首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Treatment of rats with pharmacological doses of oestrogen resulted in a 3-fold decrease in the activity of hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) and a 4-fold increase in saturable binding of 125I-labelled chylomicron remnants to liver membranes in vitro. Intragastric administration of mevalonolactone to rats did not affect the capacity of the liver membranes to bind to labelled chylomicron remnants even though there was a substantial decrease in the activity of HMG-CoA reductase. Similar results were obtained after cholesterol feeding. Simultaneous treatment of rats with cholestyramine and compactin increased hepatic HMG-CoA reductase activity 6-fold. However, liver membranes derived from these animals showed no change in their capacity to bind to labelled chylomicron remnants in vitro. Administration of mevalonolactone to the cholestyramine/compactin-treated animals also failed to produce a change in remnant-binding capacity. Although administration of mevalonolactone alone produced a significant 3-fold decrease in the activity of hepatic HMG-CoA reductase it was unable to suppress significantly the increase in enzyme activity caused by treatment with cholestyramine and compactin.  相似文献   

3.
Hyperhomocysteinemia, an elevation of blood homocysteine levels, is a metabolic disorder associated with dysfunction of multiple organs. We previously demonstrated that hyperhomocysteinemia stimulated hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase leading to hepatic lipid accumulation and liver injury. The liver plays an important role in cholesterol biosynthesis and overall homeostasis. HMG-CoA reductase catalyzes the rate-limiting step in cholesterol biosynthesis. Hepatic HMG-CoA reductase is a major target for lowering cholesterol levels in patients with hypercholesterolemia. The aim of the present study was to examine the effect of berberine, a plant-derived alkaloid, on hepatic cholesterol biosynthesis in hyperhomocysteinemic rats and to identify the underlying mechanism. Hyperhomocysteinemia was induced in Sprague-Dawley rats by feeding a high-methionine diet for 4 wk. HMG-CoA reductase activity was markedly elevated in the liver of hyperhomocysteinemic rats, which was accompanied by hepatic lipid accumulation. Activation of HMG-CoA reductase was caused by an increase in its gene expression and a reduction in its phosphorylation (an inactive form of the enzyme). Treatment of hyperhomocysteinemic rats with berberine for 5 days inhibited HMG-CoA reductase activity and reduced hepatic cholesterol content. Such an inhibitory effect was mediated by increased phosphorylation of HMG-CoA reductase. Berberine treatment also improved liver function. These results suggest that berberine regulates hepatic cholesterol biosynthesis via increased phosphorylation of HMG-CoA reductase. Berberine may be therapeutically useful for the management of cholesterol homeostasis.  相似文献   

4.
5.
Dietary orotic acid is known to cause impaired fatty acid synthesis and increased cholesterol synthesis in rats. We found that the impaired fatty acid synthesis occurs during the first day of orotic acid feeding and, in studies with albumin-bound [1-14C]palmitic acid, an associated decrease in the rate of esterification of this fatty acid into triacylglycerol, phospholipid, and cholesteryl ester was observed. These changes may result from the known decreases in liver levels of adenine nucleotides or, as reported here, from decreased liver CoASH levels in orotic acid-fed rats. The increase in hepatic cholesterol synthesis occurred during the second day of orotic acid feeding. It was detected by increased incorporation of [1,2-14C]acetate into cholesterol by liver slices and by a 7-fold increase in HMG-CoA reductase activity. At the same time the biliary output of cholesterol was increased 2-fold and studies using 3H2O revealed that the output of newly synthesized cholesterol in bile was increased 5-fold. The content of cholesteryl ester in hepatic microsomes decreased during orotic acid feeding but free cholesterol was unchanged. The findings are interpreted to suggest that the increased bile cholesterol secretion caused by orotic acid is a result of impaired hepatic cholesterol esterification and that the increase in HMG-CoA reductase activity is a result of diminished negative feedback due to the depleted content of cholesteryl ester in the hepatic microsomes.  相似文献   

