首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effect of MCC-134, a novel inhibitor of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels and activator of sarcolemmal ATP-sensitive K(+) (sarcK(ATP)) channels, on cardioprotection conferred by adaptation to chronic hypoxia. Adult male Wistar rats were exposed to intermittent hypobaric hypoxia (7000 m, 8 h/day, 5-6 weeks) and susceptibility of their hearts to ventricular arrhythmias and myocardial infarction was evaluated in anesthetized open-chest animals subjected to 20-min coronary artery occlusion and 3-h reperfusion on the day after the last hypoxic exposure. MCC-134 was administered intravenously 10 min before ischemia and 5 min before reperfusion in a total dose of 0.3 mg/kg or 3 mg/kg divided into two equal boluses. The infarct size (tetrazolium staining) was reduced from 59.2+/-4.4 % of the area at risk in normoxic controls to 43.2+/-3.3 % in the chronically hypoxic group. Chronic hypoxia decreased the reperfusion arrhythmia score from 2.4+/-0.5 in normoxic animals to 0.7+/-0.5. Both doses of MCC-134 completely abolished the antiarrhythmic protection (score 2.4+/-0.7 and 2.5+/-0.5, respectively) but only the high dose blocked the infarct size-limiting effect of chronic hypoxia (54.2+/-3.7 %). MCC-134 had no effect in the normoxic group. These results support the view that the opening of mitoKATP channels but not sarcKATP channels plays a crucial role in the mechanism by which chronic hypoxia improves cardiac tolerance to ischemia/reperfusion injury.  相似文献   

2.
We compared the effects of adaptation to intermittent high altitude (IHA) hypoxia of various degree and duration on ischemia-induced ventricular arrhythmias in rats. The animals were exposed to either relatively moderate hypoxia of 5000 m (4 or 8 h/day, 2-3 or 5-6 weeks) or severe hypoxia of 7000 m (8 h/day, 5-6 weeks). Ventricular arrhythmias induced by coronary artery occlusion were assessed in isolated buffer-perfused hearts or open-chest animals. In the isolated hearts, both antiarrhythmic and proarrhythmic effects were demonstrated depending on the degree and duration of hypoxic exposure. Whereas the adaptation to 5000 m for 4 h/day decreased the total number of premature ventricular complexes (PVCs), extending the daily exposure to 8 h and/or increasing the altitude to 7000 m led to opposite effects. On the contrary, the open-chest rats adapted to IHA hypoxia exhibited an increased tolerance to arrhythmias that was even more pronounced at the higher altitude. The distribution of PVCs over the ischemic period was not altered by any protocol of adaptation. It may be concluded that adaptation to IHA hypoxia is associated with enhanced tolerance of the rat heart to ischemic arrhythmias unless its severity exceeds a certain upper limit. The opposite effects of moderate and severe hypoxia on the isolated hearts cannot be explained by differences in the occluded zone size, heart rate or degree of myocardial fibrosis. The proarrhythmic effect of severe hypoxia may be related to a moderate left ventricular hypertrophy (27 %), which was present in rats adapted to 7000 m but not in those adapted to 5000 m. This adverse effect can be overcome by an unknown protective mechanism(s) that is absent in the isolated hearts.  相似文献   

3.
We examined cardioprotective effect of chronic hypoxia and the time course of its recovery under normoxic conditions. Adult male Wistar rats were exposed to intermittent hypobaric hypoxia (7000 m, 8 h/day, 35 exposures) and susceptibility of their hearts to ischemia-induced ventricular arrhythmias and myocardial infarction was evaluated in anesthetized open-chest animals subjected to 30-min coronary artery occlusion and 4-h reperfusion on the day after the last hypoxic exposure and at 7, 35 and 90 days of normoxic recovery. The infarct size was reduced from 69.2+/-1.7 % of the area at risk in normoxic controls to 48.0+/-2.2 % in the chronically hypoxic group and to 61.6+/-2.3 % in the group recovered for 7 days. This residual protection persisted for at least 35 days of normoxic recovery but it was absent after 90 days. In contrast to the infarct size-limitation, the antiarrhythmic protection disappeared already during the first week; the incidence of ventricular fibrillation was even significantly increased 7 and 90 days after the last hypoxic exposure. In conclusion, the duration of cardioprotection induced by chronic hypoxia differs markedly, depending on the end point of ischemia/reperfusion injury examined. Whereas the increased tolerance to lethal myocardial injury persists for at least 5 weeks after the termination of hypoxia, the antiarrhythmic protection rapidly vanishes, being replaced with transient proarrhythmic effect.  相似文献   

