首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: γ-Aminobutyric acid (GABA) is synthesized in brain in at least two compartments, commonly called the transmitter and metabolic compartments, and because reglatory processes must serve the physiologic function of each compartment, the regulation of GABA synthesis presents a complex problem. Brain contains at least two molecular forms of glutamate decarboxylase (GAD), the principal synthetic enzyme for GABA. Two forms, termed GAD65 and GAD67, are the products of two genes and differ in sequence, molecular weight, interaction with the cofactor, pyridoxal 5′-phosphate (pyridoxal-P), and level of expression among brain regions. GAD65 appears to be localized in nerve terminals to a greater degree than GAD67, which appears to be more uniformly distributed throughout the cell. The interaction of GAD with pyridoxal-P is a major factor in the short-term regulation of GAD activity. At least 50% of GAD is present in brain as apoenzyme (GAD without bound cofactor; apoGAD), which serves as a reservoir of inactive GAD that can be drawn on when additional GABA synthesis is needed. A substantial majority of apoGAD in brain is accounted for by GAD65, but GAD67 also contributes to the pool of apoGAD. The apparent localization of GAD65 in nerve terminals and the large reserve of apo-GAD65 suggest that GAD65 is specialized to respond to short-term changes in demand for transmitter GABA. The levels of apoGAD and the holoenzyme of GAD (holoGAD) are controlled by a cycle of reactions that is regulated by physiologically relevant concentrations of ATP and other polyanions and by inorganic phosphate, and it appears possible that GAD activity is linked to neuronal activity through energy metabolism. GAD is not saturated by glutamate in synaptosomes or cortical slices, but there is no evidence that GABA synthesis in vivo is regulated physiologically by the availability of glutamate. GABA competitively inhibits GAD and converts holo- to apoGAD, but it is not clear if intracellular GABA levels are high enough to regulate GAD. There is no evidence of short-term regulation by second messengers. The syntheses of GAD65 and GAD67 proteins are regulated separately. GAD67 regulation is complex; it not only is present as apoGAD67, but the expression of GAD67 protein is regulated by two mechanisms: (a) by control of mRNA levels and (b) at the level of translation or protein stability. The latter mechanism appears to be mediated by intracellular GABA levels.  相似文献   

2.
Stability and Activation of Glutamate Apodecarboxylase from Pig Brain   总被引:1,自引:4,他引:1  
The stability and activation of glutamate apodecarboxylase was studied with three forms of the enzyme from pig brain (referred to as the alpha, beta, and gamma forms). Apoenzyme was prepared by incubating the holoenzyme with aspartate followed by chromatography on Sephadex G-25. Apoenzyme was much less stable than holoenzyme to inactivation by heat (for beta-glutamate decarboxylase (beta-GAD) at 30 degrees C, t1/2 values of apo- and holoenzyme were 17 and greater than 100 min). ATP protected holoenzyme and apoenzyme against heat inactivation. The kinetics of reactivation of apoenzyme by pyridoxal-P was consistent with a two-step mechanism comprised of a rapid, reversible association of the cofactor with apoenzyme followed by a slow conversion of the complex to active holoenzyme. The reactivation rate constant (kr) and apparent dissociation constant (KD) for the binding of pyridoxal-P to apoenzyme differed substantially among the forms (for alpha-, beta-, and gamma-GAD, kr = 0.032, 0.17, and 0.27 min-1, and KD = 0.014, 0.018, and 0.04 microM). ATP was a strong competitive inhibitor of activation (Ki = 0.45, 0.18, and 0.39 microM for alpha-, beta-, and gamma-GAD). In contrast, Pi stimulated activation at 1-5 mM but inhibited at much higher concentrations. The results suggest that ATP is important in stabilizing the apoenzyme in brain and that ATP, Pi, and other compounds regulate its activation.  相似文献   