6.
Hepatic and serum levels of cholesterol precursors were analyzed in rats under basal (control) conditions and when cholesterol synthesis was activated by feeding 1% squalene or 5% cholestyramine. Exogenous squalene stimulated the activity of acyl-coenzyme A:cholesterol acyltransferase (ACAT) but strongly inhibited the activity of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase; cholestyramine did not affect ACAT but increased HMG-CoA reductase several-fold, indicating enhanced production of endogenous squalene. Activation of cholesterol synthesis by the two methods markedly increased the hepatic and serum contents of cholesterol precursor sterols. However, the sterol profiles were clearly different. Thus, exogenous squalene raised most significantly (up to 109-fold) free and esterified methyl sterols, and less so (up to 2-fold) demethylated C27 sterols (desmosterol and cholestenols) and also esterified cholesterol. Activation of endogenous squalene production by cholestyramine was associated with a depletion of esterified cholesterol and by a marked, up to 8-fold, increase of the free demethylated sterol precursor levels, whereas the increase of methyl sterols, up to 5-fold, was less conspicuous than during the squalene feeding. The changes were mostly insignificant for esterified sterols. The altered serum sterol profiles were quite similar to those in liver. Serum cholestenols and especially their portion of total serum precursor sterols were closely correlated with the hepatic activity of HMG-CoA reductase.  相似文献   

7.
In order to clarify the reason why pravastatin, a 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitor, did not show hypocholesterolemic effects in rats, the changes of various parameters affecting the serum cholesterol levels by pravastatin were determined in rats and rabbits, as a comparison. In rabbits, pravastatin administration at 50 mg/kg for 14 days decreased serum and liver cholesterol by 40% and 8%, respectively. The hepatic LDL receptor activity was increased 1.7-fold, and VLDL cholesterol secretion was decreased. Cholesterol 7α-hydroxylase activity was not changed. In contrast, in rats, serum cholesterol was increased by 14% at 50 mg/kg and 27% at 250 mg/kg for 7 days, respectively. At 250 mg/kg, liver cholesterol was significantly increased by 11%. Under these conditions, neither the hepatic LDL receptor activity nor cholesterol 7α-hydroxylase was changed, and VLDL cholesterol secretion was increased. At 250 mg/kg, net cholesterol synthesis in rat liver was increased after 7 days of consecutive administration. These results imply that in rats, stimulated net cholesterol synthesis caused the increase of liver cholesterol followed by the increase of VLDL cholesterol secretion, and resulted in the raise of plasma cholesterol. Although hepatic HMG-CoA reductase was induced almost the same fold in both animals at 50 mg/kg, the induced HMG-CoA reductase activity in rats might overcome the inhibitory capability of pravastatin, resulting in an increase of net cholesterol synthesis, but not in rabbits. This overresponse to pravastatin in rats might cause the lack of hypocholesterolemic effects of this drug.  相似文献   

8.
The liver plays a central role in regulating cholesterol homeostasis. High fat diets have been shown to induce obesity and hyperlipidemia. Despite considerable advances in our understanding of cholesterol metabolism, the regulation of liver cholesterol biosynthesis in response to high fat diet feeding has not been fully addressed. The aim of the present study was to investigate mechanisms by which a high fat diet caused activation of liver 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) leading to increased cholesterol biosynthesis. Mice were fed a high fat diet (60% kcal fat) for 5 weeks. High fat diet feeding induced weight gain and elevated lipid levels (total cholesterol and triglyceride) in both the liver and serum. Despite cholesterol accumulation in the liver, there was a significant increase in hepatic HMG-CoA reductase mRNA and protein expression as well as enzyme activity. The DNA binding activity of sterol regulatory element binding protein (SREBP)-2 and specific protein 1 (Sp1) were also increased in the liver of mice fed a high fat diet. To validate the in vivo findings, HepG2 cells were treated with palmitic acid. Such a treatment activated SREBP-2 as well as increased the mRNA and enzyme activity of HMG-CoA reductase leading to intracellular cholesterol accumulation. Inhibition of Sp1 by siRNA transfection abolished palmitic acid-induced SREBP-2 and HMG-CoA reductase mRNA expression. These results suggest that Sp1-mediated SREBP-2 activation contributes to high fat diet induced HMG-CoA reductase activation and increased cholesterol biosynthesis. This may play a role in liver cholesterol accumulation and hypercholesterolemia.  相似文献   

