首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We investigated aquatic macrophytes, water quality, and phytoplankton biomass and species composition in three shallow lakes with different levels of vegetation cover and nutrient concentration in Kushiro Moor, during August 2000. Trapa japonica can live in a wide range of nutrient levels. This species forms an environment with a steeper extinction of light, higher concentrations of dissolved organic carbon (DOC), lower concentrations of dissolved oxygen (DO) near the bottom, and lower concentrations of nitrate+nitrite and soluble reactive phosphorus (SRP) than other vegetation types. The pH was much higher in a Polygonum amphibium community, and the DO near the bottom did not decrease compared to a T.japonica community in the summer. The relationship between chlorophyll a and the limiting nutrient (total phosphorus (TP) when total nitrogen (TN):TPis 10 and TN/10 when TN:TP is <10) significantly differed between lakes with and without submerged vegetation. The chlorophyll a concentrations at a given nutrient level were significantly lower in water with submerged macrophytes than in water without them. Correspondence analysis showed that the difference in phytoplankton community structure across sites was largely due to the presence or absence of submerged macrophytes, and the ordination of phytoplankton species in the lakes with submerged macrophytes is best explained by environmental gradients of TN, chlorophyll, pH and SRP.  相似文献   

3.
The ecological relationships of aquatic plants at Lake Naivasha,Kenya   总被引:2,自引:2,他引:0  
The distribution and abundance of the aquatic flora of Lake Naivasha has been constrained by two ecosystem-level processes. One is the natural and unpredictable fluctuation of water levels which the lake experiences, resulting in a drawdown zone of several vertical meters. The other is the consequence of herbivory by several alien species, linked with competition between rooted aquatic plants and phytoplankton. The effects of alien introductions in the 1960s and 1970s was to eliminate submerged vegetation from the lake completely by 1982, principally by crayfish herbivory. Vegetation has been progressively returning since 1984 and this return is coincident with a decline in crayfish population density. Concentrations of phytoplankton have progressively increased since 1982 as a result of nutrient increase caused by a decline in water level and papyrus swamp clearance for agriculture. The relationship between high levels of phytoplankton and extensive littoral weed beds is discussed.  相似文献   

4.
Algae as indicators of environmental change   总被引:12,自引:0,他引:12  
Despite an increased awareness by governments and the general public of the need for protecting all types of aquatic habitats, human impacts continue to impair the services that these ecosystems provide. Increased monitoring activities that locus on all major biological compartments are needed to quantify the present condition of Earth's aquatic resources and to evaluate the effectiveness of regulations designed to rehabilitate damaged ecosystems. Algae are an ecologically important group in most aquatic ecosystems but are often ignored as indicators of aquatic ecosystem change. We attribute this situation both to an underappreciation of the utility of algal indicators among non-phycologists and to a lack of standardized methods for monitoring with algae.Because of their nutritional needs and their position at the base of aquatic foodwebs, algal indicators provide relatively unique information concerning ecosystem condition compared with commonly used animal indicators. Algae respond rapidly and predictably to a wide range of pollutants and, thus, provide potentially useful early warning signals of deteriorating conditions and the possible causes. Algal assemblages provide one of the few benchmarks for establishing historical water quality conditions and for characterizing the minimally impacted biological condition of many disturbed ecosystems. Preliminary comparisons suggest that algal indicators are a cost-effective monitoring tool as well.Based on available evidence from field studies, we recommend development of taxonomic indicators based on diatoms (Bacillariophyceae) as a standardized protocol for monitoring ecosystem change. Both population- and community-level indices have inherent strengths, and limitations and information from both levels of biological organization should be utilized in tandem. However, further information concerning species tolerances to a variety of anthropogenic stressors is needed if autecological indices are to be used routinely for monitoring purposes. While functional measures (e.g. productivity) may also prove useful as monitoring tools, further investigation is required to characterize the reliability of alternative methodologies and to assess the consistency of these indicators under varying field conditions.Author for correspondence  相似文献   

