corresponding to the photosystem I emission) using a train of 10-ps laser pulses spaced 10 ns apart. The fluorescence lifetime is constant at congruent to 1.5 ns for up to the fourth pulse, but then decreases with increasing pulse number within the pulse train. This quenching is attributed to triplet excited states, and it is concluded that triplet excitons exhibit a time lag of about 50 ns in diffusing from light harvesting antenna pigments to photosystem I pigments. The diffusion coefficient of triplet excitons is a least 300--400 times slower than the diffusion coefficient of singlet excitons in chloroplast membranes.  相似文献   

3.
Time-resolved fluorescence studies were carried out on the FAD bound to p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. The transient fluorescence exhibits complex decay kinetics with at least a short lifetime component in the 50-500-ps time region and a longer one in the range 1.5-3.5 ns. The shorter-lifetime component has a larger contribution in the presence of substrate (p-hydroxybenzoate) or inhibitor (p-aminobenzoate). The quenching of the fluorescence is both static and dynamic in nature. The decay of fluorescence anisotropy shows that the FAD environment is both flexible and rigid. The FAD mobility can be enhanced by dilution of the enzyme, by raising the temperature, or by the binding of substrate or inhibitors. The anisotropy results are interpreted in part in terms of a monomer-dimer equilibrium, whereby the FAD in the monomer contains much more flexibility. The above-mentioned effects induce a shift of the equilibrium to the monomeric side. From a constrained parameter fitting the dissociation constant is estimated to be about 1 microM for the free enzyme and somewhat higher for the binary complexes between the enzyme and substrate or inhibitor. pH variation has only a slight effect on fluorescence or anisotropy decay parameters, while dimethylsulfoxide appears to promote dissociation into monomers by weakening hydrophobic interaction between the subunits. The results are discussed in the light of newly developed insights into the functional role of rapid structural fluctuations in enzyme catalysis.  相似文献   

4.
Dypiridamole is a highly efficient chain breaking antioxidant (Iuliano et al., Free Radic. Biol. Med. 18 (1995) 239-247) with an aromatic ring system responsible for an intense absorption band in the 400-480-nm region and for an intense fluorescence. Dipyridamole fluorescence is quantitatively quenched upon reaction with peroxyl radicals. In the presence of a flux of peroxyl radicals generated by thermal dissociation of azo-initiators, dipyridamole fluorescence decays linearly, showing a first-order reaction with respect to peroxyl radicals, and zero-order with respect to dipyridamole. The pH optimum for the fluorescence quenching is in the 7-8 range, from pH 7 to 6, the decay of fluorescence rapidly decreases to became negligible below pH 5.5. Dipyridamole consumption is blocked in the presence of an added chain breaking antioxidant for a time that is proportional to the antioxidant concentration. This effect is shown for ascorbic acid, trolox, vitamin E, uric acid, and N, N'-diphenyl-p-phenylenediamine. The slope of the linear correlation relative to trolox allows calculation of the bimolecular rate constant for a given molecule and peroxyl radicals. Comparison of data obtained by the dipyridamole consumption are comparable to values obtained by the oxygen consumption method.  相似文献   

5.
Low-temperature fluorescence measurements are frequently used in photosynthesis research to assess photosynthetic processes. Upon illumination of photosystem II (PSII) frozen to 77 K, fluorescence quenching is observed. In this work, we studied the light-induced quenching in intact cells of Chlamydomonas reinhardtii at 77 K using time-resolved fluorescence spectroscopy with a streak camera setup. In agreement with previous studies, global analysis of the data shows that prolonged illumination of the sample affects the nanosecond decay component of the PSII emission. Using target analysis, we resolved the quenching on the PSII-684 compartment which describes bulk chlorophyll molecules of the PSII core antenna. Further, we quantified the quenching rate constant and observed that as the illumination proceeds the accumulation of the quencher leads to a speed up of the fluorescence decay of the PSII-684 compartment as the decay rate constant increases from about 3 to 4 ns??1. The quenching on PSII-684 leads to indirect quenching of the compartments PSII-690 and PSII-695 which represent the red chlorophyll of the PSII core. These results explain past and current observations of light-induced quenching in 77 K steady-state and time-resolved fluorescence spectra.  相似文献   