9.
We reported previously that, in the perfused rat liver, oleic acid increased the specific activity of cytosolic enzymes of cholesterol biosynthesis. In this study, we examined the effects of oral administration of olive oil on the activities of HMG-CoA synthase, AcAc-CoA thiolase, AcAc-CoA ligase and HMG-CoA reductase. Olive oil feeding increased the specific activity of hepatic HMG-CoA synthase by 50%, AcAc-CoA thiolase by 2-fold, and AcAc-CoA ligase by 3-fold. Olive oil had no effect on HMG-CoA reductase activity. These data suggest that the enzymes that supply the HMG-CoA required for hepatic cholesterogenesis are regulated in parallel by a physiological substrate, fatty acid, independent of HMG-CoA reductase under these conditions.  相似文献   

10.
The effects of dietary administration (0.1% in diet for 8 days) of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one on the levels of activity of cytosolic acetoacetyl coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, and microsomal HMG-CoA reductase in liver have been studied in male Sprague-Dawley rats. Significant increases in the levels of activity of acetoacetyl-CoA thiolase and of HMG-CoA synthase were observed. The levels of microsomal HMG-CoA reductase activity were increased, relative to pair-fed control animals, in three experiments and increased, relative to ad libitum control animals, in one of three experiments. When compared with other agents for which the primary mode of action is an inhibition of the intestinal absorption of cholesterol, the magnitude of the increases in the levels of hepatic microsomal HMG-CoA reductase activity in the 15-ketosterol-fed rats was considerably smaller. In view of the previously described marked activity of the 15-ketosterol in the inhibition of the intestinal absorption of cholesterol, as well as its known effects in lowering HMG-CoA reductase activity in mammalian cells in culture, it is proposed that the 15-ketosterol may suppress the elevated levels of hepatic microsomal HMG-CoA reductase activity induced by the reduced delivery of cholesterol to liver as a consequence of the inhibition of the intestinal absorption of cholesterol.  相似文献   

11.
S Kim  P Y Chao  K G Allen 《FASEB journal》1992,6(7):2467-2471
Dietary copper deficiency causes hypercholesterolemia and increased hepatic 3-hydroxy-3-methyl-glutaryl coenzyme A (MHG-CoA) reductase activity and increased hepatic glutathione (GSH) in rats. We hypothesized that inhibition of GSH production by L-buthionine sulfoximine (BSO), a specific GSH synthesis inhibitor, would abolish the cholesterolemia and increased HMG-CoA reductase activity of copper deficiency. In two experiments, two groups of 20 weanling male rats were fed diets providing 0.4 and 5.8 micrograms Cu/g, copper-deficient (Cu-D) and copper-adequate (Cu-A), respectively. At 35 days plasma cholesterol was significantly elevated by 30 to 43% in Cu-D and 10 animals in each of the Cu-D and Cu-A groups were randomly assigned to receive 10 mM BSO solution in place of drinking water and continued on the same diets for another 2 wk. At necropsy Cu-D animals had a significant 52 to 58% increase in plasma cholesterol. BSO administration abolished the cholesterolemia in Cu-D rats, but had no influence on plasma cholesterol of Cu-A rats. Hepatic GSH was increased 39 to 82% in Cu-D rats and BSO abolished this increase. BSO was without effect on cardiac hypertrophy, plasma and liver copper, and hematocrit indices of copper status. Liver microsome HMG-CoA reductase activity was significantly increased 85 to 288% in Cu-D rats and BSO administration abolished this increase in activity in Cu-D rats. The results suggest that copper deficiency cholesterolemia and elevated HMG-CoA reductase activity are a consequence of elevated hepatic GSH, and provide evidence for GSH regulation of cholesterol metabolism in intact animals.  相似文献   