5.
Rotifers as indicators of lake types in Estonia   总被引:14,自引:3,他引:14  
Aare Mäemets 《Hydrobiologia》1983,104(1):357-361
Data on the pelagic rotifer fauna in 10 Estonian lakes accumulated for 20 years, as well as published data are analysed. It is possible to distinguish three main indicator groups among rotifers: (1) for oligo- and mesotrophic lakes (Ploesoma hudsoni, Keratella serrulata, Synchaeta grandis, Asplanchna herricki, Ascomorpha ovalis, Gastropus stylifer, Conochilus hippocrepsis); (2) for meso-and eutrophic lakes (Trichocerca capucina, Filinia longiseta, F. limnetica, Keratella quadrata, K. cochlearis tecta, K.c. hispida, Polyarthra euryptera, Keratella hiemalis, Trichocerca porcellus, T. pusilla); (3) for eutrophic lakes (Brachionus spp., Anuraeopsis fissa, Pompholyx sulcata, P. complanata, Trichocerca cylindrica, Hexarthra mira).  相似文献   

6.
Macroinvertebrates play a key role in the littoral zone of lakes. Macroinvertebrate community composition is closely linked to habitat conditions. To date, there have been few attempts to relate macroinvertebrates to habitat factors in lakes. In this study, nine mainly oligotrophic lakes from throughout New Zealand were surveyed for macroinvertebrates. The lakes were selected to represent a range of suspended sediment loading and lake level regimes. Within each lake, several sites were selected to provide a range of exposure to wave action. A multiple regression approach was taken to relate macroinvertebrate community composition and habitat characteristics. The results of the analysis suggest that the littoral zone of the lakes we studied could be divided into four general habitats. The first is the wave wash zone characterised by coarse substrates and macroinvertebrate taxa usually associated with lotic environments, such as Ephemeroptera and Plecoptera. The second habitat is associated with macrophytes and is limited at the top by wave action and at depth by light attenuation. In this zone, the snail Potamopyrgus antipodarum is dominant, along with Trichoptera and Odonata. At the base of the macrophytes is the detrital habitat characterised by fine, organic rich sediments and dominated by chironomids, oligochaetes and Trichoptera. At depths below the macrophyte zone, fine sediments are found, and bivalves such as the freshwater mussel Hyridella menziesi are common. While macroinvertebrate abundance can be highly variable, some general predictions of community structure can be made based on a few key environmental factors. Abundance of snails Odonata and Trichoptera was positively related to macrophyte biomass. Some macroinvertebrate groups such as oligochaetes, chironomids, snails and bivalves were more common in fine substrates, while Ephemeroptera were characteristic of coarse substrates. Detrital biomass was important for most of the macroinvertebrate groups studied showing a positive relationship for oligochaetes and Trichoptera and a negative relationship for Ephemeroptera and Plecoptera.  相似文献   

7.
Estuarine habitats, and the fish assemblages associated with them, are potentially impacted upon by many anthropogenic influences which can have a direct influence on the food resources, distribution, diversity, breeding, abundance, growth, survival and behaviour of both resident and migrant fish species. The direct and indirect coupling between ichthyofaunal communities and human impacts on estuaries reinforces the choice of this taxonomic group as a biological indicator that can assist in the formulation of environmental and ecological quality objectives, and in the setting of environmental and ecological quality standards for these systems. This review examines the rationale and value of selecting fishes as bio-indicators of human induced changes within estuaries, using examples from both the northern and southern hemispheres. The monitoring of estuarine 'health' using fish studies at the individual and community level is discussed, with an emphasis on the potential use of estuarine fishes and their monitoring and surveillance in national and international management programmes. In illustrating the above concept, examples are presented of the way in which fishes are threatened by anthropogenic impacts and of the way in which teleosts can contribute to a monitoring of estuarine ecosystem health.  相似文献   