6.
A procedure is described for using nanosecond time resolved fluorescence decay data to obtain decay-associated fluorescence spectra. It is demonstrated that the individual fluorescence spectra of two or more components in a mixture can be extracted without prior knowledge of their spectral shapes or degree of overlap. The procedure is also of value for eliminating scattered light artifacts in the fluorescence spectra of turbid samples. The method was used to separate the overlapping emission spectra of the two tryptophan residues in horse liver alcohol dehydrogenase. Formation of a ternary complex between the enzyme, NAD+, and pyrazole leads to a decrease in the total tryptophan fluorescence. It is shown that the emission of both tryptophan residues decreases. The buried tryptophan (residue 314) undergoes dynamic quenching with no change in the spectral distribution. Under the same conditions, the fluorescence intensity of tryptophan (residue 15) decreases without a change in decay time but with a red shift of the emission spectrum. There is also a decrease in tryptophan fluorescence intensity when the free enzyme is acid denatured (succinate buffer, pH 4.1). The denatured enzyme retains sufficient structure to provide different microenvironments for different tryptophan residues as reflected by biexponential decay and spectrally shifted emission spectra (revealed by decay association). The value of this technique for studies of microheterogeneity in biological macromolecules is discussed.  相似文献   

7.
The intrinsic luminescence of different forms of the alfalfa mosaic virus (AMV) strain 425 coat protein has been studied, both statically and time resolved. It was found that the emission of the protein (Mr 24,250), which contains two tryptophans at positions 54 and 190 and four tyrosines, is completely dominated by tryptophan fluorescence. The high fluorescence quantum yield indicates that both tryptophans are emitting. Surprisingly, the fluorescence decay is found to be strictly exponential, with a lifetime of 5.1 nsec. Similar results were obtained for various other forms of the protein, i.e. the 30-S polymer, the mildly trypsinized forms of the protein lacking the N-terminal part and the protein assembled into viral particles. Virus particles and proteins of stains S and VRU gave similar results, as well as the VRU protein polymerised into tubular structures. The fluorescence decay is also monoexponential in the presence of various concentrations of the quenching molecules acrylamide and potassium iodide. Stern-Volmer plots were linear and yield for the coat protein dimer with acrylamide a quenching constant of 4.5* 10(8) M-1 sec-1. This indicates that the tryptophans are moderately accessible for acrylamide. For the 30-S polymer a somewhat smaller value was found, whereas in the viral Top a particles the accessibility of the tryptophans is still further reduced. From the decay of the polarisation anisotropy of the fluorescence of the coat protein dimer the rotational correlation time was obtained as 35 nsec. Since this roughly equals the expected rotational correlation time of the dimer as a whole, it suggests that the tryptophans are contained rigidly in the dimer. The results show that in the excited state of the protein the two tryptophans are strongly coupled and suggest that the trp-trp distance is smaller than 10 A. Because the coat protein occurs as a dimer, the coupling can be inter- or intramolecular. The implications for the viral structure are discussed.  相似文献   

8.
The fluorescence lifetimes of the tryptophan residues of bovine serum albumin were measured in the native and acid-expanded conformation. A three-exponential process is required to fit the fluorescence decay data. The results are interpreted empirically in terms of two emitting species. The emission at longer wavelength (360 nm) has slower rates of decay than that at shorter wavelength (325 nm). For both emitting species the average lifetime decreases when the N-F transition occurs and shortens further when the protein expands. Rotational correlation times, derived from the decay of the fluorescence anisotropy of the tryptophan residues, suggest that longer emission wavelengths are associated with somewhat shorter correlation times. There is no certain indication of any independent motion of the tryptophans in any conformation, although some very fast process, perhaps Raman scattering, appears to occur. On acid expansion the long correlation times decrease to around 10 ns in the fully expanded form. Static quenching experiments using I- or acrylamide suggest a greater average exposure of the tryptophans when the protein is most greatly expanded. This is despite the fact that the fluorescence emission maximum shifts to shorter wavelength under these conditions. Also, there is no difference in accessibility to quenching between the longer and shorter wavelength emissions.  相似文献   

