首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformationally restricted 3-anilino-4-(3-indolyl)maleimide derivatives were designed and synthesized aiming at discovery of novel protein kinase Cbeta (PKCbeta)-selective inhibitors possessing oral bioavailability. Among them, compounds having a fused five-membered ring at the indole 1,2-position inhibited PKCbeta2 with IC50 of nM-order and showed good oral bioavailability. One of the most potent compounds was found to be PKCbeta-selective over other 6 isozymes and exhibited ameliorative effects in a rat diabetic retinopathy model via oral route.  相似文献   

2.
A rapid route to a series of naphthoquinone-fused indole derivatives via irradiation in a modified commercial domestic microwave is reported. The desired products were produced in high yields and short reaction times. The naphthoquinone-fused indole derivatives were evaluated for their pro-inflammatory cytokines responses using lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophages. The results showed that most of the tested compounds inhibit the production of nitric oxide (NO), prostaglandin (PG)E2, tumour necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in RAW264.7 cells treated with LPS.  相似文献   

3.
Auxin biosynthesis was analyzed in a maize (Zea mays) kernel culture system in which the seeds develop under physiological conditions similar to the in vivo situation. This system was modified for precursor feeding experiments. Tryptophan (Trp) is efficiently incorporated into indole-3-acetic acid (IAA) with retention of the 3, 3' bond. Conversion of Trp to IAA is not competed by indole. Labeling with the general precursors [U-(13)C(6)]glucose and [1, 2-(13)C(2)]acetate followed by retrobiosynthetic analysis strongly suggest that Trp-dependent IAA synthesis is the predominant route for auxin biosynthesis in the maize kernel. The synthesis of IAA from indole glycerol phosphate and IAA formation via condensation of indole with an acetyl-coenzyme A or phosphoenolpyruvate derived metabolite can be excluded.  相似文献   

4.
The production of the blue dye indigo in plants has been assumed to be a possible route to the introduction of novel coloration into flowers or fibres. As the human cytochrome P450 mono-oxygenase 2A6 (CYP2A6) can form indigo in bacterial cultures, we investigated whether the expression of the corresponding cDNA in transgenic plants could lead to indigo formation. In a first attempt, we generated tobacco cell suspension cultures expressing the cDNA encoding human CYP2A6. Supplementation of the medium with indole led to the generation of indican (3-hydroxyindole-β- d -glucoside), a metabolite usually exclusively present in indigoferous dye plants. Hence, the recombinant CYP2A6 converted indole to the reactive metabolite 3-hydroxyindole (indoxyl), whereas rapid glucosylation is obviously conducted by ubiquitous plant glucosyl transferases (GTs). Interestingly, of nine additionally tested plant cell suspension cultures from various plant families, five were also capable of the formation of indican after indole supplementation, although this metabolism was more pronounced in transgenic tobacco cell suspension cultures expressing CYP2A6 cDNA. To evaluate whether indican or even indigo could be produced in whole plants, we generated transgenic tobacco plants harbouring active CYP2A6 together with an indole synthase (BX1) from maize. The genetically engineered tobacco plants accumulated indican, but did not develop a blue coloration. Although the de novo formation of indican in transgenic tobacco plants hampered indigo formation, it supports the contention that biosynthetic pathways can be efficiently mimicked by metabolic engineering.  相似文献   

5.
We have previously reported on the synthesis of novel indole derivatives where some compounds showed significant antioxidant activity. Here, we report the synthesis of novel N-H and N-substituted indole-2- and 3-carboxamide derivatives and investigated their antioxidant role in order to identify structural characteristics responsible for activity. Although all compounds showed a strong inhibitory (95-100%) effect on superoxide anion (SOD) only compounds 4, 5 and 6 showed simliar potency for the inhibition of lipid peroxidation (81-94%) which revealed that compounds 4, 5 and 6 possessed highly potent antioxidant properties. Substitution in the 1-position of the indole ring caused the significant differences between the activity results regarding lipid peroxidation inhibition.  相似文献   

6.
Novel conformationaly constrained 1,6- and 2,6-macrocyclic HCV NS5b polymerase inhibitors, in which either the nitrogen or the phenyl ring in the C2 position of the central indole core is tethered to an acylsulfamide acid bioisostere, have been designed and tested for their anti-HCV potency. This transformational route toward non-zwitterionic finger loop-directed inhibitors led to the discovery of derivatives with improved cell potency and pharmacokinetic profile.  相似文献   