8.
Aquatic macrophytes in saline lakes of the Canadian prairies   总被引:7,自引:4,他引:3  
Vascular macrophyte species richness decreases with increasing salinity. Only three species of submerged plants (Potamogeton pectinatus, Ruppia maritima, R. occidentalis) tolerate hypersaline waters (>50 g l-1, total of ionic constituents). Eight emergent species occur in more saline habitats but only five (Scirpus maritimus var. paludosus, Distichlisstricta, Puccinellia nuttalliana, Scirpus americanus, Triglochin maritima) occur commonly over a range of saline lakes into the hypersaline category. Usually, species tolerant of high salinities are found over the entire saline spectrum and even extend into subsaline waters (<3 g l-1) and thrive there. A major increase in the number of species occurs below 5 g l-1. As the water recedes plants such as Salicornia rubra, Suaeda calceoliformes, Hordeum jubatum and Sonchus arvensis invade.Submerged angiosperm distribution is controlled by total ion concentration and substrate texture plays no apparent role. Although angiosperms normally grow in all kinds of substrates, they occupy coarse substrates in Wakaw lake because suitable fine substrates are densely colonized by charophytes. In this lake light limited growth occurs to a depth of 5% of surface light. Light was not limiting in Redberry Lake but angiosperm growth was limited to the upper 8 m (10% or more of surface light). Thermal stratification and depth (pressure) were probably limiting istead. In meromictic Waldsea Lake the depth of the chemocline (6 m, 5% surface light) delimits angiosperm growth.  相似文献   

9.
1. The alternative state theory claims that shallow lakes may have either clear water, and be dominated by submerged macrophytes, or turbid water and be dominated by phytoplankton. Most evidence for this theory comes from studies in temperate or boreal regions of Europe. Because of differences in the strength of trophic interactions, such as in the pressure of zooplankton grazing on phytoplankton, this influential theory might not apply elsewhere. 2. Here, we test the theory for South American lakes, combining field data and Landsat satellite data. We studied the frequency distribution of primary producers and water transparency, looking for potential bimodality separating clear and turbid lakes. A bimodal distribution might be observed if there are indeed alternative states, although would not itself be sufficient evidence for the theory. Possible shifts between alternative states were analysed by comparing satellite data from 1987 to 2005. 3. In our field data, there was a bimodal pattern in phytoplankton abundance and possibly in the abundance of submerged macrophytes, but not in water transparency. Analyses of the larger satellite data set revealed bimodality in lake transparency in 2005, but less so in 1987. In 1987, the lakes were generally clearer, and the transition to higher turbidity was more gradual than in 2005. The stronger bimodality in the more recent data, and the overall lower transparency, could have been caused by an increase in fertiliser use and subsequent eutrophication but also by differences in hydrology. Further, 1987 was much wetter than 2005, which could have caused dilution of suspended particles, leading to clearer water. 4. While a bimodal distribution in the abundance of primary producers and water clarity is not decisive evidence for or against the theory of alternative states, our data clearly fail to refute it.  相似文献   

10.
长江中下游四大淡水湖生态系统完整性评价   总被引:2,自引:2,他引:2  
长江中下游地区是我国淡水湖泊集中分布区域,研究该区域湖泊生态系统完整性对于湖泊生态系统保护和恢复具有重要意义。物理、化学和生物完整性指标已经广泛应用于河湖生态系统健康评价,但是缺少物理、化学和生物完整性的综合评价方法。以历史调查状况为主要参照系统,构建了基于物理、化学和生物完整性的多参数湖泊完整性综合评价指标体系,结合近年来长江中下游四大淡水湖(洞庭湖、鄱阳湖、巢湖、太湖)生态系统调查数据,对四大淡水湖生态系统完整性进行了评价。结果表明,洞庭湖、鄱阳湖、巢湖和太湖的综合得分分别为66、71、57和57。根据评价等级划分标准,洞庭湖和鄱阳湖生态系统完整性状况都达到"好"的等级,而巢湖和太湖则处于"一般"等级;结果显示,该指标能够表征人类活动对于湖泊生态系统完整性不同方面的干扰,且能够反映四大淡水湖生态系统完整性历史变化状况。因此,该方法可以作为长江中下游淡水湖泊生态系统完整性综合评价的工具并能够为湖泊生态系统的保护和恢复提供科学支撑。  相似文献   