9.
A study was made of the processes associated with the quenching of 4″-dimethylaminochalcone (DMAC) fluorescence by proton-donor solvent (1-butanol). The kinetics of deactivation of the DMAC excited state was assessed by transient absorption spectra with a time resolution about 50 fs and by fluorescence decay with ~30-ps resolution. The following sequence of events could thus be envisaged: (i) the DMAC molecule in the ground state (prior to excitation) makes a hydrogen bond with an alcohol molecule; (ii) absorption of a light quantum causes a corresponding increase of the DMAC dipole moment; the H-bond is retained; (iii) the solvation shell formed by alcohol dipoles is reorganized in response to the raise of the DMAC dipole moment, with an energy expenditure about 24 kJ/mol and a time constant about 40 ps; the initial H-bond is still retained; (iv) processes leading to fluorescence quenching occur with an effective time constant of nearly 200 ps. Since quenching is far slower than solvate rearrangement, one can suppose that it is not a direct consequence of shell relaxation or prior H-bonding. Thus, DMAC fluorescence quenching may involve different processes observed with other aromatic molecules: H-bond rearrangement from a nonquenching to a more ‘efficient’ conformation, charge transfer between the excited molecule and alcohol, or solvent-induced out-of-plane twist of the DMAC amino group.  相似文献   

10.
Abstract

The intrinsic luminescence of different forms of the alfalfa mosaic virus (AMV) strain 425 coat protein has been studied, both statically and time resolved. It was found that the emission of the protein (Mr24,250), which contains two tryptophans at positions 54 and 190 and four tyrosines, is completely dominated by tryptophan fluorescence. The high fluorescence quantum yield indicates that both tryptophans are emitting. Surprisingly, the fluorescence decay is found to be strictly exponential, with a lifetime of 5.1 nsec. Similar results were obtained for various other forms of the protein, i.e. the 30-S polymer, the mildly trypsinised forms of the protein lacking the N-terminal part and the protein assembled into viral particles. Virus particles and proteins of stains S and VRU gave similar results, as well as the VRU protein polymerised into tubular structures. The fluorescence decay is also monoexponential in the presence of various concentrations of the quenching molecules acrylamide and potassium iodide. Stern-Volmer plots were linear and yield for the coat protein dimer with acrylamide a quenching constant of 4.5 * 108 M?1sec?1. This indicates that the tryptophans are moderately accessible for acrylamide. For the 30-S polymer a somewhat smaller value was found, whereas in the viral Top a particles the accessibility of the tryptophans is still further reduced. From the decay of the polarisation anisotropy of the fluorescence of the coat protein dimer the rotational correlation time was obtained as 35 nsec. Since this roughly equals the expected rotational correlation time of the dimer as a whole, it suggests that the tryptophans are contained rigidly in the dimer.

The results show that in the excited state of the protein the two tryptophans are strongly coupled and suggest that the trp-trp distance is smaller than 10 A. Because the coat protein occurs as a dimer, the coupling can be inter- or intramolecular. The implications for the viral structure are discussed.  相似文献   

11.
In many proteins fluorescence from single tryptophan exhibits a nonexponential decay function. To elucidate the origin of this nonexponential decay, we have examined the fluorescence decay function and time-resolved fluorescence anisotropy of a fluorophore covalently bound to a macromolecule by solving a rotational analogue of the Smoluchowski equation. An angular-dependent quenching constant and potential energy for the fluorophore undergoing internal rotation were introduced into the equation of motion for fluorophore. Results of numerical calculations using the equations thus obtained predict that both the fluorescence decay function and time-resolved anisotropy are dependent on rotational diffusion coefficients of fluorophore and potential energy for the internal rotation. The method was applied to the observed fluorescence decay curve of the single tryptophan in apocytochrome c from horse heart. The calculated decay curves fit the observed ones well.  相似文献   

