首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To determine if increased 5′-methylthioadenosine phosphorylase activity in activated lymphocytes may be responsible for the decreased inhibitory effect noted when 5′-methylthioadenosine is added after stimulation, the activity of this enzyme was monitored during lymphocyte transformation. A direct correlation existed between the transformation process and 5′-methylthioadenosine phosphorylase activity; the longer the stimulation process progressed, the greater the enzyme activity. The 7-deaza analog of 5′-methylthioadenosine, 5′-methylthiotubercidin, was utilized to explore further the role that the phosphorylase may play in the reversal process. 5′-Methylthioadenosine acted as a potent inhibitor, but not a substrate, of the 5′-methylthioadenosine phosphorylase, and was an even more potent inhibitor of lymphocyte transformation than 5′-methylthioadenosine. However, in direct contrast to the 5′-methylthioadenosine effect, inhibition by 5′-methylthiotubercidin could not be completely reversed. These data suggest the 5′-methylthioadenosine phosphorylase plays an important role in reversing 5′-methylthioadenosine-mediated inhibition and that the potent, nonreversible inhibitory effects of 5′-methylthiotubercidin are due to its resistance to 5′-methylthioadenosine phosphorylase degradation.  相似文献   

2.
3.
A rapid, sensitive and specific high-performance liquid chromatographic (HPLC) assay was developed and validated for the measurement of (−)-2′-deoxy-3′-thiacytidine (3TC) in human serum. The method included precipitation of serum proteins by trichloroacetic acid (20%, w/v) treatment followed by centrifugation. The resulting supernatant was directly injected and 3TC was isocratically chromatographed on a reversed-phase C18 column using a mixture of phosphate buffer and methanol (88.3:11.7, v/v) and monitored at 280 nm. The limit of quantitation was 20 ng/ml using 100 μl of serum. The standard curve was linear within the range of 20–10 000 ng/ml. Replicate analysis of three quality control samples (40–1500 ng/ml) led to satisfactory intra- and itner-assay precision (coefficient of variation from 3.0 to 12.9%) and accuracy (deviation from −6.3 to 9.7%). Moreover, sample treatment processes including human immunodeficiency virus (HIV) heat-inactivation, exposure at room temperature and freezing-thawing cycles did not influence the stability of the analyte. This assay was successfully applied to the determination of 3TC serum levels in HIV-infected patients. In addition, preliminary results indicated that this procedure may also be extended to the measurement of 3TC in human plasma and urine.  相似文献   

4.
Chemoselective reduction of one isomer of the 1-menthylester of 1,3-oxathiolan-5-one-2-carboxylic acid produces a mixture of four lactol diastereomers from which the title compound was isolated after acylation. The isomeric purity and absolute stereochemistry were determined by spectroscopic methods, chiral HPLC techniques, and conversion to (?)-2′-deoxy-3′-thiacytidine (Lamivudine, 3TCTM). © 1994 Wiley-Liss, Inc.  相似文献   

5.
(E)-5-(2-Bromovinyl)-2′-deoxyuridine is an antiviral drug used for treatment of infections with Herpes simplex virus type 1 as well as Varicella zoster virus. Two fast methods for the determination of the drug and its metabolite in plasma and urine by capillary electrophoresis have been developed. The plasma method can be used for measurement of total as well as unbound drug and metabolite. Plasma and urine samples are prepared for measuring by liquid/liquid extraction resulting in a limit of quantification of 40 ng/ml for total and 10 ng/ml for free BVdU in plasma and 170 ng/ml in urine. Inter- as well as intra-day precision were found to be better than 10% and both methods have been used for drug monitoring of patients.  相似文献   

