首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both cDNA and genomic clones of the T cell receptor (TCR) alpha- and beta-chain genes of the alloreactive cytotoxic T lymphocyte (CTL) clone F3 were examined. Two distinct rearrangement events, one functional and one non-functional, were found for both the alpha and beta loci. Thus only a single functional TCR alpha beta heterodimer could be defined, consistent with allelic exclusion in the TCR genes. The V alpha gene employed by F3 is part of a six-member V alpha subfamily. Genomic clones containing each member of this subfamily were isolated and the V alpha nucleotide sequences determined. Five of these six genes are functional; these genes differ from each other by 7-14% at the amino acid level. A single dominant hypervariable region was defined within this subfamily, in contrast to the pattern of variability seen between V alpha genes in general.  相似文献   

2.
The influence of various factors along the processing-loading pathway in limiting the diversity of HLA-B27-bound peptides around a core protein sequence was analyzed. The C5 proteasome subunit-derived RRFFPYYV and RRFFPYYVY peptides are natural B*2705 ligands. The octamer is an allospecific CTL epitope. Digestion of a 27-mer fragment of C5 revealed that both ligands are generated from this precursor substrate with the 20S proteasome in vitro in a ratio comparable to that in the B*2705-bound peptide pool. The C5 sequence allowed to derive a nested set of six additional peptides with 8-11 residues containing the core octamer sequence and the Arg2 motif of HLA-B27, none of which was found in the B27-bound pool. Together, low proteasomal yield, disfavored TAP-binding motifs, and low affinity for B*2705 accounted for the absence of four of the six peptides. The two remaining differed from the natural octamer or nonamer ligands only by an additional N-terminal Ser residue. Their stability in complex with B*2705 was lower than the respective natural ligands, raising the possibility that N-terminal trimming might have favored a shift toward the more stable peptides. The results suggest that the B*2705-bound peptide repertoire has a highly restricted diversity around a core alloantigenic sequence. This is not explained by a single bottleneck feature, but by multiple factors, including proteasomal generation, TAP-binding motifs, MHC-binding efficiency, and perhaps optimized stability through N-terminal trimming. Tapasin-dependent restrictions, although not excluded, were not required to explain the absence in vivo of the particular peptide set in this study.  相似文献   

3.
The flagellum of Trypanosoma brucei is a multifunctional organelle with critical roles in motility and other aspects of the trypanosome life cycle. Trypanin is a flagellar protein required for directional cell motility, but its molecular function is unknown. Recently, a trypanin homologue in Chlamydomonas reinhardtii was reported to be part of a dynein regulatory complex (DRC) that transmits regulatory signals from central pair microtubules and radial spokes to axonemal dynein. DRC genes were identified as extragenic suppressors of central pair and/or radial spoke mutations. We used RNA interference to ablate expression of radial spoke (RSP3) and central pair (PF16) components individually or in combination with trypanin. Both rsp3 and pf16 single knockdown mutants are immotile, with severely defective flagellar beat. In the case of rsp3, this loss of motility is correlated with the loss of radial spokes, while in the case of pf16 the loss of motility correlates with an aberrant orientation of the central pair microtubules within the axoneme. Genetic interaction between trypanin and PF16 is demonstrated by the finding that loss of trypanin suppresses the pf16 beat defect, indicating that the DRC represents an evolutionarily conserved strategy for dynein regulation. Surprisingly, we discovered that four independent mutants with an impaired flagellar beat all fail in the final stage of cytokinesis, indicating that flagellar motility is necessary for normal cell division in T. brucei. These findings present the first evidence that flagellar beating is important for cell division and open the opportunity to exploit enzymatic activities that drive flagellar beat as drug targets for the treatment of African sleeping sickness.  相似文献   