12.
The 40 S heterogeneous nuclear ribonucleoprotein (hnRNP) particles from HeLa cells reveal tryptophan fluorescence with a bi-exponential decay, indicating that only a few of the 'core' proteins contain tryptophan residues. The presence of tryptophan residues distinguishes hnRNP particles from nucleosomes, with which they otherwise share a number of properties. This difference, however, is not essential for protein-RNA binding, as the fluorescence decay remains unchanged when hnRNP particles are dissociated into protein and RNA. However, the Stern-Volmer quenching constant is doubled upon salt dissociation, i.e. tryptophan residues become more accessible to solvent. Thus tryptophan quenching is a useful parameter for monitoring protein-protein interactions in hnRNP particles.  相似文献   

13.
Coat protein of bacteriophage M13 is examined in micelles and vesicles by time-resolved tryptophan fluorescence and anisotropy decay measurements and circular dichroism experiments. Circular dichroism indicates that the coat protein has alpha-helix (60%) and beta-structure (28%) in 700 mM sodium dodecyl sulfate micelles and predominantly beta-structure (94%) in mixed dimyristoylphosphatidylcholine/dimyristoylphosphatidic acid (80/20 w/w) small unilamellar vesicles. The fluorescence decay at 344 nm of the single tryptophan in the coat protein after excitation at 295 or 300 nm is a triple exponential. In the micelles the anisotropy decay is a double exponential. A short, temperature-independent correlation time of 0.5 +/- 0.2 ns reflects a rapid depolarization process within the coat protein. The overall rotation of the coat protein-detergent complex is observed in the decay as a longer correlation time of 9.8 +/- 0.5 ns (at 20 degrees C) and has a temperature dependence that satisfies the Stokes-Einstein relation. In vesicles at all lipid to protein molar ratios in the range from 20 to 410, the calculated order parameter is constant with a value of 0.7 +/- 0.1 from 10 to 40 degrees C, although the lipids undergo the gel to liquid-crystalline phase transition. The longer correlation time decreases gradually on increasing temperature. This effect probably arises from an increasing segmental mobility within the coat protein. The results are consistent with a model in which the coat protein has a beta-structure and the tryptophan indole rings do not experience the motion of the lipids in the bilayer because of protein-protein aggregation.  相似文献   

14.
The tryptophyl fluorescence emission of yeast 3-phosphoglycerate kinase decreases from pH 3.9 to pH 7.2 following a normal titration curve with an apparent pK of 4.7. The fluorescence decays have been determined at both extreme pH by photocounting pulse fluorimetry and have been found to vary with the emission wavelength. A quantitative analysis of these results according to a previously described method allows to determine the emission characteristics of the two tryptophan residues present in the protein molecule. At pH 3.9, one of the tryptophan residues is responsible for only 13% of the total fluorescence emission. This first residue has a lifetime τ1= 0.6 ns and a maximum fluorescence wavelength λ2max = 332 nm. The second tryptophan residue exhibits two lifetimes τ21= 3.1 ns and τ22= 7.0 ns (λ2max= 338 nm). In agreement with the attribution of τ21and τ32 to the same tryptophan residue, the ratio β = C21/C22 of the normalized amplitudes is constant along the fluorescence emission spectrum. At pH 7.2, the two tryptophan residues contribute almost equally tc the protein fluorescence. The decay time of tryptophan 1 is 0.4 ns. The other emission parameters are the same as those determined at pH 3.9. We conclude that the fluorescence quenching in the range pH 3.9 to pH 8.0 comes essentially from the formation of a non emitting internal ground state complex between the tryptophan having the longest decay times and a neighbouring protein chemical group. The intrinsic pK of this group and the equilibrium constant of the irternal complex can be estimated. The quenching group is thought to be a carboxylate anion. Excitation transfers between the two tryptophyl residues of the protein molecule appear to have a small efficiency.  相似文献   