4.
We examined the role of protein kinase C (PKC) in the cardioprotective mechanism induced by long-term adaptation to chronic intermittent hypoxia. Adult male Wistar rats were exposed to hypobaric hypoxia of 7,000 m for 8 h/day, 5 days/wk; the total number of exposures was 24-32. A control group was kept under normoxic conditions. Western blot analysis of PKC isoforms-delta and -epsilon was performed in the cytosol and three particulate fractions of left ventricular myocardium. Infarct size was determined in open-chest animals subjected to 20-min coronary artery occlusion and 3-h reperfusion. The PKC inhibitors chelerythrine (1 or 5 mg/kg) or rottlerin (selective for PKC-delta isoform; 0.3 mg/kg) were administered intravenously as a single bolus 15 min before ischemia. Chronic hypoxia had no effect on the expression and distribution of PKC-epsilon. The relative amount of PKC-delta increased in the cytosol and nuclear-cytoskeletal, mitochondrial, and microsomal fractions of chronically hypoxic myocardium by 100%, 212%, 237%, and 146%, respectively, compared with corresponding normoxic values. Chronic hypoxia decreased the size of myocardial infarction (normalized to the area at risk) by about one-third on the average (P < 0.05). Both doses of chelerythrine tended to reduce infarction in controls, and only the high dose completely abolished the improvement of ischemic tolerance in hypoxic hearts (P < 0.05). Rottlerin attenuated the infarct size-limiting effect of chronic hypoxia (P < 0.05), and it had no effect in controls. These results suggest that chronic intermittent hypoxia-induced cardioprotection in rats is partially mediated by PKC-delta; the contribution of other isoforms remains to be determined.  相似文献   

5.
Intermittent hypoxic training protects canine myocardium from infarction   总被引:6,自引:0,他引:6  
This investigation examined cardiac protective effects of normobaric intermittent hypoxia training. Six dogs underwent intermittent hypoxic training for 20 consecutive days in a normobaric chamber ventilated intermittently with N2 to reduce fraction of inspired oxygen (FiO2) to 9.5%-10%. Hypoxic periods, initially 5 mins and increasing to 10 mins, were followed by 4-min normoxic periods. This hypoxia-normoxia protocol was repeated, initially 5 times and increasing to 8 times. The dogs showed no discomfort during intermittent hypoxic training. After 20 days of hypoxic training, the resistance of ventricular myocardium to infarction was assessed in an acute experiment. The left anterior descending (LAD) coronary artery was occluded for 60 mins and then reperfused for 5 hrs. At 30 mins of LAD occlusion, radioactive microspheres were injected through a left atrial catheter to assess coronary collateral blood flow into the ischemic region. After 5 hrs reperfusion, the heart was dyed to delineate the area at risk (AAR) of infarction and stained with triphenyl tetrazolium chloride to identify infarcted myocardium. During LAD occlusion and reperfusion, systemic hemodynamics and global left ventricular function were stable. Infarction was not detected in 4 hearts and was 1.6% of AAR in the other 2 hearts. In contrast, 6 dogs sham-trained in a chamber ventilated with compressed air and 5 untrained dogs subjected to the same LAD occlusion/reperfusion protocol had infarcts of 36.8% +/- 5.8% and 35.2% +/- 9.5% of the AAR, respectively. The reduction in infarct size of four of the six hypoxia-trained dogs could not be explained by enhanced collateral blood flow to the AAR. Hypoxia-trained dogs had no ventricular tachycardia or ventricular fibrillation. Three sham-trained dogs had ventricular tachycardia and two had ventricular fibrillation. Three untrained dogs had ventricular fibrillation. In conclusion, intermittent hypoxic training protects canine myocardium from infarction and life-threatening arrhythmias during coronary artery occlusion and reperfusion. The mechanism responsible for this potent cardioprotection merits further study.  相似文献   