11.
随着全球气候变化加剧及水利工程的快速发展,湖泊水动力状况发生了显著变化。通过影响湖泊水体和沉积物理化性质,水动力变化可以作用于沉水植物生存、生长与分布等方面。在长期适应进化过程中,沉水植物演化出了一系列有效的适应策略,能一定程度上克服水动力变化的负面影响。但当前湖泊水动力变化程度远超沉水植物适应上限,湖泊沉水植物消退已成为全球普遍现象。了解沉水植物适应水动力条件的过程有助于揭示湖泊沉水植被退化机制,为未来沉水植物的保护和恢复提供借鉴。因此,本文系统综述当前湖泊水动力变化成因,水动力变化对沉水植物的不利影响及沉水植物适应策略,包括:繁殖对策、形态学对策、生理对策等。同时,综述当前研究进展,今后还需大力加强沉水植物解剖学及物种忍耐力差异方面的研究。  相似文献   

12.
The seasonal variation in water clarity, as indicated by the attenuation coefficient for photosynthetically active radiation, K d (m-1), was determined by monthly measurements for a year in 9 North Island, New Zealand lakes. K d varied by a factor of 2 to 3 in 8 of the lakes, and a factor of 5 in one. Annual mean K d (symbol% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa!36BD!\[K\] d) varied by a factor of approximately 15 between lakes. The maximum depth of water colonized by macrophytes (z c)was also determined. Values of z c were in the range 1.5–12.5 m. The relationship z c =4.34/% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa!36BD!\[K\]d accounted for most (93 percent) of the variability in z c , indicating that average annual clarity was probably a useful predictor of z c in lakes in this region. The values of z c in these North Island lakes were generally greater than values calculated using previously published empirical relationships derived for northern hemisphere groups of lakes. The extent to which these relationships underestimated z c in the North Island lakes was broadly related to latitude. Estimated average irradiance at z c in each lake was similar to compensation point irradiances reported previously for freshwater macrophytes.  相似文献   

13.
14.
Submerged macrophytes as indicators of the ecological quality of lakes   总被引:1,自引:0,他引:1  
1. We analysed submerged macrophyte communities from 300 Danish lakes to determine the efficacy of different species, maximum colonisation depth (Cmax) of plants as well as coverage and plant volume inhabited (PVI) as indicators of eutrophication. 2. Most species occurred at a wide range of phosphorus and chlorophyll a (Chla) concentrations, but some species of isoetids (Lobelia, Isoëtes) and Potamogeton (Potamogeton gramineus, Potamogeton alpinus and Potamogeton filiformis) were mainly found at low nutrient concentrations and hence may be considered as indicators of nutrient poor conditions. However, species typically found in nutrient‐rich conditions, such as Elodea canadensis and Potamogeton pectinatus, were also found at total phosphorus (TP) <0.02 mg P L?1 and Chla <5 μg L?1 and therefore cannot be considered as reliable indicators of eutrophic conditions. 3. Submerged macrophyte coverage, PVI and the Cmax were negatively correlated with TP and Chla. However, variability among lakes was high and no clear thresholds were observed. At TP between 0.03 and 0.07 mg P L?1 plant coverage in shallow lakes ranged from nearly 0 to 100%, whilst at concentrations between 0.10 and 0.20 mg P L?1 only 29% of the lakes had coverage >10%. Cmax was found to be a useful indicator only in deep lakes with unvegetated areas in the deeper part, whereas the use of coverage was restricted to shallow lakes or shallow areas of deep lakes. 4. Overall, submerged macrophytes responded clearly to eutrophication, but the metrics investigated here showed no well‐defined thresholds. We developed a simple index based on species richness, presence of indicator species, coverage and Cmax, which might be used to track major changes in macrophyte communities and for lake classification.  相似文献   