12.
13.
The effects of oleic acid on the activities of cytosolic HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) synthase, AcAc-CoA (acetoacetyl-CoA) thiolase and AcAc-CoA synthetase, as well as microsomal HMG-CoA reductase, all enzymes in the pathway of cholesterol biosynthesis, were studied in the isolated perfused rat liver. Oleic acid bound to bovine serum albumin, or albumin alone, was infused for 4 h at a rate sufficient to sustain an average concentration of 0.61 +/- 0.05 mM fatty acid during the perfusion. Hepatic cytosol and microsomal fractions were isolated at the termination of the perfusion. Oleic acid simultaneously increased the activities of the cytosolic cholesterol-biosynthetic enzymes 1.4-2.7-fold in livers from normal fed rats and from animals fasted for 24 h. These effects were accompanied by increased net secretion by the liver of cholesterol and triacylglycerol in the very-low-density lipoprotein (VLDL). We confirmed the observations reported previously from this laboratory of the stimulation by oleic acid of microsomal HMG-CoA reductase. In cytosols from perfused livers, the increase in AcAc-CoA thiolase activity was characterized by an increase in Vmax. without any change in the apparent Km of the enzyme for AcAc-CoA. In contrast, oleic acid decreased the Km of HMG-CoA synthase for Ac-CoA, without alteration of the Vmax. of the enzyme. The Vmax. of AcAc-CoA synthetase was increased by oleic acid, and there was a trend towards a small increase in the Km of the enzyme for acetoacetate. These data allow us to conclude that the enzymes that supply the HMG-CoA required for hepatic cholesterogenesis are stimulated, as is HMG-CoA reductase, by a physiological substrate, fatty acid, that increases rates of hepatic cholesterol synthesis and cholesterol secretion. Furthermore, we suggest that these effects of fatty acid on hepatic cholesterol metabolism result from stimulation of secretion of triacylglycerol in the VLDL by fatty acids, and the absolute requirement of cholesterol as an important structural surface component of the VLDL necessary for transport of triacylglycerol from the liver.  相似文献   

14.
Binding of sterol response element binding protein 1a to sterol response element-1 (SRE-1) in the promoter region of lanosterol 14 alpha-demethylase (14DM) has been demonstrated previously. Decreased 14DM activity has been shown to result in accumulation of the intermediate, 3 beta-hydroxy-lanost-8-en-32-al, a known translational downregulator of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Since it has also been demonstrated that feedback regulation of hepatic HMG-CoA reductase occurs primarily at the level of translation, the effects of dietary cholesterol and cholesterol lowering agents on levels of hepatic 14DM mRNA and immunoreactive protein were investigated. Addition of 1% cholesterol to a chow diet markedly decreased hepatic 14DM mRNA and protein levels in Sprague-Dawley rats. The extent and time course of this decrease in 14DM immunoreactive protein closely paralleled that of HMG-CoA reductase. Supplementation of the diet with the HMG-CoA reductase inhibitor, Lovastatin, to a level of 0.02%, raised 14DM mRNA and protein levels 2- to 3-fold. Addition of 2% Colestipol, a bile acid binding resin, to the chow diet caused smaller increases. The highest level of 14DM protein expression was observed in liver, the major site of feedback regulation of HMG-CoA reductase by cholesterol. Taken together, these observations suggest a critical role for 14DM in the feedback regulation of hepatic HMG-CoA reductase.  相似文献   