6.
3′-Azido-2′,3′-dideoxyuridine (AZDU, Azddu, CS-87) is a nucleoside analog of 3′-azido-3′-deoxythymidine (zidovudine, AZT) that has been shown to inhibit human immunodeficiency virus (HIV-1). AZDU is a potential candidate for treatment of pregnant mothers to prevent prenatal transmission of HIV/AIDS to their unborn children. A rapid and efficient high-performance liquid chromatography (HPLC) method for the determination of AZDU concentrations in rat maternal plasma, amniotic fluid, placental and fetal tissue samples has been developed and validated. Tissue samples were homogenized in distilled water, protein precipitated and extracted using a C-18 solid-phase extraction (SPE) method prior to analysis. Plasma and amniotic fluid samples were protein precipitated with 2 M perchloric acid prior to analysis. Baseline resolution was achieved using a 4.5% acetonitrile in 40 mM sodium acetate (pH 7) buffer mobile phase for amniotic fluid, placenta and fetus samples and with a 5.5% acetonitrile in buffer solution for plasma at flow-rates of 2.0 ml/min. The HPLC system consists of a Hypersil ODS column (150×4.6 mm) with a Nova-Pak C-18 guard column with detection at 263 nm. The method yields retention times of 6.2 and 12.2 min for AZDU and AZT in plasma and 8.3 and 17.6 min for AZDU and AZT in amniotic fluid, fetal and placental tissues. Limits of detection ranged from 0.01 to 0.075 μg/ml. Recoveries ranged from 81 to 96% for AZDU and from 82 to 96% for AZT in the different matrices. Intra-day (n=6) and inter-day (n=9) precision (% RSD) and accuracy (% Error) ranged from 1.48 to 6.25% and from 0.50 to 10.07%, respectively.  相似文献   

7.
Chondroitin sulfates (CSs) are linear glycosaminoglycans that have important applications in the medical and food industries. Engineering bacteria for the microbial production of CS will facilitate a one‐step, scalable production with good control over sulfation levels and positions in contrast to extraction from animal sources. To achieve this goal, Escherichia coli (E. coli) is engineered in this study using traditional metabolic engineering approaches to accumulate 3′‐phosphoadenosine‐5′‐phosphosulfate (PAPS), the universal sulfate donor. PAPS is one of the least‐explored components required for the biosynthesis of CS. The resulting engineered E. coli strain shows an ≈1000‐fold increase in intracellular PAPS concentrations. This study also reports, for the first time, in vitro biotransformation of CS using PAPS, chondroitin, and chondroitin‐4‐sulfotransferase (C4ST), all synthesized from different engineered E. coli strains. A 10.4‐fold increase is observed in the amount of CS produced by biotransformation by employing PAPS from the engineered PAPS‐accumulating strain. The data from the biotransformation experiments also help evaluate the reaction components that need improved production to achieve a one‐step microbial synthesis of CS. This will provide a new platform to produce CS.  相似文献   

8.
Methyl jasmonate (MeJA) signalling shares several signal components with abscisic acid (ABA) signalling in guard cells. Cyclic adenosine 5′‐diphosphoribose (cADPR) and cyclic guanosine 3′,5′‐monophosphate (cGMP) are second messengers in ABA‐induced stomatal closure. In order to clarify involvement of cADPR and cGMP in MeJA‐induced stomatal closure in Arabidopsis thaliana (Col‐0), we investigated effects of an inhibitor of cADPR synthesis, nicotinamide (NA), and an inhibitor of cGMP synthesis, LY83583 (LY, 6‐anilino‐5,8‐quinolinedione), on MeJA‐induced stomatal closure. Treatment with NA and LY inhibited MeJA‐induced stomatal closure. NA inhibited MeJA‐induced reactive oxygen species (ROS) accumulation and nitric oxide (NO) production in guard cells. NA and LY suppressed transient elevations elicited by MeJA in cytosolic free Ca2+ concentration ([Ca2+]cyt) in guard cells. These results suggest that cADPR and cGMP positively function in [Ca2+]cyt elevation in MeJA‐induced stomatal closure, are signalling components shared with ABA‐induced stomatal closure in Arabidopsis, and that cADPR is required for MeJA‐induced ROS accumulation and NO production in Arabidopsis guard cells.  相似文献   

9.
The synthesis of a new minimum steric perturbing proxyl nitroxide, which is a derivative of glycerol and contains a stearic acid moiety, has been carried out. Its localization in model membrane -α-dipalmitoyl phosphatidyl choline (DPPC) was ascertained with the help of ESR, DSC, 1H and 31P NMR techniques. The nitroxide was used for detecting the changes in the phase transition temperature of the model membranes in the presence and absence of drugs. The permeation of the vasodilating drug epinephrine has also been studied using this spin label. The results prove the potential applicability of the new spin probe in the spin labeling of biomembranes.  相似文献   