15.
The structural dynamics of bovine erythrocyte Cu, Zn superoxide dismutase (BSOD) was studied by time-resolved fluorescence spectroscopy. BSOD is a homodimer containing a single tyrosine residue (and no tryptophan) per subunit. Frequency-domain fluorometry revealed a heterogeneous fluorescence decay that could be described with a Lorentzian distribution of lifetimes. The lifetime distribution parameters (center and width) were markedly dependent on temperature. The distribution center (average lifetime) displayed Arrhenius behavior with an Ea of 4.2 kcal/mol, in contrast with an Ea of 7.4 kcal/mol for the single-exponential decay of L-tyrosine. This indicated that thermal quenching of tyrosine emission was not solely responsible for the effect of temperature on the lifetimes of BSOD. The distribution width was broad (1 ns at 8 degrees C) and decreased significantly at higher temperatures. Furthermore, the width of the lifetime distribution increased in parallel to increasing viscosity of the medium. The combined effects of temperature and viscosity on the fluorescence decay suggest the existence of multiple conformational substrates in BSOD that interconvert during the excited-state lifetime. Denaturation of BSOD by guanidine hydrochloride produced an increase in the lifetime distribution width, indicating a larger number of conformations probed by the tyrosine residue in the denatured state. The rotational mobility of the tyrosine in BSOD was also investigated. Analysis of fluorescence anisotropy decay data enabled resolution of two rotational correlation times. One correlation time corresponded to a fast (picosecond) rotation that contributed 62% of the anisotropy decay and likely reported local mobility of the tyrosine ring. The longer correlation time was 50% of the expected value for rotation of the whole (dimeric) BSOD molecule and appeared to reflect segmental motions in the protein in addition to overall tumbling. Comparison between rotational correlation times and fluorescence lifetimes of BSOD indicates that the heterogeneity in lifetimes does not arise from mobility of the tyrosine per se, but rather from dynamics of the protein matrix surrounding this residue which affect its fluorescence decay.  相似文献   

16.
The inhibition kinetic patterns obtained when ATP and pyridoxal analogues are used as inhibitors of the reaction catalyzed by pyridoxal kinase are consistent with a rapid equilibrium random Bi Bi, in which binary complexes, i.e. enzyme . ATP and enzyme . pyridoxal, are formed in kinetically significant amounts. Protein fluorescence quenching was used to determine the dissociation constant (Kd = 25 microM) of ATP . Zn bound to the nucleotide site of the kinase. The binding of ATP to the kinase induces a conformational change which is transmitted to other areas of the macromolecule. Pyridoxaloxime, a competitive inhibitor of pyridoxal, was used as a probe of the pyridoxal-binding site. It binds to the kinase with Ki = 2 microM and displays a fluorescent decay time of 7.8 ns. Time emission anisotropy measurements yield a rotational correlation time for bound pyridoxaloxime of approximately 2 ns, which is considerably shorter than the rotational correlation time of the protein (phi = 38 ns). The fast rotation of pyridoxaloxime remains unaffected by the binding of ATP.  相似文献   

17.
Photophysics of tryptophan in bacteriophage T4 lysozymes   总被引:7,自引:0,他引:7  
D L Harris  B S Hudson 《Biochemistry》1990,29(22):5276-5285
Bacteriophage T4 lysozyme contains three tryptophan residues in distinct environments. Lysozymes with one or two of these residues replaced by tyrosine are used to characterize the photophysics of tryptophan in these individual sites. The fluorescence spectra, average lifetimes, and quantum yields of these three single-tryptophan variants are understandable in terms of the neighboring residues. The emission spectra and radiative lifetimes are found to be the same for all three species while the quantum yield and decay kinetics are quite distinct. The variation of the average nonradiative rate constant is correlated with neighboring quenching groups. Quenching by I- correlates with exposure of the tryptophan residue based on the crystal structure. Complex behavior is observed for the time dependence of the fluorescence decay in all three cases, including that of the immobile tryptophan-138 residue. The complexity of the fluorescence decay is ascribed to heterogeneity in the nonradiative rate constant among microstates. Energy transfer between tryptophan residues is inferred to occur from comparison of the quantum yields of the two-tryptophan and single-tryptophan proteins and is discussed in terms of the F?rster mechanism.  相似文献   