15.
We recently postulated that hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase functions as a cholesterol buffer to protect against the serum and tissue cholesterol raising action of dietary cholesterol. This postulate predicts that diminished basal expression of hepatic HMG-CoA reductase results in increased sensitivity to dietary cholesterol. Because diabetic and hypothyroid animals are known to have markedly reduced hepatic HMG-CoA reductase, these animals were selected as models to test our postulate. When rats were rendered diabetic with streptozotocin, their hepatic HMG-CoA reductase activity decreased from 314 to 22 pmol. min(-1). mg(-1), and their serum cholesterol levels increased slightly. When the diabetic animals were challenged with a diet containing 1% cholesterol, their serum cholesterol levels doubled, and their hepatic reductase activity decreased further to 0.9 pmol. min(-1). mg(-1). Hepatic low-density lipoprotein (LDL) receptor immunoreactive protein levels were unaffected in the diabetic rats whether fed cholesterol-supplemented diets or not. In rats rendered hypothyroid by thyroparathyroidectomy, serum cholesterol levels rose from 100 to 386 mg/dl in response to the 1% cholesterol challenge, whereas HMG-CoA reductase activity dropped from 33.8 to 3.4 pmol. min(-1). mg(-1). Hepatic LDL receptor immunoreactive protein levels decreased only slightly in the hypothyroid rats fed cholesterol-supplemented diets. Taken together, these results show that rats deficient in either insulin or thyroid hormone are extremely sensitive to dietary cholesterol largely due to low basal expression of hepatic HMG-CoA reductase.  相似文献   

16.
17.
We determined the extent to which diurnal variation in cholesterol synthesis in liver is controlled by steady-state mRNA levels for the rate-limiting enzyme in the pathway, hydroxymethylglutaryl (HMG)-CoA reductase. Rats 30 days of age and maintained on a low-cholesterol diet since weaning were injected intraperitoneally with (3)H(2)O. The specific radioactivity of the whole-body water pool soon became constant, allowing for expression of values for incorporation of label into cholesterol as absolute rates of cholesterol synthesis. In liver, there was a peak of cholesterol synthesis from 8 pm to midnight, a 4-fold increase over synthesis rates from 8 am to noon. Increases in synthesis were quantitatively in lock step with increases in mRNA levels for HMG-CoA reductase occurring 4 h earlier. In a parallel experiment, rats received 1% cholesterol in the diet from weaning to 30 days of age. Basal levels of hepatic cholesterol synthesis were greatly diminished and there was little diurnal variation of cholesterol synthesis or of levels of mRNA for HMG-CoA reductase. Levels of mRNA for the low density lipoprotein receptor and scavenger receptor-B1 (putative high density lipoprotein receptor) showed little diurnal variation, regardless of diet. This suggests that diurnal variation of hepatic cholesterol synthesis is driven primarily by varying the steady-state mRNA levels for HMG-CoA reductase. Other tissues were also examined. Adrenal gland also showed a 4-fold diurnal increase in accumulation of recently synthesized cholesterol. In contrast to liver, however, there was little corresponding change in mRNA expression for HMG-CoA reductase. Much of this newly synthesized cholesterol may be of hepatic origin, imported into adrenal by SR-B1, whose mRNA was up-regulated 2-fold. In brain, there was no diurnal variation in either cholesterol synthesis or mRNA expression, and no influence of high- or low-cholesterol diets on synthesis rates or HMG-CoA reductase mRNA levels.  相似文献   

18.
We have demonstrated that SC-435, an apical sodium codependent bile acid transporter (ASBT) inhibitor, lowers plasma low-density lipoprotein cholesterol (LDL-C) concentrations in guinea pigs. The purpose of this study was to further examine the hypocholesterolemic effects of SC-435, by measuring the activity and RNA expression of regulatory enzymes of hepatic cholesterol and lipoprotein metabolism. In addition, the use of a combination (COMBO) therapy with simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, was also tested. Male Hartley guinea pigs were randomly allocated to one of three diets (n=10 per group), for 12 weeks. The control diet contained no ASBT inhibitor or simvastatin. The monotherapy diet (ASBTi) contained 0.1% of SC-435. The COMBO therapy consisted of a lower dose of SC-435 (0.03%) and 0.05% simvastatin. Cholesterol ester transfer protein (CETP) and HMG-CoA reductase mRNA abundance were determined using RT-PCR techniques. Hepatic HMG-CoA reductase and cholesterol 7-hydroxylase (CYP7) activities were measured by radioisotopic methods. Compared to the control group, CETP activity was 34% and 56% lower with ASBTi and COMBO, respectively. Similarly, CETP mRNA expression was reduced by 36% and 73% in ASBTi and COMBO groups, respectively. Cholesterol 7-hydroxylase and HMG-CoA reductase activities were increased 2-fold with ASBTi and COMBO treatments, respectively. Likewise, HMG-CoA reductase mRNA expression was increased 33% with ASBTi treatment. These results suggest that both SC-435 monotherapy and combination therapy lower LDL cholesterol concentrations by altering both hepatic cholesterol homeostasis and the intravascular processing of lipoproteins in guinea pigs.  相似文献   