10.
A method for the quantification of 2′-deoxy-3′-thiacytidine (lamivudine, 3-TC), which incorporated the use of 3-isobutyl-methylxanthine as internal standard (I.S.) was developed and validated in human plasma, using HPLC with UV absorbance detection. Using solid-phase extraction, 3-TC and I.S. were selectively extracted from human plasma. Subsequently, chromatographic separation was performed using a YMC phenyl column with ion-pair chromatography and detection at 270 nm. The method was validated over a concentration range of 10 to 5000 ng/ml using 0.5 ml of human plasma. The extraction recovery for both 3-TC and I.S. was greater than 95%. The determination of inter- and intra-day precision (RSD) was less than 10% at all concentration levels, while the inter- and intra-day accuracy (% difference) was less than 6%.  相似文献   

11.
The halopyrimidine 5-bromo-2′-deoxyuridine (BUDR) can serve as one of many indicators of tumor malignity, complementary to histologic grade. We have developed a thin-layer chromatographic (TLC) technique that can assess tumor DNA base composition and analogue (BUDR) incorporation which vies with immunochemistry for BUDR. This requires post-labeling DNA by nick-translation and radioactive 5′-phosphorylation of representative 32P-α-dNMPs (deoxynucleotide monophosphates). Subsequent 3′-monophosphate digest exchanges a radioactive 32PO4 for the neighboring cold nucleotide. Separation in two dimensional PEI-cellulose TLC is carried out in acetic acid, (NH4)2SO4, and (NH4)HS04. TLC of dNMPs was applied to control HeLa DNA, and HeLa cells receiving BUDR. BUDR is detected in 106 HeLa cells after 12–72 h incubations. Findings in HeLa DNA demonstrate normal TLC retention factors for all 32P-dNMPs. Two dimensional RF (x,y axes in cm) demonstrate: dAMP=1.4, 9.4; dCMP=10.0, 13.5; dGMP=4.6, 4.4; dTMP=9.0, 7.4; and BUDRMP 6.4, 6.6. This technique quantifies BUDR-which parallels tumor S phase, and serves as an indicator of labelling index (LI).  相似文献   

12.
A dichloromethane extract from the leaves of Lithraea molleoides (Anacardiaceae), an argentine medicinal plant, showed cytotoxicity on human hepatocellular carcinoma cell line. Bioassay guided fractionation of this extract led to the isolation of a new active 5-alkyl resorcinol: 1,3-dihydroxy-5-(tridec-4',7'-dienyl)benzene. Chemical structure was established based on spectroscopic data (UV, IR, MS, 1H-NMR, 13C-NMR, COSY). This compound presented cytotoxic activity on 3 human tumoral cell lines: hepatocellular carcinoma cell line-Hep G2 (IC50 +/- SD of 68 +/- 2 microM), mucoepidermoid pulmonary carcinoma cell line-H292 (IC50 +/- SD of 63 +/- 5 microM) and mammary gland adenocarcinoma cell line -MCF7 (IC50 +/- SD of 147 +/- 5).  相似文献   

13.
Abstract: The binding of 2′,3′-cyclic nucleotide 3′-phosphodiesterase isoform 1 (CNP1) to myelin and its association with cytoskeletal elements of the sheath have been characterized with in vitro synthesized polypeptides and purified myelin. We have previously shown that the cysteine residue present in the carboxy-terminal CXXX box of CNP1 is isoprenylated, and that both C15 farnesyl and C20 geranylgeranyl isoprenoids can serve as substrates for the modification. Here, we have mutated the CXXX box to obtain selectively farnesylated CNP1 or geranyl-geranylated CNP1 and found that these two modified forms of CNP1 behave identically in all of the assays performed. Isoprenylation is essential but not sufficient for the binding of in vitro synthesized CNP1 to purified myelin, because a control nonmyelin protein is isoprenylated, yet unable to bind to myelin. In our assay, membrane-bound CNP1 partitions quantitatively into the non-ionic detergent-insoluble phase of myelin, suggesting that CNP1 binds to cytoskeletal elements within myelin. However, isoprenylated CNP1 fails to bind to the cytoskeletal matrix isolated from myelin by detergent treatment, implying that both detergent-soluble and insoluble myelin components are involved in the binding of CNP1. A model for the interactions between CNP1 and myelin is presented, consistent with models proposed for other isoprenylated proteins.  相似文献   