4.
The cellular redox state has been shown to play an essential role in cellular signaling systems. Here we investigate the effects of reductants and H2O2 on the signaling of epidermal growth factor (EGF) in cells. H2O2 induced the phosphorylation of the EGF receptor and the formation of a receptor complex comprising Shc, Grb2, Sos, and the EGF receptor. Dimerization or oligomerization of the EGF receptor was not induced by H2O2. Protein tyrosine phosphatase (PTP) assay showed that H2O2 suppressed dephosphorylation of the EGF receptor in cell lysates, suggesting that inactivation of PTP was involved in H2O2-induced activation of the EGF receptor. In contrast, the reductants N-acetyl-L-cysteine [Cys(Ac)] and dithiothreitol markedly suppressed EGF-induced dimerization and activation of the EGF receptor in cells. In accordance with suppression of the EGF receptor, Cys(Ac) suppressed EGF-induced activation of Ras, phosphatidylinositol 3-kinase and mitogen-activated protein kinase. Dithiothreitol completely inhibited EGF binding and kinase activation of the EGF receptor both in vitro and in vivo. In contrast, Cys(Ac) suppressed high-affinity EGF-binding sites on the cells, but had no effect on low-affinity binding sites. Furthermore, Cys(Ac) did not suppress EGF-induced kinase activation or dimerization of the EGF receptor in vitro, indicating that it suppressed the EGF receptor through a redox-sensitive cellular process or processes. Thus, the EGF receptor is regulated by redox through multiple steps including dephosphorylation by PTP, ligand binding, and a Cys(Ac)-sensitive cellular process or processes.  相似文献   

5.
CTL clone 2C recognizes the allogeneic class I MHC molecule L(d) in association with peptides derived from alpha-ketoglutarate dehydrogenase (oxoglutarate dehydrogenase (OGDH)), a ubiquitous intracellular protein. One of these peptides, QLSPFPFDL (QL9), elicits more vigorous cytolytic responses than two previously identified naturally processed peptides with overlapping sequences, LSPFPFDL (p2Ca) and VAITRIEQLSPFPFDL (p2Cb), from OGDH. In this study, we show that QL9 forms a more stable complex with cell surface L(d) than does p2Ca or p2Cb and is processed from the longer, naturally occurring peptide p2Cb by 20S proteosomes in vitro. The N-terminal cyclized pyroglutaminyl QL9 (pyroQL9), a form of QL9 to which it is converted at the low pH used for peptide isolation from tissue extracts, is even more active than QL9 in cytotoxicity assays with 2C CTL. Overall, the results indicate that along with the abundant natural peptides p2Ca and p2Cb, the QL9 and other OGDH peptides of various lengths, sharing a conserved C-terminal sequence, are also processed and presented with L(d) as allogeneic ligands for T cells expressing 2C TCR. All these peptides, each available in a low amount, could act in concert at the cell surface, resulting in a high density of cognate ligands that accounts for the exceptionally potent cytolytic response by 2C CTL.  相似文献   

6.
7.
We have translated major histocompatibility complex (MHC) class I heavy chains and human beta 2-microglobulin in vitro in the presence of microsomal membranes and a peptide from the nucleoprotein of influenza A. This peptide stimulates assembly of HLA-B27 heavy chain and beta 2-microglobulin about fivefold. By modifying this peptide to contain biotin at its amino terminus, we could precipitate HLA-B27 heavy chains with immobilized streptavidin, thereby directly demonstrating class I heavy chain-peptide association under close to physiological conditions. The biotin-modified peptide stimulates assembly to the same extent as the unmodified peptide. Both peptides bind to the same site on the HLA-B27 molecule. Immediately after synthesis of the HLA-B27 heavy chain has been completed, it assembles with beta 2-microglobulin and peptide. These interactions occur in the lumen of the microsomes (endoplasmic reticulum), demonstrating that the peptide must cross the microsomal membrane in order to promote assembly. The transfer of peptide across the microsomal membrane is a rapid process, as peptide binding to heavy chain-beta 2-microglobulin complexes is observed in less than 1 min after addition of peptide. By using microsomes deficient of beta 2-microglobulin (from Daudi cells), we find a strict requirement of beta 2-microglobulin for detection of peptide interaction with the MHC class I heavy chain. Furthermore, we show that heavy chain interaction with beta 2-microglobulin is likely to precede peptide binding. Biotin-modified peptides are likely to become a valuable tool in studying MHC antigen interaction and assembly.  相似文献   

8.
9.
D1S1, a human anonymous DNA clone originally called lambda Ch4A-H3 or lambda H3, was mapped by two other laboratories to human chromosome 1p36 by in situ hybridization but its localization was not confirmed using a different mapping method. We used a panel of human-hamster somatic cell hybrids to show that there are copies of D1S1 on both chromosomes 1 and 3. The D1S1 clone itself is from chromosome 3, and part of it is duplicated at least twice on chromosome 1. A high frequency HindIII polymorphism detected by D1S1, believed to be at chromosome 1p36 on the basis of the in situ hybridization data, maps instead to chromosome 3. This finding demonstrates the importance of using two mapping methods to verify the localization of a gene or DNA segment, particularly a polymorphic one which itself may be used in mapping studies. It also raises the question of why in situ hybridization detected a duplicated portion of a clone but not the chromosomal origin of the clone itself.  相似文献   

