首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 734 毫秒
1.
吴绮  覃瑞  李刚  刘虹 《植物科学学报》2010,28(6):654-659
利用AA染色体组栽培稻的中高度重复序列C0t-1 DNA和基因组DNA作为探针,通过荧光原位杂交技术对宽叶野生稻(Oryza latifolia)(CCDD染色体组)进行了比较基因组分析。结果显示,在宽叶野生稻染色体上,C0t-1 DNA的杂交信号没有基因组DNA的杂交信号明显;杂交信号主要分布在着丝粒、近着丝粒及端粒区域;随着洗脱严谨度的不同,杂交信号呈现出较高的种特异性。本研究以不同洗脱严谨度下的荧光原位杂交结果为依据,对宽叶野生稻进行的核型分析,可进一步提高稻属染色体识别的准确性。  相似文献   

2.
利用AA染色体组栽培稻的中高度重复序列C0t-1 DNA和基因组DNA作为探针,通过荧光原位杂交技术对宽叶野生稻(Oryza latifolia)(CCDD染色体组)进行了比较基因组分析。结果显示,在宽叶野生稻染色体上,C0t-1 DNA的杂交信号没有基因组DNA的杂交信号明显;杂交信号主要分布在着丝粒、近着丝粒及端粒区域;随着洗脱严谨度的不同,杂交信号呈现出较高的种特异性。本研究以不同洗脱严谨度下的荧光原位杂交结果为依据,对宽叶野生稻进行的核型分析,可进一步提高稻属染色体识别的准确性。  相似文献   

3.
通过荧光原位杂交(FISH)利用来源于A基因组栽培稻的中高度重复序列C0t-1DNA和基因组DNA作为探针,对栽培稻、斑点野生稻和短药野生稻进行了比较基因组分析。结果发现C0t-1DNA杂交信号主要分布在这3种染色体的着丝粒、近着丝粒和端粒区域,在斑点野生稻染色体上的信号多于短药野生稻,与gDNA作为探针FISH的结果相一致,说明A和B基因组间的亲缘关系明显近于A和F基因组。确定了含有中高度重复序列的C0t-1DNA用于属内种间关系研究的可行性,并根据C0t-1DNA的FISH结果进行了染色体核型分析。  相似文献   

4.
用栽培稻(Oryza sativa L.)遗传图第四连锁群中与抗褐稻虱基因Bph3紧密连锁的RFLP标记RZ69及筛选出来的BAC克隆38J9作探针,对药用野生稻(O.officinalis Well ex Watt)和栽培稻荧光原位杂交,供试标记RZ69及38J9均被定位于药用野生稻和栽培稻第4染色体的短臂上,药用野生稻杂交信号的百分距分别为22.12±3.44和20.00±5.40,而栽培稻均为0.在栽培稻中,信号检出率相应地为6.29%和56.10%,在药用野生稻中则为6.14%和50.00%.BAC克隆和RFLP标记探针杂交信号的百分距十分接近,说明在栽培稻和野生稻中RFLP标记RZ69都在同一BAC克隆的大插入片段中.由此推知,药用野生稻与抗性基因Bph3的同源顺序就在第4染色体信号出现的相应位置.在未封阻的情况下,药用野生稻的BAC杂交在多条染色体上具有信号,这表明它和栽培稻的Cot-1 DNA重复顺序也在一定程度上具有同源性.药用野生稻第4染色体是根据栽培稻与药用野生稻的比较遗传图选用与Gm-6连锁的RG214通过FISH确定的.讨论了栽培稻BAC克隆对药用野生稻比较原位杂交物理作图的可行性问题.  相似文献   

