首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The timing for replication of the genes coding for tRNA and 5S rRNA has been studied in Tetrahymena pyriformis. The cells were synchronized by two different procedures, known to synchronize not only cell divisions but also the macronuclear DNA replication, namely (1) the heat-shock procedure described by Zeuthen [12] and (2) the starvation/refeeding procedure described by Cameron & Jeter [13]. The DNA replication was followed by addition of 5-bromodeoxyuridine (BUdR) prior to a synchronous DNA replication. DNA was isolated at various times during replication, analysed by CsCl gradient centrifugation and hybridization with tRNA and 5S rRNA. The results show that the replication of the genes for tRNA and 5S rRNA follows the replication of the bulk macronuclear DNA.  相似文献   

2.
In Tetrahymena pyriformis, mating type I, variety 1, cycloheximide rapidly and completely inhibited incorporation of 14C-L-leucine into protein. Actinomycin D (25 μg per ml) inhibited incorporation of 14C-uracil into cold-TCA-insoluble material, after a 5–10 minute lag. Frequently a subsequent decline in the amount of radioactivity was observed. Protein synthesis continued in actinomycintreated cultures for a variable time after cessation of RNA synthesis. Oral development was affected by cycloheximide virtually immediately, and by actinomycin D after a 10–15 minute lag. Cells affected by either drug before the onset of oral membranelle formation were permanently arrested in the stomatogenic field phase. Cells affected in the early and middle stages of membranelle formation completed development of membranelles, but did not invariably complete cell division. Cycloheximide, when added at the beginning of membranelle formation, brought about arrest or resorption of membranelles after they were completed. Actinomycin did not elicit resorption, but sometimes brought about blockage during cell division. Cells affected by either drug after membranelles were fully formed (and cell division was just beginning) completed oral development, nuclear divisions, and cell division. These results suggest that concurrent RNA and protein synthesis are essential for the initiation but not for the completion of membranelle differentiation. The results also suggest that a specific messenger RNA(s) with a very short half-life is required for the synthesis of proteins involved in the initiation of membranelle differentiation.  相似文献   

3.
The mechanism of coordination between DNA replication and cell division was studied in Tetrahymena pyriformis GL-C by manipulation of the timing of these events with heat shocks and inhibition of DNA synthesis. Preliminary experiments showed that the inhibitor combination methotrexate and uridine (M + U) was an effective inhibitor of DNA synthesis. Inhibition of the progression of DNA synthesis with M + U in exponentially growing cells, in which one S period usually occurs between two successive divisions, or in heat-shocked cells, when successive S periods are known to occur between divisions, resulted in the complete suppression of the following division. In further experiments in which the division activities were reassociated with the DNA synthetic cycle by premature termination of the heat-shock treatment, it was shown that (a) the completion of one S period during the treatment was sufficient for cell division, (b) the beginning of division events suppressed the initiation of further S periods, and (c) if further S periods were initiated while the heat-shock treatment was continued, division preparations could not begin until the necessary portion of the S period was completed, even though DNA had previously been duplicated. It was concluded that a temporal incompatibility exists between DNA synthesis and division which may reflect a coupling mechanism which insures their coordination during the normal cell cycle.  相似文献   

4.
Populations of Tetrahymena pyriformis were synchronized by 30 min heat shocks at 34 °C separated by 160 min intervals at the normal growth temperature. The cells initiate DNA synthesis immediately after the cellular division, and the S period of the population lasts about 80 min. It was found that DNA replication is a prerequisite for the following synchronous division. Inhibition of the DNA synthesis in early S by starvation of the cells for thymidine prevents the forthcoming division. However, inhibition in the latter half of S does not prevent the subsequent division. Thus the cells have synthesized enough DNA to permit cell division before the end of a normal S period. These results are discussed in relation to the organization of the genome replication in the highly polyploid macronucleus.  相似文献   

5.
When Tetrahymena are starved during the heat synchronization treatment, they synthesize a small amount of transfer RNA and DNA-like RNA containing poly A, but no ribosomal RNA and still retain the capacity to divide synchronously. Analysis with MAK chromatography revealed that the DNA-like RNA is eluted almost entirely as tenaciously bound, DNA-like RNA. SDS-sucrose gradient centrifugation revealed that the DNA-like RNA is heterogeneous in size with a dominant peak sedimenting at about 17S. The peak fraction containing poly A sediments at about 15S.A good correlation has been established between the percentage of cell division and the synthesis of either tenaciously bound, DNA-like RNA or RNase-resistant RNA using various concentrations of actinomycin D. Actinomycin D treatment causes little delay in the initiation of furrowing in division but prolongs the furrowing process. In the present system, the critical addition time with actinomycin D (50 μg/ml) is about 30 min after the end of the last heat shock (EH).The present data suggest that the synthesis of messenger-like RNA containing poly A is required after the last heat shock (approx. 30–40 min after EH) for the first division in heat synchronized Tetrahymena. This RNA synthesis appears to be related to the furrowing process.  相似文献   