3.
The intracerebroventricular injection of pyridoxal phosphate (PLP, 0.125-1.25 μmol/rat) causes epileptic seizures (4 min → 1 min) that are preventable or reversible by GABA (1 μmol/rat), by muscimol (O.025 μmol/rat), or by diazepam (1.75 μmol/rat). At the peak of PLP-induced convulsions, the activities of GAD and GABA-T in 14 regions of rat brain remained unaltered, whereas the concentrations of PLP remained elevated. The PLP-induced convulsion was blocked by DABA (10 μmol/rat) but was not altered by β-alanine (50 μmol/rat). The previous in vitro studies have shown that PLP increases the uptake of [3H]GABA into synaptosomes and inhibits the binding of [3H]GABA to synaptic membranes. These data suggest that PLP-induced convulsion is due to reduced availability of GABA to its recognition sites, rather than to alteration in the activity of GABA metabolizing enzymes, or unavailability of PLP as a coenzyme for GAD and GABA-T. Since the duration of PLP-induced epileptic seizures is short and can be prevented by GABA agonists, PLP may be used as a tool to study the nature of GABA-mediated neuroinhibition and the properties of GABA receptor sites.  相似文献   

4.
Abstract: The distributions of glutamate decarboxylase (EC 4.1.1.15), γ-aminobutyric acid transaminase (EC 2.6.1.19), and succinate semialdehyde dehydrogenase (EC 1.2.1.24) were determined in monkey retina. The decarboxylase was almost restricted to the inner plexiform layer. The transaminase was also highest in this layer, but activities were 40% as high in the adjacent third of the inner nuclear layer and in the ganglion cell and fiber layers. Succinate semialdehyde dehydrogenase was distributed very differently. Although it also showed a peak of activity in the inner plexiform layer, there was a second equal peak in the photoreceptor inner segment layer and a smaller peak in the outer plexiform layer, regions where both γ-aminobutyric acid transaminase and glutamate decarboxylase were essentially absent.  相似文献   

5.
The concentrations of 11 amino acids, including the neurotransmitters gamma-aminobutyric acid, glutamate, aspartate, glycine, and taurine, were determined by HPLC in 12 brain regions of genetically dystonic (dtSZ) hamsters and age-matched nondystonic controls. Since dystonia in mutant dtSZ hamsters is transient and disappears after about 70 days of age, amino acids were determined at the age of maximum severity of dystonia (30-40 days) and after disappearance of the disease, to examine which neurochemical changes were related to dystonia. In dtSZ hamsters with the maximum severity of dystonia, significant changes in concentrations of the neurotransmitters gamma-aminobutyric acid, glutamate, aspartate, and taurine were found in several regions involved in motor functions, e.g., cerebellum, thalamus, and corpus striatum. Most of these changes were not permanent but disappeared in parallel with dystonia, implicating a causal relationship between altered aminoacidergic neurotransmission and dystonia in mutant dtSZ hamsters.  相似文献   

6.
In the absence of its cofactor, pyridoxal 5'-phosphate (pyridoxal-P), glutamate decarboxylase is rapidly inactivated by aspartate. Inactivation is a first-order process and the apparent rate constant is a simple saturation function of the concentration of aspartate. For the beta-form of the enzyme, the concentration of aspartate giving the half-maximal rate of inactivation is 6.1 +/- 1.3 mM and the maximal apparent rate constant is 1.02 +/- 0.09 min-1, which corresponds to a half-time of inactivation of 41 s. The rate of inactivation by aspartate is about 25 times faster than inactivation by glutamate or gamma-aminobutyric acid (GABA). Inactivation is accompanied by a rapid conversion of holoenzyme to apoenzyme and is opposed by pyridoxal-P, suggesting that inactivation results from an alternative transamination of aspartate catalyzed by the enzyme, as previously observed with glutamate and GABA. Consistent with this mechanism pyridoxamine 5'-phosphate, an expected transamination product, was formed when the enzyme was incubated with aspartate and pyridoxal-P. The rate of transamination relative to the rate of decarboxylation was much greater for aspartate than for glutamate. Apoenzyme formed by transamination of aspartate was reactivated with pyridoxal-P. In view of the high rate of inactivation, aspartate may affect the level of apoenzyme in brain.  相似文献   