5.
用 PCR技术从产于我国的 3种野生稻和亚洲栽培稻的 2个亚种中特异地扩增和测序了 r DNA的第一转录间隔区。普通野生稻 (Oryza rufipogon)、药用野生稻 (O.officinalis)、疣粒野生稻 (O.granu-lata)和栽培稻的两个亚种 (O.sativa ssp.indica,O.sativa ssp.japonica)的 ITS1序列为 1 93bp、1 94bp、2 1 8bp、1 94bp和 1 94bp,它们的 G/ C含量为 69.3%~ 72 .7% ,序列中位点趋异率为 1 .5%~ 1 0 .6%。序列的相似性比较和简约性分支分析的结果表明 ,普通野生稻与栽培稻的两个亚种之间的亲缘关系最为密切 ;药用野生稻与普通野生稻和与栽培稻的两个亚种的相似性都为 82 % ,说明它与 AA基因组有一定的亲缘关系 ;疣粒野生稻与普通野生稻、药用野生稻和栽培稻两个亚种的亲缘关系相对较远 ,它在稻属中可能是一个系统地位较独特的类群。以 ITS1序列构建的 3种野生稻和 2个栽培稻亚种的系统发育关系与前人用同工酶、叶绿体 DNA、线粒体 DNA和核 DNA资料重建的稻属的系统发育关系基本一致  相似文献   

6.
序列比较说明,重复DNA顺序pRRD9与水稻叶绿体基因组中编码QB蛋白的psbA基因存在高度的同源。用pRRD9亚克隆片段pRRD9R和片段pRRD9L对水稻的叶绿体和核DNA进行Southern杂交分析,揭示了psbA基因同源片段在某个进化时期由叶绿体基因组转移到水稻核基因组,而且两者在水稻进化过程中的变异程度存在明显的差异。利用它们对野生稻和栽培稻总DNA的Southern杂交分析,显示亚洲栽培稻与AA基因组型的野生稻有较近的亲缘关系,以及在部分野生稻产生特异的杂交带谱,说明它可以作为一种分子探针来研究水稻的进化问题。  相似文献   

7.
用栽培稻 (OryzasativaL .)遗传图第四连锁群中与抗褐稻虱基因Bph3紧密连锁的RFLP标记RZ6 9及筛选出来的BAC克隆 38J9作探针 ,对药用野生稻 (O .officinalisWellexWatt)和栽培稻荧光原位杂交 ,供试标记RZ6 9及38J9均被定位于药用野生稻和栽培稻第 4染色体的短臂上 ,药用野生稻杂交信号的百分距分别为 2 2 .12± 3.4 4和2 0 .0 0± 5 .4 0 ,而栽培稻均为 0。在栽培稻中 ,信号检出率相应地为 6 .2 9%和 5 6 .10 % ,在药用野生稻中则为 6 .14 %和 5 0 .0 0 %。BAC克隆和RFLP标记探针杂交信号的百分距十分接近 ,说明在栽培稻和野生稻中RFLP标记RZ6 9都在同一BAC克隆的大插入片段中。由此推知 ,药用野生稻与抗性基因Bph3的同源顺序就在第 4染色体信号出现的相应位置。在未封阻的情况下 ,药用野生稻的BAC杂交在多条染色体上具有信号 ,这表明它和栽培稻的Cot_1DNA重复顺序也在一定程度上具有同源性。药用野生稻第 4染色体是根据栽培稻与药用野生稻的比较遗传图选用与Gm_6连锁的RG2 14通过FISH确定的。讨论了栽培稻BAC克隆对药用野生稻比较原位杂交物理作图的可行性问题。  相似文献   

8.
段世华  李绍清  李阳生  熊云  朱英国 《遗传》2007,29(4):455-461
水稻线粒体基因组嵌合基因orf79 和 orfH79分别被认为与BT-型和HL-型水稻CMS有关, 两者具有98%的同源性, 并且其DNA序列只存在4核苷酸的差异。对于这两个嵌合基因, 前者来源于栽培稻(Oryza. sativa L.), 而后者则来源于普通野生稻(O. rufipogon Griff.)。这意味着orf79/ orfH79可能在广泛分布于稻属AA基因组中。为了调查orf79/ orfH79在稻属物种中的分布和变异, 190份栽培稻品系[包括156份亚洲栽培稻(O. sativa var. landrace)和34份非洲栽培稻(O. glaberrima)]以及104份稻属AA基因组野生稻品系(包括O. rufipogon、O.nivara、O. glumaepatula、O. barthii、O. longistaminata和O. meridionalis 6个种), 被用于PCR扩增检测。31份具有控制粤泰A和笹锦A的特异片段的稻属AA基因组水稻品系被检测出。所有特异片段均被回收并测序, 基于DNA 序列的聚类结果显示31份水稻材料被分成了两组, 分别代表为BT-型和HL-型水稻不育细胞质组群。结果也进一步表明: HL-型水稻CMS胞质主要分布于一年生的O. nivara中; BT-型水稻CMS胞质可能来源于栽培稻变种或多年生野生稻O. rufipogon。  相似文献   