6.
Summary The effect of 0,4 g of actinomycin per ml medium on DNA synthesis in synchronous cultures of Tetrahymena pyriformis strain HSM was studied. Synchronous cultures were obtained by selecting cells from a stock culture which were all in the same division phase In this concentration actinomycin inhibits cell division but permits the normal doubling of DNA and furthermore another period of macronuclear DNA synthesis. In this additional DNA production phase the rate and the synchrony of DNA synthesis is reduced as revealed by autoradiography. The production of additional DNA was demonstrated by photometric determination of Feulgen stainable material. These findings indicate that the onset of DNA synthesis is independent of a preceding cell division, of a preceding nuclear division, of the average amount of DNA present, and of the main portion of RNA synthesis.

Herrn Professor Dr. R. Danneel zu seinem 65. Geburtstag.

Unterstützt durch Sachbeihilfen der Deutschen Forschungsgemeinschaft.  相似文献   

7.
The effect of supraoptimal temperature on macronuclear DNA synthesis in Tetrahymena was studied by radioautography during prolonged heat and heat-shock synchronization treatments. Prolonged heat treatments (34°C) delayed the initiation of S, but did not appreciably delay DNA synthesis in progress. Return to optimal temperature (28°C) 50 or 100 min later resulted in initiation of S, in delayed cells, at a rate greater than in controls. During the synchronization treatment, most cells were unable to enter S during a heat shock, but initiated S with a slight delay during the following intershock period. These cells were not appreciably delayed in completion of S by subsequent heat shocks. Supraoptimal temperature appears to affect the DNA synthetic cycle near the G1 to S transition. Cells subjected to the heat-shock treatment in early G1 all participated in one S period, and many underwent a succession of two S periods. DNA synthesis occurred in about 50% of the cells between EST and the first synchronous division, with the likelihood of DNA synthesis becoming greater the longer the interval between these two events. In some cells no detectable DNA synthesis occurred between EST and the second synchronous division. It was concluded that a precise temporal alternation of DNA replication and cell division is not obligatory in Tetrahymena.  相似文献   

8.
Using the harvesting method of synchronizing L cells, the relationship of RNA synthesis of DNA replication was studied by the use of selective inhibitors of RNA synthesis such as actinomycin D and chromomycin succinate. The synthesis of the early replicating DNA fraction is a process sensitive to the inhibition of RNA synthesis during the G1 period. The synthesis of early replicating DNA was inhibited by chromomycin succinate without affecting the initation of DNA synthesis. However, actinomycin D inhibited the synthesis of early replicating DNA and prevented the initiation of DNA synthesis in 50% of the synchronized cells. However, it was found that the continued synthesis of RNA during the S period is not essential for the synthesis of late replicating DNA. In addition to this specific response of DNA synthesis to the inhibitors of RNA synthesis, another function of early and late replicating DNA was determined relative to the cell viability. Cells synthesizing early replicating DNA were killed more efficiently by chromomycin than at other stages of the cell cycle. This indicates that the early replicating DNA unit plays a more important role in cell reproduction than the late replicating DNA unit.  相似文献   

9.
Nuclei were isolated by exposing temperature synchronized Tetrahymena pyriformis (HSM) to Triton-X-100. Cell division synchrony was induced with a repetitive 12-hour temperature cycle (9.5 hours at 13°, 2.5 hours at 29°). Increase in nucleic acid content was biphasic: primarily during the last two hours of the cold period well in advance of the synchronous burst of division and secondarily in the last hour of the warm period. Nuclear RNA content rises almost two hours ahead of cytoplasmic RNA which shows a maximum 0.5 hour before the onset of the warm period. The DNA content reaches a peak 30 minutes later. On the basis of these shifts there appears to be not net synthesis of nucleic acids during cell division. The changes in RNA/DNA of the isolated macronuclei and micronuclei suggest enhanced RNA turnover, loss to the cytoplasm and enhanced ribonuclease activity prior to cell division. Cytoplasmic RNA also appears to be subject to enzymic degradation.  相似文献   

10.
Tetrahymena cells were synchronized by a differential density labeling method. Millimolar concentrations of db-cAMP will cause a delay in the division of the synchronized cells only if added before late S period. The effective concentrations will also cause a precocious initiation of DNA synthesis during G2 just prior to cell division, suggesting that the cyclic nucleotide causes an uncoupling of the program of DNA synthesis and that of karyo- and cytokinesis.  相似文献   