19.
The current model for reverse cholesterol transport proposes that HDL transports excess cholesterol derived primarily from peripheral cells to the liver for removal. However, recent studies in ABCA1 transgenic mice suggest that the liver itself may be a major source of HDL cholesterol (HDL-C). To directly investigate the hepatic contribution to plasma HDL-C levels, we generated an adenovirus (rABCA1-GFP-AdV) that targets expression of mouse ABCA1-GFP in vivo to the liver. Compared with mice injected with control AdV, infusion of rABCA1-GFP-AdV into C57Bl/6 mice resulted in increased expression of mouse ABCA1 mRNA and protein in the liver. ApoA-I-dependent cholesterol efflux was increased 2.6-fold in primary hepatocytes isolated 1 day after rABCA1-GFP-AdV infusion. Hepatic ABCA1 expression in C57Bl/6 mice (n = 15) raised baseline levels of TC, PL, FC, HDL-C, apoE, and apoA-I by 150-300% (P < 0.05 all). ABCA1 expression led to significant compensatory changes in expression of genes that increase hepatic cholesterol, including HMG-CoA reductase (3.5-fold), LDLr (2.1-fold), and LRP (5-fold) in the liver. These combined results demonstrate that ABCA1 plays a key role in hepatic cholesterol efflux, inducing pathways that modulate cholesterol homeostasis in the liver, and establish the liver as a major source of plasma HDL-C.  相似文献   

20.
The effects of feeding cholesterol, sitosterol, and lovastatin on cholesterol absorption, biosynthesis, esterification, and LDL receptor function were examined in the rat jejunal mucosa. Cholesterol absorption was measured by the dual-isotope plasma ratio method; the rate-limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, was measured as total and expressed enzyme activities (in the absence and presence of a phosphatase inhibitor, NaF, respectively); mucosal total and esterified cholesterol concentrations were determined by gas-liquid chromatography; LDL receptor function was assayed as receptor-mediated binding of (125)I-labeled LDL to mucosal membranes. Feeding 2% sitosterol or 0.04% lovastatin for 1 week significantly (P < 0.01) decreased the amounts of cholesterol absorbed per day (-85% and -63%, respectively). In contrast, feeding 2% cholesterol for 1 week increased the amounts of absorbed cholesterol 27-fold, even though the percent absorption significantly decreased. With all three treatments, there was a coordinate regulation of total HMG-CoA reductase activity and receptor-mediated LDL binding. Cholesterol feeding downregulated both total jejunal HMG-CoA reductase activity (P < 0.05) and receptor-mediated LDL binding (P < 0.01), whereas lovastatin- and sitosterol-supplemented diets significantly upregulated both of these parameters. In the control, cholesterol-fed, and sitosterol-fed animals, about half of the total jejunal HMG-CoA reductase activity was expressed (in functional dephosphorylated form). However, in the lovastatin-treated rats with 4-fold stimulation of HMG-CoA reductase, only 23% of the total enzyme activity was expressed. Changes in total HMG-CoA reductase activity and receptor-mediated LDL binding in all tested groups occurred with no change in total concentrations of mucosal cholesterol, and only cholesterol-fed animals had increased mucosal esterified cholesterol concentrations. Thus, in response to various fluxes of dietary or newly formed cholesterol, HMG-CoA reductase and receptor-mediated LDL binding are coordinately regulated to maintain constant cellular cholesterol concentrations in the jejunum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号