10.
Delta like non-canonical Notch ligand 1 (Dlk1) is an imprinted gene, mainly known for its involvement in adipogenesis, although it has been associated with many other stem cells/progenitors and is known to be widely expressed during organism development and tissue regeneration. In a systematic manner, we have outlined the overall expression pattern of Dlk1 in both man and mouse, and found Dlk1 to be expressed in tissues from all three germ layers. Yet, Dlk1 expression decreases along with increased differentiation as gestation proceeds and in most tissues Dlk1 is absent around birth. Thus, in adults, expression of Dlk1 is restricted to a few tissues and progenitor cells, but is re-expressed during disease and regeneration. Although diffferences exist, we found an overall conservation of Dlk1 expression between mouse and man, and conclude in that sense that the mouse is an appropiate model to study Dlk1. In agreement with the observed Dlk1 expression pattern, we found that the majority of published Dlk1 studies, report Dlk1 to have an inhibitory effect on both cell proliferation and differentiation, but the levels of the different DLK1 isoforms may be critical and have an impact on the overall outcome. This may also be an issue during tissue regeneration where several studies have reported Dlk1′s impact during skeletal muscle and liver regeneration without establishing the exact role. Likewise, the underlying mechanism of Dlk1 action is unknown, and seems to depend on both Notch dependent and independent pathways. However, from our data it is intriguing to speculate that the actual role of DLK1 may be to function as a checkpoint to slow down proliferation while forcing cells into the process of differentiation, and thus switch the cell/organ to a state of growth and hypertrophy. This may fit well with its reported impact on growth restiction and body size. Thus, our study which for the first time summarizes reported knowledge on Dlk1 in tissue development and regeneration as well as on the Dlk1 mechanism may provide novel insight to the general role of this remarkable imprinted gene in controlling cell growth, from which new hypotheses can be made in the field of stem cell biology and regenerative medicine.  相似文献   

11.
We studied whether complement receptor (CR) mediated Mycobacterium avium interaction modulated macrophage TNF-alpha expression. Compared to control conditions, infections performed with C3-depletion yielded significantly higher TNF-alpha levels. Blockage of the CR4 iC3b site yielded increases in TNF-alpha for all morphotypic variants of a virulent serovar-8 strain (smooth transparent (SmT), smooth opaque (SmO), serovar-specific glycopeptidolipid (ssGPL) deficient knockout mutant) whereas CR3 blockage increased TNF-alpha only for SmT and ssGPL-deficient strains. Thus, complement-mediated binding of M. avium to CR3 and CR4 was shown to modulate TNF-alpha expression. The differential activation of morphotypic and isogenic variants of a single strain provides an excellent model system to delineate signaling pathways.  相似文献   

12.
Saccharomyces cerevisiae Rrs1p is a nuclear protein that is essential for the maturation of 25 S rRNA and the 60 S ribosomal subunit assembly. In two-hybrid screening, using RRS1 as bait, we have cloned YKR081c/RPF2. Rpf2p is essential for growth and is mainly localized in the nucleolus. The amino acid sequence of Rpf2p is highly conserved in eukaryotes from yeast to human. Similar to Rrs1p, Rpf2p shows physical interaction with ribosomal protein L11 and appears to associate with preribosomal subunits fairly tightly. Northern, methionine pulse-chase, and sucrose density gradient ultracentrifugation analyses reveal that the depletion of Rpf2p results in a delayed processing of pre-rRNA, a decrease of mature 25 S rRNA, and a shortage of 60 S subunits. An analysis of processing intermediates by primer extension shows that the Rpf2p depletion leads to an accumulation of 27 SB pre-rRNA, suggesting that Rpf2p is required for the processing of 27 SB into 25 S rRNA.  相似文献   

13.
14.
Myogenin is a member of a family of muscle-specific regulatory factors which includes MyoD1, Myf-5, and Myf-6 (also called MRF4 and herculin). Extensive regions of sequence homology in genes for these three factors suggest duplication events associated with their evolution. In the present study, the chromosomal location of the myogenin gene in humans (MYOG), mice (Myog), and Chinese hamsters (MYOG) was determined using in situ hybridization to human metaphase chromosomes as well as segregation analysis among interspecific somatic cell hybrid panels and interspecific backcrossed mice. We localize the gene encoding myogenin to human chromosome 1q31-q41 within a linkage group homologous with a region on mouse chromosome 1 and Chinese hamster chromosome 5. The results verify the nonlinkage of MYOG to MYOD1, MYF5, and MYF6 genes and indicate that events associated with the duplication of MYOG with respect to MYOD1, MYF5, or MYF6 loci were not chromosome-wide.  相似文献   