11.
SYNOPSIS. Synthesis of RNA in the macronucleus and appearance of RNA in the cytoplasm were studied in heat synchronized Tetrahymena pyriformis GL and compared to those found under conditions of logarithmic growth (28 C) and during heat shocks (34 C). In macronuclei of logarithmically growing cells precursors were processed to 2 rRNA species (25S and 17S). In addition, another RNA (15S), more homogeneous than the RNA (8-15S) in the cytoplasm, was observed in the macronucleus. Both 17S and 25S rRNA species were found in the cytoplasm, 17S rRNA appearing more rapidly than 25S rRNA. Synthesis of rRNA was suppressed at 34 C in cells subjected to heat synchronization; 8-15S RNA synthesis appeared to be inhibited to a lesser extent. During the time preceding the first synchronized division, the synthesis of rRNAs in the macronucleus slowly recovered. Early in the cycle, almost no newly synthesized rRNAs were extracted. By 30 min after the last heat shock (EH), most of the RNA synthesized was not identified as rRNA. By 60 min after EH, the pattern of RNA synthesis had not returned to that observed in logarithmically growing cells.  相似文献   

12.
The temporal schedule of DNA replication in heat-synchronized Tetrahymena was studied by autoradiographic and cytofluorometric methods. It was shown that some cells, which were synchronized by selection of individual dividing cells or by temporary thymidine starvation, incorporated [3H]thymidine into macronuclei in a periodic fashion during the heat-shock treatment. It was concluded that supernumerary S periods occurred while cell division was blocked by high temperature. The proportion of cells which initiated supernumerary S periods was found to be dependent on the duration of the heat-shock treatment and on the cell cycle stage when the first heat shock was applied. Cytofluorometric measurements of Feulgen-stained macronuclei during the heat-shock treatment indicated that the DNA complement of these cells was substantially increased and probably duplicated during the course of each S period. Estimates of DNA content also suggested that the rate of DNA synthesis progressively declined during long heat-shock treatments. These results indicate that the mechanism which brings about heat-induced division synchrony is not an interruption of the process of DNA replication. Further experiments were concerned with the regulation of DNA synthesis during the first synchronized division cycle. It was shown that participation in DNA synthesis at this time increased as more cells were able to conclude the terminal S period during the preceding heat-shock treatment. It is suggested that a discrete period of time is necessary after the completion of DNA synthesis before another round of DNA synthesis can be initiated.  相似文献   

13.
Tetrahymena pyriformis were brought to a non-growing state by removal of pyrimidines from their growth medium. During pyrimidine deprivation cell number increased 3- to 4 fold, and this increase was accompanied by one or more complete cycles of macronuclear DNA replication. Autoradiographic studies show that endogenous protein and RNA were turning over throughout starvation and that RNA breakdown products were used to support the DNA synthesis that occurred during the early period of starvation. However, after 72 hours of starvation all DNA synthesis and cell division had ceased. Feulgen microspectrophotometry shows the macronuclei of these cells to have been stopped at a point prior to DNA replication (G1 stage). After pyrimidine replacement the incorporation of H3-uridine, H3-adenosine, and H3-leucine was measured by the autoradiographic grain counting method. The results indicate that RNA synthesis began to increase almost immediately, but that there was a lag of almost an hour before an increase in protein synthesis. In agreement with the autoradiographic data, chemical data also show that cellular content of RNA began to increase shortly after pyrimidine replacement but that cellular protein content did not increase until about one hour later. Pulse labeling of the cells with H3-thymidine at intervals after pyrimidine replacement shows that labeled macronuclei first began to appear at 150 minutes; that 98 per cent of the macronuclei were in DNA synthesis at 240 to 270 minutes; and that the percentage then began to decrease from 300 to 390 minutes, at which time only 25 per cent of the macronuclei were labeled. Cellular content of DNA did not increase for at least 135 minutes after pyrimidine replacement; however, just before the first cells divided (360 minutes) the DNA content had doubled. After pyrimidine replacement the cells first began to divide at 360 minutes, and 50 per cent had divided at 420 minutes; however, all cells had not divided until 573 minutes. This technique of chemical synchronization of cells in mass cultures makes feasible detailed biochemical analysis of events leading to nuclear DNA replication and cell division.  相似文献   

14.
In synchronized culture of Escherichia coli, the specific arrest of phospholipid synthesis (brought about by glycerol starvation in an appropriate mutant) did not affect the rate of ongoing DNA synthesis but prevented the initiation of new rounds. The initiation block did not depend on cell age at the time of glycerol removal, which could be before, during, or after the doubling in the rate of phospholipid synthesis (DROPS) and as little as 10 min before the expected initiation. We conclude that the initiation of DNA replication is not triggered by the preceding DROPS but requires active phospholipid synthesis. Conversely, when DNA replication initiation was specifically blocked in a synchronized culture of a dnaC(Ts) mutant, two additional DROPS were observed, after which phospholipid synthesis continued at a constant rate for at least 60 min. Similarly, when DNA elongation was blocked by thymine starvation of a synchronized culture, one additional DROPS was observed, followed by linear phospholipid accumulation. Control experiments showed that specific inhibition of cell division by ampicillin, heat shock, or induction of the SOS response did not affect phospholipid synthesis, suggesting that the arrest of DROPS observed was due to the DNA replication block. The data are compatible with models in which the DROPS is triggered by an event associated with replication termination or chromosome segregation.  相似文献   