9.
栽培稻与疣粒野生稻杂种F1代的基因组原位杂交鉴定   总被引:2,自引:0,他引:2  
生物素标记的疣粒野生稻总DNA作探针,未标记的栽培稻总DNA封阻,对栽培稻与疣粒野生稻杂种F1体细胞染色体进行基因组原位杂交(Genomic in situ hybridization,简称GISH)分析。FITC检测表明,杂种细胞中来自瘛发粒野生稻的染色体有较多的黄色或黄绿色荧光信号,来自栽培稻的染色体只检出很少的信号。每条疣粒野生稻染色体上信号点所占的总的区域只是染色体的一小部分,表明疣粒野生稻染色体与栽培稻染色体的DNA序列大部分是同源的。  相似文献   

10.
广西药用野生稻 (Oryza officinalis)具有多种优良特性 ,是水稻遗传育种的重要种质资源之一。本实验以 Biotin标记的药用野生稻总 DNA作探针 ,未标记的栽培稻 (Oryzasativa)总 DNA作封阻 ,以 HRP- DAB系统进行信号检测 ,对栽培稻与广西药用野生稻的杂种F1植株的根尖染色体制片进行基因组原位杂交。采用封阻比例 1∶ 2 0~ 30时 ,杂交效果较为理想 ,药用野生稻的 1 2条染色体显深棕色 ,而栽培稻的 1 2条染色体着色很浅。在有丝分裂间期的细胞核中 ,也检测到大量杂交信号分布于核的周边。  相似文献   

11.
Zhang W  Yi C  Bao W  Liu B  Cui J  Yu H  Cao X  Gu M  Liu M  Cheng Z 《Plant physiology》2005,139(1):306-315
Centromeres are required for faithful segregation of chromosomes in cell division. It is not clear what kind of sequences act as functional centromeres and how centromere sequences are organized in Oryza punctata, a BB genome species. In this study, we found that the CentO centromeric satellites in O. punctata share high homology with the CentO satellites in O. sativa. The O. punctata centromeres are characterized by megabase tandem arrays that are flanked by centromere-specific retrotransposons. Immunostaining with an antibody specific to CENH3 indicates that the 165-bp CentO satellites are the major component for functional centromeres. Moreover, both strands of CentO satellites are highly methylated and transcribed and produce small interfering RNA, which may be important for the maintenance of centromeric heterochromatin and centromere function.  相似文献   

12.
The genomic sequences derived from rice centromeric regions were analyzed to facilitate the comprehensive understanding of the rice genome. A rice centromere-specific satellite sequence, RCS2/TrsD/CentO, was used to screen P1-derived artificial chromosome (PAC) and bacterial artificial chromosome (BAC) genomic libraries derived from Oryza sativa L. ssp. japonica cultivar Nipponbare. Physical maps of the centromeric regions were constructed by DNA fingerprinting methods and the aligned clones were analyzed by end sequencing. BLAST analysis revealed the composition of genes, centromeric satellites and other repetitive elements, such as RIRE7/CRR, RIRE8, Squiq, Anaconda, CACTA and miniature inverted-repeat transposable elements. Fiber-fluorescent in situ hybridization analysis also indicated the presence of distinct clusters of RCS2/TrsD/CentO satellite interspersed with other elements, instead of a long homogeneous region. Several expressed genes, sequences representative of ancestral organellar insertions, relatively long simple sequence repeats (SSRs), and sequences corresponding to 5S and 45S ribosomal RNA genes were also identified. Thirty-one gene sequences showed high-similarity to rice full-length cDNA sequences that had not been matched to the published rice genome sequence in silico. These results suggest the presence of expressed genes within and around the clusters of RCS2/TrsD/CentO satellites in unsequenced centromeric regions of the rice chromosomes.  相似文献   