18.
Two fluorescent adenosine analogs, 4-amino-6-methyl-8-(2-deoxy-beta-d-ribofuranosyl)-7(8H)-pteridone (6MAP) and 4-amino-2,6-dimethyl-8-(2'-deoxy-beta-d-ribofuranosyl)-7(8H)-pteridone (DMAP), have been synthesized as phosphoramidites. These probes are site-selectively incorporated into oligonucleotides using automated DNA synthesis. Relative quantum yields are 0.39 for 6MAP and 0.48 for DMAP as monomers and range from >0.01 to 0.11 in oligonucleotides. Excitation maxima are 310 (6MAP) and 330 nm (DMAP) and the emission maximum for each is 430 nm. Fluorescence decay curves of each are monoexponential exhibiting lifetimes of 3.8 and 4.8 ns for 6MAP and DMAP, respectively. When these probes are incorporated into oligonucleotides they display quenching of fluorescence intensity, increases in the complexity of decay curves, and decreases in mean lifetimes. Because these changes are apparently mediated by interactions with neighboring bases, spectral changes that occur as probe-containing oligonucleotides meet and react with other molecules provide a means of monitoring these interactions in real time. These probes are minimally disruptive to DNA structure as evidenced by melting temperatures of probe-containing oligonucleotides that are very similar to those of controls. Digestion of probe-containing oligonucleotides with P1 nuclease confirms probe stability as fluorescence levels are restored to those expected for each monomer. These adenosine analog probes are capable of providing information on DNA structure as it responds to binding or catalysis through interaction with other molecules.  相似文献   

19.
Processes accompanying the quenching of the fluorescent probe 4"-dimethylaminochalcone by hydroxyl groups of the proton-donor solvent 1-butanol have been studied. The kinetics of the deactivation of the excited state of 4"-dimethylaminochalcone has been monitored from the transition absorption spectra at a time resolution of 50 fs and fluorescence decay at a time resolution of 30 ps. The data obtained allow thinking that the next picture occurs in 1-butanol. At first stage, the 4"-dimethylaminochalcone molecule in its ground state forms a hydrogen bond with an alcohol molecule. At the second stage, the absorption of light quantum and corresponding rise of the dipole moment of 4"-dimethylaminochalcone take place, the initially existing hydrogen bond is retained. The third stage consists in the rearrangement of the 4"-dimethylaminochalcone solvation shell formed by alcohol dipole molecules due to an increase of the dipole of moment 4"-dimethylaminochalcone; this rearrangement takes an energy of about 24 kJ/mol, the arrangement time constant is close to 40 ps; the initial hydrogen bond is retained. The fourth stage involves processes that lead to fluorescence quenching; their time constant is about 200 ps. Taking into account that the quenching is a much slower process than the relaxation of the solvation shell, it was supposed that the quenching is not a direct consequence of the solvation shell relaxation or the existence of the hydrogen bond formed prior to excitation. Then the fluorescence quenching of 4"-dimethylaminochalcone can be accomplished through some other processes that are observed in other fluorescent molecules: (a) rearrangement of the initial hydrogen bond from a conformation that cannot quench the fluorescence of 4"-dimethylaminochalcone to a more "effective" conformation, (b) charge transfer between the excited of molecule 4"-dimethylaminochalcone and alcohol, or (c) solvent-induced twist of the 4"-dimethylaminochalcone amino group (its withdrawal from the molecule plane) by the action of the solvent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号