7.
Presence of γ-Aminobutyric Acid in Rat Ovary   总被引:6,自引:6,他引:0  
Abstract: As γ-aminobutyric acid (GABA) was first discovered as the free acid in the mammalian central nervous system, it has been assumed that GABA is generally to be found in significant amounts only in the brain, in spite of reports of its presence in a number of non-neuronal tissues. In this study, GABA was detected amongst the free amino acids in most rat tissues that were examined. The highest concentration outside the brain was in the ovary (0.59 μmol/g fresh tissue). It is concluded that the synthesis of the GABA is intragonadal and probably of metabolic importance.  相似文献   

8.
Abstract: The effects of inhibitors of γ-aminobutyric acid (GABA) metabolism or uptake on GABA output from the cerebral cortex was studied by means of a collecting cup placed on the exposed cortex of rats anaesthetized with urethane. GABA was identified and quantified by a mass-fragmentographic method. Ethanolamine-O-sulphate (10−2 M ) applied directly on the cerebral cortex caused a long-lasting twofold increase in GABA output, whereas dl -2, 4-diaminobutyric acid (5 × 10−3 M ) caused a sevenfold increase and β -alanine was inactive. The results indicate that glial uptake has little effect on GABA inactivation in the cerebral cortex. The inhibition of neuronal uptake seems a more effective tool to increase GABA concentration in the synaptic cleft, and consequently also in GABA output, than the inhibition of GABA metabolism.  相似文献   

9.
The presence of gamma-hydroxybutyric acid (GHB) in synaptosome-enriched fractions of rat brain was ascertained using a GLC technique. The stability of GHB in synaptosomes was evaluated by addition of various gamma-aminobutyric acid (GABA) transaminase (GABA-T) inhibitors, GHB, or ethosuximide to the homogenizing medium. Furthermore, changes in whole brain GHB levels were compared with those in the synaptosomal fraction in animals treated with GABA-T inhibitors, GABA, or ethosuximide. GHB was present in synaptosome-enriched fractions in concentrations ranging from 40 to 70 pmol/mg of protein. There was no evidence for redistribution, leakage, or metabolism of GHB during the preparation of synaptosomes. The elevations of whole brain GHB level associated with GABA-T or ethosuximide treatment were reflected by a parallel increase in synaptosomal GHB content. These data add to the growing evidence that GHB may have neurotransmitter or neuromodulator function.  相似文献   

10.
Freeze-dried sections (14 microns thick) of retinal layers were prepared from mice with retinal degeneration (C3H strain) and control mice (C57BL strain). The weighed sections (2-30 ng dry weight) were analyzed using our microassay methods. In the control retina, gamma-aminobutyric acid (GABA) concentration and glutamate decarboxylase (GAD) activity, on a dry weight basis, increased from birth to 9 weeks of age and decreased slightly at 20 weeks. In the degenerated retina, the levels of GABA and GAD activity were higher at birth than in the control retina, and continued to increase until 20 weeks of age, at which time the GAD activity reached a markedly high level. This increase was found when the total GABA and GAD levels per retina were determined. In the normal retinal layers, GABA and GAD were confined primarily to the inner plexiform layer. In the degenerated retina, GAD activity gradually increased in the inner layers during postnatal development, but by 20 weeks the increase was most prominent in the inner part of inner nuclear layer and in the outer part of inner plexiform layer. GABA transaminase activity and its distribution were not much different in both normal and degenerated retinas during development.  相似文献   