13.
Comparative analyses of genome structure and sequence of closely related species have yielded insights into the evolution and function of plant genomes. A total of 103,844 BAC end sequences delegated -73.8 Mb of O. officinalis that belongs to the CC genome type of the rice genus Oryza were obtained and compared with the genome sequences office cultivar, O. sativa ssp.japonica cv. Nipponbare. We found that more than 45% of O. officinalis genome consists of repeat sequences, which is higher than that of Nipponbare cultivar. To further investigate the evolutionary divergence of AA and CC genomes, two BAC-contigs of O. officinalis were compared with the collinear genomic regions of Nipponbare. Of 57 genes predicted in the AA genome orthologous regions, 39 had orthologs in the regions of the CC genome. Alignment of the orthologous regions indicated that the CC genome has undergone expansion in both genic and intergenic regions through primarily retroelement insertion. Particularly, the density of RNA transposable elements was 17.95% and 1.78% in O. officinalis and O. sativa, respectively. This explains why the orthologous region is about 100 kb longer in the CC genome in comparison to the AA genome.  相似文献   

14.
In the genus Oryza, interspecific hybrids are useful bridges for transferring the desired genes from wild species to cultivated rice (Oryza sativa L.). In the present study, hybrids between O. sativa (AA genome) and three Chinese wild rices, namely O. rufipogon (AA genome), O. officinalis (CC genome), and O. meyeriana (GG genome), were produced. Agricultural traits of the F1 hybrids surveyed were intermediate between their parents and appreciably resembled wild rice parents. Except for the O. sativa × O. rufipogon hybrid, the other F1 hybrids were completely sterile. Genomic in situ hybridization (GISH) was used for hybrid verification. Wild rice genomic DNAs were used as probes and cultivated rice DNA was used as a block. With the exception of O. rufipogon chromosomes, this method distinguished the other two wild rice and cultivated rice chromosomes at the stage of mitotic metaphase with different blocking ratios. The results suggest that a more distant phylogenetic relationship exists between O. meyeriana and O. sativa and that O. rufipogon and O. sativa share a high degree of sequence homology. The average mitotic chromosome length of O. officinalis and O. meyeriana was 1.25- and 1.51-fold that of O. sativa, respectively. 4',6'-Diamidino- 2-phenylindole staining showed that the chromosomes of O. officinalis and O. meyeriana harbored more heterochromatin, suggesting that the C and G genomes were amplified with repetitive sequences compared with the A genome. Although chromocenters formed by chromatin compaction were detected with wild rice-specific signals corresponding to the C and G genomes in discrete domains of the F1 hybrid interphase nuclei, the size and number of O. meyeriana chromocenters were bigger and greater than those of O. officinalis. The present results provide an important understanding of the genomic relationships and a tool for the transfer of useful genes from three native wild rice species in China to cultivars.  相似文献   

15.
Large variation in genome size as determined by the nuclear DNA content and the mitotic chromosome size among diploid rice species is revealed using flow cytometry and image analyses. Both the total chromosomal length (r_0.939) and the total chromosomal area (r_0.927) correlated well with the nuclear DNA content. Among all the species examined, Oryza australiensis (E genome) and O. brachyantha (F genome), respectively, were the largest and smallest in genome size. O. sativa (A genome) involving all the cultivated species showed the intermediate genome size between them. The distribution patterns of genome-specific repetitive DNA sequences were physically determined using fluorescence in situ hybridization (FISH). O. brachyantha had limited sites of the repetitive DNA sequences specific to the F genome. O. australiensis showed overall amplification of genome-specific DNA sequences throughout the chromosomes. The amplification of the repetitive DNA sequences causes the variation in the chromosome morphology and thus the genome size among diploid species in the genus Oryza.  相似文献   