6.
Whereas inhibition of the Na(+)/H(+) exchanger (NHE) has been demonstrated to reduce myocardial infarct size in response to ischemia-reperfusion injury, the ability of NHE inhibition to preserve endothelial cell function has not been examined. This study examined whether NHE inhibition could preserve endothelial cell function after 90 min of regional ischemia and 180 min of reperfusion and compared this inhibition with ischemic preconditioning (IPC). In a canine model either IPC, produced by one 5-min coronary artery occlusion (1 x 5'), or the specific NHE-1 inhibitor eniporide (EMD-96785, 3.0 mg/kg) was administered 15 min before a 90-min coronary artery occlusion followed by 3 h of reperfusion. Infarct size (IS) was determined by 2,3,5-triphenyl tetrazolium chloride staining and expressed as a percentage of the area-at-risk (IS/AAR). Endothelial cell function was assessed by measurement of coronary blood flow in response to intracoronary acetylcholine infusion at the end of reperfusion. Whereas neither control nor IPC-treated animals exhibited a significant reduction in IS/AAR or preservation of endothelial cell function, animals treated with the NHE inhibitor eniporide showed a marked reduction in IS/AAR and a significantly preserved endothelial cell function (P < 0.05). Thus NHE-1 inhibition is more efficacious than IPC at reducing IS/AAR and at preserving endothelial cell function in dogs.  相似文献   

7.
Dong JW  Zhu HF  Zhu WZ  Ding HL  Ma TM  Zhou ZN 《Cell research》2003,13(5):385-391
Intermittent hypoxia has been shown to provide myocardial protection against ishemiaJreperfusion-induced injury.Cardiac myocyte loss through apoptosis has been reported in ischemia/reperfusion injury. Our aim was to investigate whether intermittent hypoxia could attenuate ischemia/reperfusion-induced apoptosis in cardiac myocytes and its potential mechanisms. Adult male Sprague-Dawley rats were exposed to hypoxia simulated 5000 m in a hypobaric chamber for 6 h/day, lasting 42 days. Normoxia group rats were kept under normoxic conditions. Isolated perfused hearts from both groups were subjected to 30 min of global ischemia followed by 60 min reperfusion.Incidence of apoptosis in cardiac myocytes was determined by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and DNA agarose gel electrophoresis. Expressions of apoptosis related proteins,Bax and Bcl-2, in cytosolic and membrane fraction were detected by Western Blotting. After ischemia/reperfusion,enhanced recovery of cardiac function was observed in intermittent hypoxia hearts compared with normoxia group.Ischemia/reperfusion-induced apoptosis, as evidenced by TUNEL-positive nuclei and DNA fragmentation, was significantly reduced in intermittent hypoxia group compared with normoxia group. After ischemia/reperfusion,expression of Bax in both cytosolic and membrane fractions was decreased in intermittent hypoxia hearts comparedwith normoxia group. Although ischemia/reperfusion did not induce changes in the level of Bcl-2 expression in cytosolic fraction between intermittent hypoxia and normoxia groups, the expression of Bcl-2 in membrane fraction was upregulated in intermittent hypoxia group compared with normoxia group. These results indicated that the cardioprotection of intermittent hypoxia against ischemia/reperfusion injury appears to be in part due to reducemyocardial apoptosis. Intermittent hypoxia attenuated ischemia/reperfusion-induced apoptosis via increasing the ratio of Bcl-2/Bax, especially in membrane fraction.  相似文献   