14.
2',5'-Linked oligoadenylates (2-5A) are involved in the antiviral action of interferon. The 2-5A binds and activates 2-5A dependent RNase (RNase L), which degrades viral mRNA, resulting in the inhibition of protein synthesis. 2',5'-Linked phosphorothioate oligoadenylates with an Rp configuration bind to and activate the RNase L. On the other hand, 2',5' phosphorothioate oligoadenylate with an Sp configuration weakly binds to the RNase L and is devoid of the RNase L activation ability. Comparative circular dichroism (CD) and NMR studies are carried out to characterize the difference in properties between the two configurations of the 2',5' phosphorothioate oligoadenylates. 2',5' Rp-Phosphorothioate oligoadenylates showed CD spectra similar to those of the corresponding native 2',5' oligoadenylates, while the 2',5' Sp-phosphorothioate oligoadenylates exhibited a weaker CD band compared to the former two, indicating the weaker base-stacking interaction of the 2',5' Sp-phosphorothioate oligoadenylates. The temperature-dependent change in the CD revealed that 2',5' phosphorothioate oligoadenylates showed larger DeltaH(0) and DeltaS(0) values for the thermal transition of the conformation than the corresponding native 2',5' oligoadenylates. The NMR spectral assignment was accomplished by several NMR measuring techniques. The 2'-H of the ribose ring linked to the 2',5' Sp-phosphorothioate showed a higher field chemical shift of the proton NMR than that linked to the corresponding 2',5' Rp-phosphorothioate. 2',5' Rp- and Sp-phosphorothioate oligoadenylates possess a sugar conformation similar to that of the corresponding native 2',5' oligoadenylates.  相似文献   

15.
Inflammation and reactive oxygen species (ROS) are important factors in the pathogenesis of atherosclerosis (AS). 5,2′‐dibromo‐2,4′,5′‐trihydroxydiphenylmethanone (TDD), possess anti‐atherogenic properties; however, its underlying mechanism of action remains unclear. Therefore, we sought to understand the therapeutic molecular mechanism of TDD in inflammatory response and oxidative stress in EA.hy926 cells. Microarray analysis revealed that the expression of homeobox containing 1 (HMBOX1) was dramatically upregulated in TDD‐treated EA.hy926 cells. According to the gene ontology (GO) analysis of microarray data, TDD significantly influenced the response to lipopolysaccharide (LPS); it suppressed the LPS‐induced adhesion of monocytes to EA.hy926 cells. Simultaneously, TDD dose‐dependently inhibited the production or expression of IL‐6, IL‐1β, MCP‐1, TNF‐α, VCAM‐1, ICAM‐1 and E‐selectin as well as ROS in LPS‐stimulated EA.hy926 cells. HMBOX1 knockdown using RNA interference attenuated the anti‐inflammatory and anti‐oxidative effects of TDD. Furthermore, TDD inhibited LPS‐induced NF‐κB and MAPK activation in EA.hy926 cells, but this effect was abolished by HMBOX1 knockdown. Overall, these results demonstrate that TDD activates HMBOX1, which is an inducible protective mechanism that inhibits LPS‐induced inflammation and ROS production in EA.hy926 cells by the subsequent inhibition of redox‐sensitive NF‐κB and MAPK activation. Our study suggested that TDD may be a potential novel agent for treating endothelial cells dysfunction in AS.  相似文献   

16.
Polarized Raman scattering measurements have been made of a single crystal of uridylyl(3′–5′)adenosine (UpA) by the use of a Raman microscope with 488.0 nm excitation. The UpA crystal belongs to space group P21 (monoclinic), and Raman intensities Iaa, Ibb, and Ic′c′, have been determined for each Raman band. These intensities correspond to the aa, bb, and c′c′ components of the crystal Raman tensor, where c′ is defined as an axis perpendicular to the crystallographic a axis in the ac plane. From these experimental data, and by taking the known crystal structure into account, anisotropic and isotropic molecular Raman tensors have been calculated for the following 11 normal modes: ring stretching modes of the adenine residue (protonated) at 1560, 1516, 1330, and 715 cm−1; ring stretching modes of the uracil residue at 1696, 1657, 1615, 1228, and 790 cm−1; PO2 symmetric stretching mode at 1080 cm−1; P(—)O single bond stretching mode at 801 cm−1. These pieces of information of the Raman tensors are considered to be useful for estimating the orientations of the DNA and RNA strands in a biological complex from a polarized Raman spectroscopic measurement of such a complex. © 1998 John Wiley & Sons, Inc. Biopoly 45: 135–147, 1998  相似文献   