7.
Disruption of ipdC, a gene involved in indole-3-acetic acid (IAA) production by the indole pyruvate pathway in Azospirillum brasilense Sp7, resulted in a mutant strain that was not impaired in IAA production with lactate or pyruvate as the carbon source. A tryptophan auxotroph that is unable to convert indole to tryptophan produced IAA if tryptophan was present but did not synthesise IAA from indole. Similar results were obtained for a mutant strain with additional mutations in the genes ipdC and trpD. This suggests the existence of an alternative Trp-dependent route for IAA synthesis. On gluconate as a carbon source, IAA production by the ipdC mutant was inhibited, suggesting that the alternative route is regulated by catabolite repression. Using permeabilised cells we observed the enzymatic conversion of tryptamine and indole-3-acetonitrile to IAA, both in the wild-type and in the ipdC mutant. IAA production from tryptamine was strongly decreased when gluconate was the carbon source.  相似文献   

8.
Neurochemical Research - We synthesized a series of novel indole compounds containing aroylhydrazone moieties and evaluated them in mice to check their anticonvulsant activity. In the present study...  相似文献   

9.
The SmI(2)-promoted three-component coupling reaction of thiophene-2-carboxylate, indole-2-carbaldehyde and acetophenone provides an expedient route to a series of tetracyclic carbazolothiophene compounds bearing the indole and thiophene rings. Among these samples, 9-benzyl-4-methyl-4-(4-hydroxyphenyl)-10-oxo-4,10-dihydrocarbazolo[2,3-b]thiophene-2-carboxylic acid (18) shows the most potent inhibition against the endothelin-1 induced increase of intracellular calcium ion concentration.  相似文献   

10.
Russian Journal of Bioorganic Chemistry - We report novel conformationally locked GFP chromophore amino-derivatives containing indole and indoline moieties. Optical properties of these compounds...  相似文献   

11.
Structure-based 3-D-QSAR analysis of marine indole alkaloids   总被引:1,自引:0,他引:1  
A 3-D-QSAR study has been performed on these indole alkaloid derivatives to correlate their chemical structures with their observed antitumor activity against IGROV1. Due to the absence of information on their active mechanism, comparative molecular field analysis (CoMFA) has been applied. A model able to well correlate the antitumor activity with the chemical structures of mono and bis(indole) alkaloids 1-18 has been developed which is potentially helpful in the design of novel and more potent antitumor agents.  相似文献   

12.
Inhibition of microtubule function using tubulin targeting agents has received growing attention in the last several decades. The indole scaffold has been recognized as an important scaffold in the design of novel compounds acting as antimitotic agents. Indole-based chalcones, in which one of the aryl rings was replaced by an indole, have been explored in the last few years for their anticancer potential in different cancer cell lines. Eighteen novel (3′,4′,5′-trimethoxyphenyl)-indolyl-propenone derivatives with general structure 9 were synthesized and evaluated for their antiproliferative activity against a panel of four different human cancer cell lines. The highest IC50 values were obtained against the human promyelocytic leukemia HL-60 cell line. This series of chalcone derivatives was characterized by the presence of a 2-alkoxycarbonyl indole ring as the second aryl system attached at the carbonyl of the 3-position of the 1-(3′,4′,5′-trimethoxyphenyl)-2-propen-1-one framework. The structure–activity relationship (SAR) of the indole-based chalcone derivatives was investigated by varying the position of the methoxy group, by the introduction of different substituents (hydrogen, methyl, ethyl or benzyl) at the N-1 position and by the activity differences between methoxycarbonyl and ethoxycarbonyl moieties at the 2-position of the indole nucleus. The antiproliferative activity data of the novel synthesized compounds revealed that generally N-substituted indole analogues exhibited considerably reduced potency as compared with their parent N-unsubstituted counterparts, demonstrating that the presence of a hydrogen on the indole nitrogen plays a decisive role in increasing antiproliferative activity. The results also revealed that the position of the methoxy group on the indole ring is a critical determinant of biological activity. Among the synthesized derivatives, compound 9e, containing the 2-methoxycarbonyl-6-methoxy-N-1H-indole moiety exhibited the highest antiproliferative activity, with IC50 values of 0.37, 0.16 and 0.17?μM against HeLa, HT29 and MCF-7 cancer cell lines, respectively, and with considerably lower activity against HL-60 cells (IC50: 18?μM). This derivative also displayed cytotoxic properties (IC50 values ~1?μM) in the human myeloid leukemia U-937 cell line overexpressing human Bcl-2 (U-937/Bcl-2) via cell cycle progression arrest at the G2-M phase and induction of apoptosis. The results obtained also demonstrated that the antiproliferative activity of this molecule is related to inhibition of tubulin polymerisation. The presence of a methoxy group at the C5- or C6-position of the indole nucleus, as well as the absence of substituents at the N-1-indole position, contributed to the optimal activity of the indole-propenone-3′,4′,5′-trimethoxyphenyl scaffold.  相似文献   