15.
The freshwater secondarily aquatic plants, most of which are higher plants, are those returned to the water environment after spending a period of time living on land. The readaptation to living underwater has made it necessary for these plants to put in place morphological and functional strategies to cope with some major problems due to features of the aquatic environment, but also deriving from the specialized organization of their “terrestrial” bodies. The poor O2 availability underwater accounted for the evolution of wide aerenchyma tissues throughout the plant organs to improve the photosynthetic O2 flux from the shoot to the roots buried in anoxic sediments and to the neighboring rhizosphere. This favors sediment oxygenation, sustains the aerobic metabolism of roots, and improves the availability and uptake of mineral nutrients, whose delivery to the entire plants, without a transpirational flux, is ensured by an acropetal mass transport depending on root pressure, guttation from hydathodes and channeling by apoplast closure around the vascular tissues. A great expansion of leaf surfaces and an enhanced surface:volume ratio of chloroplast-rich photosynthetic cells help to contact the water medium and to increase the cell/environment exchanges to gain inorganic carbon. Furthermore, different physiological mechanisms operate to cope with the scarce availability of CO2 and the prevalence of HCO3 ? as inorganic carbon form in water. Some of them, like cell wall acidification through H+ extrusion by a light-dependent APTase or activation of an apoplastic carbonic anhydrase, operate outside the cells, leading to a conversion of HCO3 ? to CO2, which then diffuses into the cells. Others, on the contrary, act inside the cells to load the active site of Rubisco with CO2, thus favoring photosynthesis and lowering photorespiration. Aquatic macrophytes with isoetid life form, moreover, can obtain most ot the fixed CO2 from sediments. In submerged species, in additin to the C3 cycle, the C4 and CAM-like photosynthetic metabolisms can also operate, and are modulated by the environmental inorganic carbon availability and the plant photosynthetic demand. Interestingly, in the aquatic plants the C4 pathway, which can be concomitant with the C3 one, does not depend on the Kranz anatomy of leaves, but relies on the intracellular compartmentation of carboxylative and decarboxylative enzymes. The CAM-like pathway, defined AAM, which also coexists with the C3, allows the submerged plants to fix CO2 in the dark, thus exploiting the higher CO2 availability in the water medium during the night, and extending to 24?h the period of inorganic carbon assimilation. In almost all the aquatic macrophytes the AAM is only expressed in the submersion state, whereas it is quickly inactivated in emerging leaves in a cell by cell way.  相似文献   

16.
保安湖沉水植物分布的GIS模拟   总被引:9,自引:1,他引:9  
马凯  蔡庆华  谢志才  黎道丰  叶麟 《生态学报》2003,23(11):2271-2277
以GPS为辅助,在保安湖主体湖和桥墩湖进行沉水植物调查。将野外调查数据构建GIS数据库,基于GIS软件平台,运用Kringing插值法对保安湖沉水植物分布进行模拟。模拟结果清楚地显示出调查时保安湖沉水植物及4优势种(金鱼藻Ceratophyllum demersum L.、穗状狐尾藻Myriophyllum spicatum L.、微齿眼子菜Potamogeton maackianus A.Benn.及苦草Vallisneria spiralis L.)分别在湖中的分布情况。统计后结果表明沉水植物覆盖面积占全湖面积的92.9%,总生物量(湿重)为143682.4t。比较历史数据,发现湖中水生植被组成特征已由微齿眼子菜绝对优势转变为4种植物的共同优势。  相似文献   

17.
高原湖泊湿地以植被指示为主的环评指标初探   总被引:1,自引:0,他引:1  
分析探讨高原湖泊湿地的环境评价中,如何应用一套由植被为主指示要素构成的环评指标,并以云南石林长湖湖泊湿地为实例。按植被及其植物区系组成、动物区系和生境方面所表现特征的现况,共设置以植被特征为主的10个评定指示要素。使用此类指标评价的前提是:所评的各个高原湖泊湿地,均在上述10个所规定的指示要素方面,已取得调查研究的定量和定性数据资料。所以本方案的使用,反而促成各高原湖泊湿地在以植被特征为主各评价要素的进一步考察和研究,以作为参评的依据。  相似文献   