8.
It has been found that stimulation of delta-1 opioid receptors by intravenous administration of DPDPE (0.5 mg/kg) decreases the incidence of ischemic and reperfusion-induced arrhythmias and also increases myocardial tolerance to the arrhythmogenic action of epinephrine in rats. Pretreatment with a selective delta-2 agonist, DSLET, had no antiarrhythmic effect. The inhibition of the enzymatic breakdown of endogenous enkephalins by intravenous administration of acetorphan decreased the incidence of epinephrine-induced arrhythmias. Pretreatment with a selective delta opioid receptor antagonist, ICI-174.868, completely abolished this antiarrhythmic effect. Adaptation of rats to repeated immobilization stress during 12 days increased myocardial tolerance to the arrhythmogenic action of coronary artery occlusion (10 min) and reperfusion (10 min). Pretreatment with a selective delta opioid receptor antagonist, TIPP(Psy), did not abolish the antiarrhythmic effect of adaptation to immobilization stress. It seems that endogenous agonists of delta opioid receptors are not involved in the antiarrhythmic effect resulting from adaptation to stress.  相似文献   

9.
Zhong N  Zhang Y  Zhu HF  Zhou ZN 《生理学报》2000,52(5):375-380
本文用离体Langendorff灌流大鼠心脏造成急性心肌缺血/再灌注损伤模型,观察间歇性低氧暴露保护心肌线粒体的作用。以聚合酶链式反应(PCR)方法和电子显微镜技术,观察线粒体DNA(mtDNA^4834)片段缺失和超微结构的变化。大鼠暴露于模拟海拔5000米低氧环境(6h/d,28d)明显降低mtDNA^4834缺失的发生率(28.57%,vs常氧对照组87.5% P〈0.05);而且能够明显减  相似文献   

10.
Hypertension is the risk factor of serious cardiovascular diseases, such as ischemic heart disease and atherosclerosis. The aim of the present study was to analyze the development of cardiac tolerance to ischemia in neonatal spontaneously hypertensive rats (SHR) and possible protective effect of ischemic preconditioning (IP) or adaptation to intermittent high-altitude hypoxia (IHAH). For this purpose we used 1- and 10-day-old pups of SHR and their normotensive control Wistar Kyoto rats (WKY). Isolated hearts were perfused in the Langendorff mode with Krebs-Henseleit solution at constant pressure, temperature and rate. Cardiac tolerance to ischemia was expressed as a percentage of baseline values of developed force (DF) after global ischemia. IP was induced by three 3-min periods of global ischemia, each separated by 5-min periods of reperfusion. IHAH was simulated in barochamber (8 h/day, 5000 m) from postnatal day 1 to 10. Cardiac tolerance to ischemia in 1-day-old SHR was higher than in WKY. In both strains tolerance decreased after birth, and the difference disappeared. The high cardiac resistance in 1- and 10-day-old SHR and WKY could not be further increased by both IP and adaptation to IHAH. It may be concluded that hearts from newborn SHR are more tolerant to ischemia/reperfusion injury as compared to age-matched WKY; cardiac resistance decreased in both strains during the first ten days, similarly as in Wistar rats.  相似文献   

11.
Pregnant rats were exposed to intermittent hypobaric hypoxia (at a simulated altitude of 7000 m or 5000 m) and the excitability of cortical neurons of their pups was tested. Stimulation of the sensorimotor cortex of rats prenatally exposed to hypoxia shortened the duration of cortical afterdischarges in 12-day-old rats, but did not change the excitability in 25-day-old animals. Shortening of the first afterdischarge in 35-day-old rats but the prolongation of the first afterdischarge in adult rats (as compared to the duration of cortical afterdischarges in rats not exposed to prenatal hypoxia) were registered. The possible mechanisms of different excitability of cortical neurons in rats prenatally exposed to hypobaric hypoxia are discussed.  相似文献   

12.
The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24-30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 +/- 4.5% of the area at risk in the normoxic controls to 27.7 +/- 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 +/- 3.4%, but it abolished the protection provided by CIH (to 41.1 +/- 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-delta in the particulate fraction; NAC prevented these effects. The expression of PKC-epsilon was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-delta-dependent pathway but apparently not the increased capacity of major antioxidant enzymes.  相似文献   