11.
Higher GABA Concentrations in Fallopian Tube Than in Brain of the Rat   总被引:6,自引:5,他引:6  
Abstract: The GABA content was determined simultaneously in two peripheral organs, i.e., ovary and Fallopian tube. Moreover, the effects of inhibitors of glutamate decarboxylase or γ-aminobutyrate transaminase (GABA-T) on the GABA concentrations of the two organs were examined, to point out similarities and differences between central and peripheral pathways of GABA biosynthesis and degradation. In ovary, GABA concentration was found to be about 30% of that in total brain tissue. Furthermore, isoniazid and thiosemicarbazide caused significant reduction of GABA levels in peripheral organs. In contrast to the CNS, aminooxyacetic acid failed to increase, but even produced a significant diminution in peripheral GABA content. Gabaculine did not change GABA levels. In conclusion, it has been demonstrated for the first time that a peripheral organ, i.e. fallopian tube, contained higher GABA concentrations than the CNS. On the other hand, in the organs examined GABA seemed to be synthesized similarly, but metabolized by a pathway different from that in the brian.  相似文献   

12.
The technique of estimating gamma-aminobutyric acid (GABA) turnover by inhibiting its major degrading enzyme GABA-T (4-aminobutyrate:2-oxoglutarate aminotransferase; EC 2.6.1.19) and measuring GABA accumulation has been used repeatedly, but, at least in rats, its usefulness has been limited by several difficulties, including marked differences in the degree of GABA-T inhibition in different brain regions after systemic injection of GABA-T inhibitors. In an attempt to improve this type of approach for measuring GABA turnover, the time course of GABA-T inhibition and accumulation of GABA in 12 regions of rat brain has been studied after systemic administration of aminooxyacetic acid (AOAA), injected at various doses and with different routes of administration. A total and rapidly occurring inhibition of GABA-T in all regions was obtained with intraperitoneal injection of 100 mg/kg AOAA, whereas after lower doses, marked regional differences in the degree of GABA-T inhibition were found, thus leading to underestimation of GABA synthesis rates, e.g., in substantia nigra. The activity of the GABA-synthesizing enzyme GAD (L-glutamate-1-decarboxylase; EC 4.1.1.15) was not reduced significantly at any time after intraperitoneal injection of AOAA, except for a small decrease in olfactory bulbs. Even the highest dose of AOAA tested (100 mg/kg) was not associated with toxicity in rats, but induced motor impairment, which was obviously related to the marked GABA accumulation found with this dose. The increase in GABA concentrations induced with intraperitoneal injection of 100 mg/kg AOAA was rapid in onset, allowing one to estimate GABA turnover rates from the initial rate of GABA accumulation, i.e., during the first 30 min after AOAA injection. GABA turnover rates thus determined were correlated in a highly significant fashion with the GAD activities determined in brain regions, with highest turnover rates measured in substantia nigra, hypothalamus, olfactory bulb, and tectum. Pretreatment of rats with diazepam, 5 mg/kg i.p., 5-30 min prior to AOAA, reduced the AOAA-induced GABA accumulation in all 12 regions examined, most probably as a result of potentiation of postsynaptic GABA function. The data indicate that AOAA is a valuable tool for regional GABA turnover studies in rats, provided the GABA-T inhibitor is administered in sufficiently high doses to obtain complete inhibition of GABA degradation.  相似文献   

13.
Glutamate decarboxylase (GAD) catalyzes the production of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter. The mammalian brain contains two forms of GAD, with Mrs of 67,000 and 65,000 (GAD67 and GAD65). Using a new antiserum specific for GAD67 and a monoclonal antibody specific for GAD65, we show that the two forms of GAD differ in their intraneuronal distributions: GAD67 is widely distributed throughout the neuron, whereas GAD65 lies primarily in axon terminals. In brain extracts, almost all GAD67 is in an active holoenzyme form, saturated with its cofactor, pyridoxal phosphate. In contrast, only about half of GAD65 (which is found in synaptic terminals) exists as active holoenzyme. We suggest that the relative levels of apo-GAD65 and holo-GAD65 in synaptic terminals may couple GABA production to neuronal activity.  相似文献   