18.
SUMMARY 1. We analysed the vegetation structure of 215 lakes in the flood plain of the river Lower Rhine in relation to environmental variables related to hydrological connectivity, lake morphometry, lake age and land use on adjacent land. 2. The frequency distribution of the cover of submerged macrophytes was not normal, implying that submerged macrophytes in any one lake were either scarce or abundant. 3. We observed clear water lakes with submerged macrophyte dominance over a wide range of total P concentration (0.020–0.40 mg total P L?1). 4. Multiple logistic regression indicated that the probability of dominance by submerged macrophytes decreased markedly with the surface area, depth and age of the lakes. The surface area effect occurred independently of the depth. Further, there was a negative relationship between submerged macrophyte dominance and the long‐term annual duration of inundation by the river. 5. Nymphaeid cover showed a distinct optimum with respect to mean lake depth, being almost absent in lakes shallower than 0.5 m. In contrast to what was found for submerged plants, the probability of occurrence of nymphaeids increased with lake age. 6. The probability of helophyte occurrence increased with lake age, and decreased with the presence of trees, cattle grazing, surface area, use of manure and mean lake depth. 7. In all cases the critical level of one factor (e.g. mean lake depth) depended on other factors (e.g. surface area or age of lake). Thus, in the present study, small lakes tended to remain dominated by submerged macrophytes up to a greater depth than large lakes, and helophytes colonised smaller lakes in an earlier phase. 8. The effect of inundation by the river was modest. This could be because most of our lakes are rarely inundated during the growing season and experience only moderate current velocities while flooded. 9. The results have practical implications for future management of flood plains for conservation purposes. In new water bodies, macrophyte domination will be promoted if many small shallow lakes, rather than few large deep ones, are excavated.  相似文献   

19.
We collected quantitative data on macrophyte abundance and water quality in 319 mostly shallow, polymictic, Florida lakes to look for relationships between trophic state indicators and the biomasses of plankton algae, periphyton, and macrophytes. The lakes ranged from oligotrophic to hypereutrophic with total algal chlorophylls ranging from 1 to 241 mg m–3. There were strong positive correlations between planktonic chlorophylls and total phosphorus and total nitrogen, but there were weak inverse relationships between the densities of periphyton and the trophic state indicators total phosphorus, total nitrogen and algal chlorophyll and a positive relationship with Secchi depth. There was no predictable relationship between the abundance of emergent, floating-leaved, and submersed aquatic vegetation and the trophic state indicators. It was only at the highest levels of nutrient concentrations that submersed macrophytes were predictably absent and the lakes were algal dominated. Below these levels, macrophyte abundance could be high or low. The phosphorus–chlorophyll and phosphorus–Secchi depth relationships were not influenced by the amounts of aquatic vegetation present indicating that the role of macrophytes in clearing lakes may be primarily to reduce nutrient concentrations for a given level of loading. Rather than nutrient concentrations controlling macrophyte abundance, it seems that macrophytes acted to modify nutrient concentrations.  相似文献   

20.
Abstract

Human-induced and natural stress factors can affect fine roots and ectomycorrhizas. Therefore they have potential utility as indicators of environmental change. We evaluated, through meta-analysis, the magnitude of the effects of acidic deposition, nitrogen deposition, increased ozone levels, elevated atmospheric carbon dioxide, and drought on fine roots and ectomycorrhizal (ECM) characteristics. Ectomycorrhizal colonization was an unsuitable parameter for environmental change, but fine root length and biomass could be useful. Acidic deposition had a significantly negative impact on fine roots, root length being more sensitive than root biomass. There were no significant effects of nitrogen deposition or elevated tropospheric ozone on the quantitative root parameters. Elevated CO2 had a significant positive effect. Drought had a significantly negative effect on fine root biomass. The negative effect of acidic deposition and the positive effect of elevated CO2 increased over time, indicating that effects were persistent contrary the other factors. The meta-analysis also showed that experimental conditions, including both laboratory and field experiments, were a major source of variation. In addition to quantitative changes, environmental changes affect the species composition of the ectomycorrhizal fungal community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号