15.
16.
17.
18.
Yersinia heat-shock protein 60 (Ye-hsp60) has recently been found to be a dominant CD4 and CD8 T cell Ag in Yersinia-triggered reactive arthritis. The nature of this response with respect to the epitopes recognized and functional characteristics of the T cells is largely unknown. CD4+ T cell clones specific for Ye-hsp60 were raised from synovial fluid mononuclear cells from a patient with Yersinia-triggered reactive arthritis. and their specificity was determined using three recombinant Ye-hsp60 fragments, overlapping 18-mer synthetic peptides as well as truncated peptides. Functional characteristics were assessed by cytokine secretion analysis in culture supernatants after specific antigenic stimulation. Amino acid positions relevant for T cell activation were detected by single alanine substitutions within the epitopes. Fragment II comprising amino acid sequence 182-371 was recognized by the majority of clones. All these clones were specific for peptide 319-342. Th1 clones and IL-10-secreting clones occurred in parallel, sometimes with the same fine specificity. The 12-mer core epitope 322-333 is a degenerate MHC binder and is presented to some T cell clones in a "promiscuous" manner. This epitope is almost identical with a B27-restricted CTL epitope of Ye-hsp60. Cross-reactivity of Ye-hsp60-specific T cell clones with self-hsp60 was not observed. In conclusion, an interesting Ye-hsp60 T cell epitope has been identified and characterized. It remains to be determined whether this epitope is also relevant in other reactive arthritis patients.  相似文献   

19.
Summary. Previous complementation of a chitin synthase class Vb null mutant (Colletotrichum graminicola chsA) indicated that the encoded protein is responsible for approximately 30% of the conidial chitin, is essential for conidial wall strength in media with high water potential, and contributes to strength of hyphal tips. We complemented a chsA null mutant with chsA fused to the green-fluorescent protein (sgfp) gene driven by a heterologous constitutively expressed promoter. Comparisons of the strain with the ectopic chsA-sgfp to the wild type indicated that ChsA-sGFP serves the same biological functions as ChsA in that like the wild type, the chsAΔ chsA::sgfp (EC) had conidia that did not explode and hyphal tips that did not swell. Confocal microscopy of ChsA-sGFP (EC) cells stained with the membrane stain FM 4-64 (N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide) indicated that ChsA is localized in the plasma membrane of the following: growing apices of hyphal branches, conidiophores, and falcate and oval conidia; in nascent septa; and in septa that are being converted to an end wall after hyphal breakage. The data support the hypothesis that chsA either directly or indirectly encodes the information for its localization, that ChsA is localized in the plasma membrane, and that the class Vb enzyme produces chitin synthase in multiple cells and after wall breakage. Correspondence and reprints: Department of Plant Pathology, University of California, Davis, CA 95616-8680, USA.  相似文献   

20.
Li  Zhengqun  Pei  Xue  Zhang  Ziyu  Wei  Yi  Song  Yanyue  Chen  Lina  Liu  Shouan  Zhang  Shi-Hong 《Extremophiles : life under extreme conditions》2018,22(4):675-685

In a halotolerant fungus Aspergillus glaucus CCHA, several functional proteins with stress-tolerant activity have been studied, but no secretory enzymes have been identified yet. The unique GH5 cellulase candidate from A. glaucus, an endoglucanase termed as AgCMCase, was cloned, expressed in the Pichia pastoris system and the purified enzyme was characterized. A large amount of recombinant enzyme secreted by the P. pastoris GS115 strain was purified to homogeneity. The molecular weight of the purified endoglucanase is about 55.0 kDa. The AgCMCase exhibited optimum catalytic activity at pH 5.0 and 55 °C. However, it remained relatively stable at temperatures ranging from 45 to 80 °C and pH ranging from 4.0 to 9.0. In addition, it showed higher activity at extreme NaCl concentrations from 1.0 to 4.0 M, suggesting it is an enzyme highly stable under heat, acid, alkaline and saline conditions. To evaluate the catalytic activity of AgCMCase, the hydrolysis products of rice and corn straws were successfully studied. In conclusion, the AgCMCase is a thermostable and salt-tolerant cellulase with potential for industrial application.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号