14.
Uptake of L-2,4-diaminobutyric acid (DABA), a positively charged analogue of gamma-aminobutyric acid (GABA), by a synaptosomal fraction isolated from rat brain occurred with a Km of 54 +/- 12 microM and a Vmax of 1.3 +/- 0.2 nmol/min/mg protein. The transport of DABA was inhibited competitively by GABA whereas that of GABA was affected in the same manner by addition of DABA. The maximal accumulation of DABA ([DABA]i/[DABA]c) was observed to increase as the second power of the transmembrane electrical potential ([K+]i/[K+]e) and the first power of the sodium ion concentration gradient. These findings indicate that DABA is transported on the GABA carrier with a net charge of +2, where one charge is provided by the cotransported Na+ and the second is contributed by the amino acid itself. Since uptake of GABA, an electroneutral molecule, is accompanied by transfer of two sodium ions, the results obtained with DABA suggest that one of the sodium binding sites on the GABA transporter is in proximity to the amino acid binding site.  相似文献   

15.
Abstract: Taurine, cysteinesulfinic acid decarboxylase (CSAD), glutamate, γ-aminobutyric acid (GABA), and glutamic acid decarboxylase (GAD) were measured in subcellular fractions prepared from occipital lobe of fetal and neonatal rhesus monkeys. In addition, the distribution of [35S]taurine in subcellular fractions was determined after administration to the fetus via the mother, to the neonate via administration to the mother prior to birth, and directly to the neonate at various times after birth. CSAD, glutamate, GABA, and GAD all were found to be low or unmeasurable in early fetal life and to increase during late fetal and early neonatal life to reach values found in the mother. Taurine was present in large amounts in early fetal life and decreased slowly during neonatal life, arriving at amounts found in the mother not until after 150 days of age. Significant amounts of taurine, CSAD, GABA, and GAD were associated with nerve ending components with some indication that the proportion of brain taurine found in these organelles increases during development. All subcellular pools of taurine were rapidly labeled by exogenously administered [35S]taurine. The subcellular distribution of all the components measured was compatible with the neurotransmitter or putative neuro-transmitter functions of glutamate, GABA, and taurine. The large amount of these three amino acids exceeds that required for such function. The excess of glutamate and GABA may be used as a source of energy. The function of the excess of taurine is still not clear, although circumstantial evidence favors an important role in the development and maturation of the CNS.  相似文献   

16.
Both increased gamma-aminobutyric acid (GABA)-ergic and decreased glutamatergic neurotransmission have been suggested relative to the pathophysiology of hepatic encephalopathy. This proposed disturbance in neurotransmitter balance, however, is based mainly on brain tissue analysis. Because the approach of whole tissue analysis is of limited value with regard to in vivo neurotransmission, we have studied the extracellular concentrations in the cerebral cortex of several neuroactive amino acids by application of the in vivo microdialysis technique. During acute hepatic encephalopathy induced in rats by complete liver ischemia, increased extracellular concentrations of the neuroactive amino acids glutamate, taurine, and glycine were observed, whereas extracellular concentrations of aspartate and GABA were unaltered and glutamine decreased. It is therefore suggested that hepatic encephalopathy is associated with glycine potentiated glutamate neurotoxicity rather than with a shortage of the neurotransmitter glutamate. In addition, increased extracellular concentration of taurine might contribute to the disturbed neurotransmitter balance. The observation of decreasing glutamine concentrations, after an initial increase, points to a possible astrocytic dysfunction involved in the pathophysiology of hepatic encephalopathy.  相似文献   