15.
A heat-labile protein required for division accumulates during the duplication cycle of Escherichia coli. Its formation appears to commence shortly after the cell divides, and it reaches a maximal amount shortly before the next division. A plausible mechanism for timing cell division depends on building up the critical amount of this protein. Completion of deoxyribonucleic acid (DNA) replication is also necessary for division to occur, but it does not uniquely initiate division. The evidence for these conclusions comes from heat-shock experiments; heating to 45 C for 15 min delays division increasingly with the age of a cell. A heat shock given near the end of a cycle delays division for about 30 min, whereas at the beginning of the cycle it hardly affects division. The net result is synchronization of cell division. The effect of heat is increased in bacteria which have incorporated p-fluoro-phenylalanine into their proteins. When the incorporation is early and the heat shock is late in the cycle, division is delayed by about 30 min, indicating that the division protein is synthesized early even though its sensitivity is not observed until later. At any time in the cell cycle, heat shock simply delays total protein and DNA synthesis ((3)H-thymidine uptake) for approximately 14 min. DNA replication and cell division are thus discoordinated, since DNA replication is not synchronized by the treatment.  相似文献   

16.
17.
The question of amino acid requirements for DNA synthesis and cell division has been studied in Tetrahymena pyriformis by depriving cells of histidine and tryptophan at defined stages in the interdivision interval. Deprivation any time before DNA synthesis does not prevent the initiation of such synthesis but completely inhibits the following division and limits the increase in DNA, as measured microspectrophotometrically, to 20 per cent. H3-thymidine added to the medium is not incorporated during the 20 per cent increase. Deprivation after DNA synthesis is initiated does not prevent the continuation (to completion) of DNA synthesis, and cell division ensues. H3-thymidine added to the medium under these conditions is incorporated into macronuclear DNA. The data indicate that some amino acid-dependent event occurs, about the time of the beginning of the DNA synthesis period, which is not essential for initiation of DNA synthesis but which is essential for the maintenance of synthesis once it has begun. These results are further discussed in terms of enzymes required to convert thymidine (and possibly the other three deoxyribonucleosides) to the immediate precursor of DNA synthesis.  相似文献   

18.
19.
SYNOPSIS. Using continuous flow cultures based on the chemostat principle, we varied the cell generation times of the ciliate Tetrahymena pyriformis strain GL, from 4.9 to 22.2 hr and studied various parameters of the cell cycle at 28 C. These included: the duration of the periods required for oral morphogenesis, macronuclear division, cell division, G1 S, and G2. The size of individual cells was also measured. Independent of the growth rate, the period of oral morphogenesis occurred during the last 90 min of the cell cycle. In all cases macronuclear and cell divisions took place during the last part of these 90 min, and the final macronuclear separation occurred just before final cell separation. The S-period increased slightly, while the G1 and G2 both increased in roughly the same relative proportion to the increasing generation times. Slowly growing cells (generation time 20.5 hr) were shorter but broader and somewhat larger in volume than quickly growing cells (generation time 4.9 hr).  相似文献   

20.
The effects of inhibition of the synthesis of protein, mRNA or rRNA on the progression of the cell cycle have been analyzed in cultures of Catharanthus roseus in which cells were induced to divide in synchrony by the double phosphate starvation method. The partial inhibition of protein synthesis at the G1 phase by anisoniycio or cycloheximide caused the arrest of cells in the G1 phase or delayed the entry of cells into the S phase. When protein synthesis was partially inhibited at the S phase, cell division occurred to about the same extent as in the control. When asynchronously dividing cells were treated with cycloheximide, cells accumulated in the G1 phase, as shown by flow-cytometric analysis. The partial inhibition of mRNA synthesis by α-amanitin at the G1 phase caused the arrest of cells in the G1 phase, although partial inhibition of mRNA synthesis at the S phase had little effect on cell division. In the case of inhibition of synthesis of rRNA by actinomycin D at the G1 phase, initiation of DNA synthesis was observed, but no subsequent DNA synthesis or the division of cells occurred. However, the addition of actinomycin D during the S phase had no effect on cell division. These results suggest that specific protein(s), required for the progression of the cell cycle, are synthesized in the G1 phase, and that the mRNA(s) that encode these proteins are also synthesized at the G1 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号