13.
We examined the influence of dietary fatty acid (FA) classes on the expression of protein kinase C (PKC) delta and epsilon in relation to the cardioprotective effects of chronic intermittent hypoxia (CIH). Adult male Wistar rats were fed a nonfat diet enriched with 10% lard (saturated FA [SFA]), fish oil (n-3 polyunsaturated FA [n-3 PUFA]), or corn oil (n-6 PUFA) for 10 weeks. After 4 weeks on the diet, each group was divided into two subgroups that were either exposed to CIH in a barochamber (7000 m, 8 hrs/ day) or kept at normoxia for an additional 5-6 weeks. A FA phospholipid profile and Western blot analysis of PKC were performed in left ventricles. Infarct size was assessed in anesthetized animals subjected to 20-min coronary artery occlusion and 3-hr reperfusion. CIH decreased the n-6/n-3 PUFA ratio in all groups by 23% independently of the initial value set by various diets. The combination of n-3 diet and CIH had a stronger antiarrhythmic effect during reperfusion than the n-3 diet alone; this effect was less pronounced in rats fed the n-6 diet. The normoxic n-6 group exhibited smaller infarctions (by 22%) than the n-3 group. CIH decreased the infarct size in n-3 and SFA groups (by 20% and 23%, respectively) but not in the n-6 group. Unlike PKC epsilon, the abundance of PKC delta in the myocardial particulate fraction was increased by CIH except for the n-6 group. Myocardial infarct size was negatively correlated (r=- 0.79) with the abundance of PKC delta in the particulate fraction. We conclude that lipid diets modify the infarct size-limiting effect of CIH by a mechanism that involves the PKC delta-dependent pathway.  相似文献   

14.
We have found that intravenous administration of cannabinoid receptor (CB) agonist HU-210 (0.05 mg/kg), increases cardiac resistance against arrhythmogenic effect of epinephrine, aconitine, coronary artery occlusion and reperfusion in rats. Pretreatment with CB2-receptor antagonist, SR144528 (1 mg/kg), completely abolished the antiarrhythmic effect of HU-210. However this effect of HU-210 was not attenuated by pretreatment with CB1-receptor antagonist, SR141716A (3 mg/kg). We also found that HU-210 (0.05 mg/kg) decreased the relationship between infarction size and area of ischemia. It is concluded that CB2 receptor stimulation promotes an increase in the cardiac resistance against arrhythmogenic influences and probably increases myocardial tolerance of both ischemic and reperfusion damages in rats.  相似文献   

15.
Zhang H  Yang CY  Wang YP  Wang X  Cui F  Zhou ZN  Zhang Y 《生理学报》2007,59(5):660-666
本研究旨在探讨两种不同形式的间歇性低压低氧(intermittent hypobaric hypoxia,IHH)对发育大鼠心脏缺血,再灌注损伤的影响。雄性Sprague-Dawley(SD)新生大鼠72只,随机分为三组:对照组、IHH3000in组(IHH3000)、IHH5000m组(IHH5000)。低氧组大鼠出生后立即于低压氧舱分别接受28d、42d和56d(海拔5000m、每天6h:海拔3000m、每天5h)的低压低氧处理。应用Langendorff离体心脏灌流技术,给予心脏缺血(停灌30min)/再灌注(复灌60min)处理,分别在缺血前5min及复灌后l、5、10、20、30、60min记录心功能和冠状动脉流量变化,并测定乳酸脱氢酶(1actate dehydrogenase,LDH)活性。实验结束时测定心脏重量。结果显示:(1)IHH3000组大鼠体重增长与对照组无明显差异;IHH5000组大鼠体重增长明显慢于对照组及IHH3000组大鼠(P〈0.01)。(2)IHH3000组人鼠表现明显的心脏保护效应。与对照组相比较,在心脏停灌,再灌注60min时,心功能(LVDP、±LVdp/drmax)恢复增强(P〈0.05)、LDH活性降低(P〈0.05)、冠状动脉流量增多(P〈0.05);心脏重量与对照组大鼠无差异;IHH42d处理的大鼠心功能恢复明显好于IHH28d处理的大鼠(P〈0.05)。(3)IHH5000组大鼠表现出明显的心脏损伤效应,各项心功能指标(LVDP、±LVdp/dtmax)的恢复均低于对照组(P〈0.05),复灌过程中LDH活性明显高于相应对照组(P〈0.05),右心室重量明显高于对照组大鼠(P〈0.05)。结果表明,适当的IHH增强发育大鼠心脏对缺血,再灌注损伤的抵抗能力;间歇性低氧方式是影响其心脏保护作用的重要因素。  相似文献   