17.
In the X-ray structure of the staphylococcal nuclease–Ca2+ ?3′,5′-pdTp complex, the conformation of the inhibitor 3′,5′-pdTp is distroteed Lys-70* and Lys-71* from an adjacent molecule of staphylococcal nuclease (Loll, P.J., Lattman, E.E. Proteins 5 : 183-201, 1989). In order to correct this crystal packing problem, the solution conformation of enzyme-bound 3′,5′-pdTp in the staphylococcal nuclease–metal–pdTp Complex determined by NMR methods was docked into the X-ray structure of the enzyme [Weber, D. J., Serpersu, E. H., Gittis, A. G., Lattman, E. E., Mildvan, A. S. (preceding paper)]. In the NMR-docked structure, the 5′-phophate of 3′,5′-pdTp overlaps with that in the X-ray Structure. However the 3′-phosphate accepts a hydrogen bond from Lys-49 (2.89Å) rather than from Lys-84 (8.63 Å), and N3 of thymine donates a hydrogen bond to the OH of Tyr-115 (3.16 Å) which does not occur in the X-ray structure (5.28 Å). These interactions have been tested by binding studies of 3′,5′-pdTp, Ca2+, and Mn2+ to the K49A, K84A, and Y115A mutants of staphylococcal nuclease using water proton relaxation rate and EPR methods. Each mutant was fully active and structurally intact, as found by CD and two-dimensional NMR spectroscopy, but bound Ca2+ 9.1- to 9.9-fold more weakly than the wild-type enzyme. While thye K84A mutation did not significantly weaken 3′,5′-pdTp binding to the enzyme (1.5 ± 0.7 fold), the K49A mutation weakened 3′,5′-pdTp binding to the enzyme by the factor of 4.4 ± 1.8-fold. Similarly, the Y115A mutation weakened 3′,5′-pdTp binding to the enzyme 3.6 ± 1.6-fold. Comparable weakening effects of these mutations were found on the binding of Ca2+-3′,5′-pdTp. These results are more readily explained by the NMR-docked structure of staphylococcal nuclease-metal-3′,5′-pdTp than by the X-ray structure. © 1993 Wiley-Liss, Inc.  相似文献   

18.
19.
In response to viral infections, the mammalian innate immune system induces the production of the second messenger 2′–5′ oligoadenylate (2–5A) to activate latent ribonuclease L (RNase L) that restricts viral replication and promotes apoptosis. A subset of rotaviruses and coronaviruses encode 2′,5′‐phosphodiesterase enzymes that hydrolyze 2–5A, thereby inhibiting RNase L activation. We report the crystal structure of the 2′,5′‐phosphodiesterase domain of group A rotavirus protein VP3 at 1.39 Å resolution. The structure exhibits a 2H phosphoesterase fold and reveals conserved active site residues, providing insights into the mechanism of 2–5A degradation in viral evasion of host innate immunity. Proteins 2015; 83:997–1002. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
5-Aza-2′-deoxycytidine (d-AZA) inhibits methylation of DNA, a process that serves as an epigenetic regulator of gene expression. We have shown that d-AZA causes temporally related defects in mice. Gestational day (GD) 10 treatment induced severe long-bone defects of the hindlimb but not the forelimb. Exposure of younger embryos (GD 8 or 9) does not induce similar defects in forelimbs. This limb-dependent response suggests that methylation alterations in genes specific for fore- or hindlimbs may contribute to the observed pattern of defects. Subtraction hybridization (SH) studies were conducted to identify differential expression of DNA subsequent to the administration of d-AZA to mice on GD 10. Hindlimb buds collected from both treated and untreated embryos at 4, 12, and 24 hours post-treatment were used. A clone isolated from the untreated sample (down-regulation in treated tissue) was identified as a member of the murine B1 family of repetitive sequences. The two other clones isolated from the treated tissue (up-regulation) were homologous to avian myogenic regulatory protein mRNA and activin receptor type II gene. Both species are active during embryogenesis. These findings suggest that the isolated clones may have roles in abnormal embryonic development when inappropriately expressed. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 135–141, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号