16.
The value of genome-specific repetitive DNA sequences for use as molecular markers in studying genome differentiation was investigated. Five repetitive DNA sequences from wild species of rice were cloned. Four of the clones, pOm1, pOm4, pOmA536, and pOmPB10, were isolated from Oryza minuta accession 101141 (BBCC genomes), and one clone, pOa237, was isolated from Oryza australiensis accession 100882 (EE genome). Southern blot hybridization to different rice genomes showed strong hybridization of all five clones to O. minuta genomic DNA and no cross hybridization to genomic DNA from Oryza sativa (AA genome). The pOm1 and pOmA536 sequences showed cross hybridization only to all of the wild rice species containing the C genome. However, the pOm4, pOmPB10, and pOa237 sequences showed cross hybridization to O. australiensis genomic DNA in addition to showing hybridization to the O. minuta genomic DNA.  相似文献   

17.
Composition and structure of the centromeric region of rice chromosome 8   总被引:23,自引:0,他引:23  
Understanding the organization of eukaryotic centromeres has both fundamental and applied importance because of their roles in chromosome segregation, karyotypic stability, and artificial chromosome-based cloning and expression vectors. Using clone-by-clone sequencing methodology, we obtained the complete genomic sequence of the centromeric region of rice (Oryza sativa) chromosome 8. Analysis of 1.97 Mb of contiguous nucleotide sequence revealed three large clusters of CentO satellite repeats (68.5 kb of 155-bp repeats) and >220 transposable element (TE)-related sequences; together, these account for approximately 60% of this centromeric region. The 155-bp repeats were tandemly arrayed head to tail within the clusters, which had different orientations and were interrupted by TE-related sequences. The individual 155-bp CentO satellite repeats showed frequent transitions and transversions at eight nucleotide positions. The 40 TE elements with highly conserved sequences were mostly gypsy-type retrotransposons. Furthermore, 48 genes, showing high BLAST homology to known proteins or to rice full-length cDNAs, were predicted within the region; some were close to the CentO clusters. We then performed a genome-wide survey of the sequences and organization of CentO and RIRE7 families. Our study provides the complete sequence of a centromeric region from either plants or animals and likely will provide insight into the evolutionary and functional analysis of plant centromeres.  相似文献   

18.
An awned rice(Oryza sativa) plant carrying a tiny extra chromosome was discovered among the progeny of a telotrisomic line 2nt4L. Fluorescence in situ hybridization(FISH) using chromosome specific BAC clones revealed that this extra chromosome was a ring chromosome derived from part of the long arm of chromosome 4. So the aneuploidy plant was accordingly named as 2nt4L ring. We did not detect any Cent O FISH signals on the ring chromosome, and found only the centromeric probe Centromeric Retrotransposon of Rice(CRR) was co-localized with the centromere-specific histone CENH3 as revealed by sequential FISH after immunodetection. The extra ring chromosome exhibited a unique segregation pattern during meiosis, including no pairing between the ring chromosome and normal chromosome 4during prophase I and pre-separation of sister chromatids at anaphase I.  相似文献   

19.
Li H  Lu L  Heng Y  Qin R  Xing Y  Jin W 《遗传学报》2010,37(10):703-711
Synthesized allopolyploids are valuable materials for comparative analyses of two or more distinct genomes,such as the expression changes(activation,inactivation or differential expression)of orthologous genes following allopolyploidization.CENH3 is a centromerespecific histone H3 variant and has been regarded as a central component in kinetochore formation and centromere function.In this study,interspecific hybrids of Oryza genus(AA × CC,AA × CCDD)and their backcross progenies were produced,and the genome constitutions were identified as AC,ACC,ACD,AACD,or AA(CD)by Genomic in situ hybridization(GISH).We further cloned and sequenced the CENH3 genes from O.sativa(AA),O.officinalis(CC)and O.latifolia(CCDD).Sequencing of RT-PCR products revealed that CENH3_C2 and CENH3_D,the two CENH3 alleles from O.latifolia,showed polymophism in several sites,while CENH3_C2 and CENH3_C1 from O.officinalis were different at only two amino acids positions.Moreover,we found that the CENH3 genes from both parents are expressed in interspecific hybrids and their progenies.Specifically,based on our cDNA sequencing data,the ratio of expression level between CENH3_A and CENH3_C1 was approximately 1 in AC and 0.5 in ACC genomes,respectively.As a result,the CENH3 expression patterns shed more light on the inter-coordination between varied centromeric DNA sequences and highly conserved kinetochore protein in synthesized allopolyploids of Oryza genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号