16.
Clinical studies on cardioprotection by preinfarct angina are ambiguous, which may involve development of tolerance to repeated episodes of ischemia. Not all preconditioning stimuli use identical signaling pathways, and because patients likely experience varying numbers of episodes of preinfarct angina of different degrees and durations, it is important to know whether myocardium tolerant to a particular preconditioning stimulus can still be protected by stimuli employing alternative signaling pathways. We tested the hypothesis that development of tolerance to a particular stimulus does not affect cardioprotection by stimuli that employ different signaling pathways. Anesthetized rats underwent classical, remote or pharmacological preconditioning. Infarct size (IS), produced by a 60-min coronary artery occlusion (CAO), was determined after 120 min of reperfusion. Preconditioning by two 15-min periods of CAO (2CAO15, an adenosine-dependent stimulus) limited IS from 69 +/- 2% to 37 +/- 6%, but when 2CAO15 was preceded by 4CAO15, protection by 2CAO15 was absent (IS = 68 +/- 1%). This development of tolerance coincided with a loss of cardiac interstitial adenosine release, whereas two 15-min infusions of adenosine (200 microg/min i.v.) still elicited cardioprotection (IS = 40 +/- 4%). Furthermore, cardioprotection was produced when 4CAO15 was followed by the adenosine-independent stimulus 3CAO3 (IS = 50 +/- 8%) or the remote preconditioning stimulus of two 15-min periods of mesenteric artery occlusion (IS = 49 +/- 6%). In conclusion, development of tolerance to cardioprotection by an adenosine-dependent preconditioning stimulus still allows protection by pharmacological or ischemic stimuli intervention employing different signaling pathways.  相似文献   

17.
Coronary artery occlusion (45 min) and reperfusion (2 h) were modeled in vivo in anesthetized artificially ventilated Wistar rats. Total ischemia (45 min) and reperfusion (30 min) of the isolated rat heart were performed in vitro. The selective agonist of cannabinoid (CB) receptors HU-210 was injected intravenously at a dose of 0.1 mg/kg 15 min prior to the coronary artery ligation. The selective CB1 antagonist SR141716A and the selective CB2 antagonist SR144528 were injected intravenously 25 min prior to ischemia. In vitro, HU-210 and SR141716A were added to the perfusion solution at the final concentrations of 0.1 μM prior to total ischemia. Preliminary injection of HU-210 reduced the infarct size-to-area at risk (IS/AAR) ratio in vivo. This cardioprotective effect was completely abolished by SR141716A but remained after SR144528 injection. Both antagonists had no effect on the IS/AAR ratio. Preliminary injection of the KATP channel blocker glibenclamide did not abolish the cardioprotective effect of HU-210. The addition of HU-210 prior to ischemia reduced the creatine phosphokinase (CPK) level in the coronary effluent and decreased left ventricular developed pressure. SR141716A alone had no effect on cardiac contractility and CPK levels. These results suggest that cardiac CB1 receptor activation increases cardiac tolerance to ischemia-reperfusion and has a negative effect on the cardiac pump function. Endogenous cannabinoids are not involved in the regulation of cardiac contractility and tolerance to ischemia and reperfusion. ATP-sensitive kATP-channels are not involved in the mechanism of the cardioprotective effect of HU-210.  相似文献   

18.
Experiments on isolated Wistar rat heart perfused according to Langendorff showed that preliminary adaptation of rats to intermittent hypobaric hypoxia limited the fall of values of the resting potential and the amplitude and duration of action potential characteristic for ischemia. Under similar conditions, adaptation considerably reduced the increased time of impulse conduction along the myocardium. In reperfusion, the parameters enumerated restored much more efficiently in hearts from adapted animals than in controls. The role of these changes in the antiarrhythmic effect of adaptation to intermittent hypoxia is under discussion.  相似文献   