17.
The turnover rates and steady-state levels of gamma-aminobutyric acid (GABA) have been determined in 15 brain areas of three sublines of inbred mice differing in their susceptibility to audiogenic seizures: Rb3, which is seizure resistant; Rb2, which develops clonic seizures; and Rb1, which develops tonic-clonic seizures. In the Rb1 subline, GABA steady-state levels are lower than in the Rb3 subline in three of the 15 areas examined (cerebellum, anterior colliculus, and amygdala), whereas in the Rb2 subline, steady-state levels are either higher (posterior colliculus and hippocampus) or lower (amygdala) than in the Rb3 subline. GABA turnover rates differ in three brain areas in Rb1 (amygdala, raphe, and hypothalamus) and in a single area (amygdala) in Rb2 when compared with Rb3. Only one area has similar variations of GABA turnover rate and steady-state levels in the two susceptible sublines: the amygdala. After 2 weeks of repeated auditory stimulations (two times a day, 8,000 Hz, 100 dB), additional alterations in GABA metabolism are observed: mainly large increases in GABA turnover rates (from 40% to three- to fourfold). The Rb2 subline displays a greater number of alterations (increases of turnover rates in pons, cerebellum, anterior and posterior colliculus, amygdala, olfactory bulbs and tubercles, striatum, and frontal cortex) than the Rb1 subline (increases of turnover rates in cerebellum, posterior colliculus, olfactory tubercles, raphe, and frontal cortex and a decrease in hypothalamus). In the Rb3 subline, increases of the turnover rate in amygdala and olfactory tubercles and decreases in olfactory bulbs and hippocampus are observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The regulation of glutamate decarboxylase (GAD; EC 4.1.1.15) was studied by using cultures of cerebral cortical neurons from rat brain grown in serum-free medium. About 50% of the neurons in the cultures were gamma-aminobutyric acid (GABA)ergic as determined by two double-staining procedures. Immunoblotting experiments with four anti-GAD sera that recognize the two forms to varying degrees, demonstrated that the cultures contained the two forms of GAD that are present in rat brain (apparent molecular masses = 63 and 66 kDa). GAD activity was reduced by 60-70% when intracellular GABA levels were increased by incubating the cultures with the GABA-transaminase inhibitor gamma-vinyl-GABA for greater than 5-10 h or with 1 mM GABA itself. Neither baclofen nor muscimol (100 microM) affected GAD activity. Immunoblotting experiments showed that only the larger of the two forms of GAD (66 kDa) was decreased by elevated GABA levels. These results, together with previous results indicating that the smaller form of GAD is more strongly regulated by pyridoxal 5'-phosphate (the cofactor for GAD), suggest that the two forms of GAD are regulated by different mechanisms.  相似文献   

19.
There are two forms of glutamate decarboxylase (GAD) found in the rat brain. One form (form A) does not require exogenous pyridoxal-5'-phosphate (PLP) for activity whereas another form (form B) requires exogenous PLP for activity. These two forms differ greatly in temperature sensitivity, inactivation, and reactivation by the removal and readdition of PLP, electrophoretic mobility, and regional distribution. For instance, forms A and B are inactivated to an extent of 91% and 10%, respectively, by the treatment at 45 degrees C for 30 min; form A is greatly inactivated (77%) by the removal of PLP by aminooxyacetic acid and the readdition of PLP, whereas form B is only slightly inactivated (7%). Forms A and B can be clearly separated by 5% polyacrylamide gel electrophoresis in which form A migrates faster than form B. In all 10 brain regions studied, form A is present in smaller amounts than form B. This difference is greatest in the superior colliculus (the ratio of B to A is about 5), while in the locus coeruleus and cerebellum, forms A and B are present in nearly equal proportion. Forms A and B are similar with respect to relative abundance in hypotonic, isotonic, and hypertonic preparations, inhibition of catalytic activity by a carbonyl-trapping agent, immunochemical properties, and chromatographic patterns in a variety of systems. The significance of forms A and B and PLP in the regulation of gamma-amino-butyric acid (GABA) level is also discussed.  相似文献   

20.
Evidence was obtained for the release of amino acids by electrical stimulation of slices of regions of the rat medulla oblongata: rostral ventrolateral, caudal ventrolateral and caudal dorsomedial. There was a Ca2+-dependent, tetrodotoxin-sensitive increase in the efflux of aspartate, glutamate, gamma-aminobutyric acid (GABA), glycine, and beta-alanine in all regions examined. There were distinct regional differences in the relative amounts of amino acids released. These results provide evidence for the possible neurotransmitter role of aspartate, glutamate, GABA, glycine, and beta-alanine in these regions of the rat medulla oblongata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号