19.
Although chronic hypoxia is a claimed myocardial risk factor reducing tolerance to ischemia/reperfusion (I/R), intermittent reoxygenation has beneficial effects and enhances heart tolerance to I/R. Aim of the study: To test the hypothesis that, by mimicking intermittent reoxygenation, selective inhibition of phosphodiesterase-5 activity improves ischemia tolerance during hypoxia. Adult male Sprague-Dawley rats were exposed to hypoxia for 15 days (10% O2) and treated with placebo, sildenafil (1.4 mg/kg/day, i. p.), intermittent reoxygenation (1 h/day exposure to room air) or both. Controls were normoxic hearts. To assess tolerance to I/R all hearts were subjected to 30-min regional ischemia by left anterior descending coronary artery ligation followed by 3 h-reperfusion. Whereas hypoxia depressed tolerance to I/R, both sildenafil and intermittent reoxygenation reduced the infarct size without exhibiting cumulative effects. The changes in myocardial cGMP, apoptosis (DNA fragmentation), caspase-3 activity (alternative marker for cardiomyocyte apoptosis), eNOS phosphorylation and Akt activity paralleled the changes in cardioprotection. However, the level of plasma nitrates and nitrites was higher in the sildenafil+intermittent reoxygenation than sildenafil and intermittent reoxygenation groups, whereas total eNOS and Akt proteins were unchanged throughout. Conclusions: Sildenafil administration has the potential to mimic the cardioprotective effects led by intermittent reoxygenation, thereby opening the possibility to treat patients unable to be reoxygenated through a pharmacological modulation of NO-dependent mechanisms.  相似文献   

20.
Endogenous cardiac protection against prolonged ischemic insult can be achieved by repeated brief episodes of ischemia (hypoxia) or by cardiac adaptation to various stresses such as chronic hypoxia. Activation of phosphatidylinositol 3-kinase (PI3K)/Akt is involved in antiapoptotic effects, however, it is not clear whether it is required for overall heart salvage including protection against myocardial infarction and arrhythmias. We focussed on the potential common role of PI3K/Akt in anti-infarct protection, in the experimental settings of long-term adaptation to chronic intermittent hypobaric hypoxia (IHH; 8 h/day, 25–30 exposures, in vivo rats) and acute ischemic preconditioning (IP; Langendorff-perfused hearts). In addition, we explored the role of PI3K/Akt in susceptibility to ischemic ventricular arrhythmias. In normoxic open-chest rats, PI3K/Akt inhibitor LY294002 (LY; 0.3 mg/kg) given 5 min before test occlusion/reperfusion (I/R) did not affect infarct size (IS) normalized to the size of area at risk (AR). In hypoxic rats, LY partially attenuated IS-limiting effect of IHH (IS/AR 59.7 ± 4.1% vs. 51.8 ± 4.4% in the non-treated rats; p > 0.05) and increased IS/AR to its value in normoxic rats (64.9 ± 5.1%). In the isolated hearts, LY (5 μM) applied 15 min prior to I/R completely abolished anti-infarct protection by IP (IS/AR 55.0 ± 4.9% vs. 15.2 ± 1.2% in the non-treated hearts and 42.0 ± 5.5% in the non-preconditioned controls; p < 0.05). In the non-preconditioned hearts, PI3K/Akt inhibition did not modify IS/AR, on the other hand, it markedly suppressed arrhythmias. In the LY-treated isolated hearts, the total number of ventricular premature beats and the incidence of ventricular tachycardia (VT) was reduced from 518 ± 71 and 100% in the controls to 155 ± 15 and 12.5%, respectively (p < 0.05). Moreover, bracketing of IP with LY did not reverse antiarrhythmic effect of IP. These results suggest that activation of PI3K/Akt cascade plays a role in the IS-limiting mechanism in the rat heart, however, it is not involved in the mechanisms of antiarrhythmic protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号