13.
Russian Journal of Bioorganic Chemistry - We report novel styrene derivatives of indole and pyranone. The possibility of their use as fluorogens for FAST protein were investigated. Derivatives of...  相似文献   

14.
Two methods were devised to conjugate PEG to alsterpaullone (NSC 705701) via the N of the indole ring portion of the molecule. In the first approach, activation of the indole was accomplished by reaction with p-nitrophenyl chloroformate to produce a reactive carbamate that was then condensed with a mono blocked diamine to form a urea bond followed by deblocking and conjugation to PEG. The second route used the anion of the indole and produced a carbamate bond. Both compounds were highly water soluble, were stable in buffer, and released alsterpaullone in vitro and in vivo. Studies were conducted in mice to investigate the influence of PEGylation on the plasma pharmacokinetics of alsterpaullone. The total plasma clearance rate was decreased up to 32-fold, and the biological halflife lengthened up to 8-fold when alsterpaullone was injected i.v. as a PEG-conjugate and compared to injection of the unconjugated compound. The most pronounced effect on the pharmacokinetics of alsterpaullone was produced by a 40-kDa PEG urea-linked conjugate. When the 40- and 20-kDa urea-linked conjugates were administered by i.p. injection, high relative bioavailability (46% and 99%, respectively) of alsterpaullone was observed.  相似文献   

15.
Studies to discover novel, potent and selective oxytocin antagonists are reported. Combinatorial libraries designed to find novel replacements of fragments of oxytocin antagonist L-371,257, identified pyrimidine, thiazole, indole and benzofuran as potential alternatives to the benzoic acid moiety of L-371,257. Additional investigations identified indole and benzofuran derivatives with potent oxytocin antagonist activity.  相似文献   

16.
Broad-substrate-range monooygenase enzymes, including toluene-4-monooxygenase (T4MO), can catalyze the oxidation of indole. The indole oxidation products can then condense to form the industrially important dye indigo. Site-directed mutagenesis of T4MO resulted in the creation of T4MO isoforms with altered pigment production phenotypes. High-pressure liquid chromatography, thin-layer chromatography, and nuclear magnetic resonance analysis of the indole oxidation products generated by the mutant T4MO isoforms revealed that the phenotypic differences were primarily due to changes in the regiospecificity of indole oxidation. Most of the mutations described in this study changed the ratio of the primary indole oxidation products formed (indoxyl, 2-oxindole, and isatin), but some mutations, particularly those involving amino acid G103 of tmoA, allowed for the formation of additional products, including 7-hydroxyindole and novel indigoid pigments. For example, mutant G103L converted 17% of added indole to 7-hydroxyindole and 29% to indigoid pigments including indigo and indirubin and two other structurally related pigments. The double mutant G103L:A107G converted 47% of indole to 7-hydroxyindole, but no detectable indigoid pigments were formed, similar to the product distribution observed with the toluene-2-monooxygenase (T2MO) of Burkholderia cepacia G4. These results demonstrate that modification of the tmoA active site can change the products produced by the enzyme and lead to the production of novel pigments and other indole oxidation products with potential commercial and medicinal utility.  相似文献   

17.
Summary A pseudomonad capable of using napthalene acetic acid as sole carbon source was isolated from soil. The route of decomposition proceeded through -naphthol, salicyclic acid, and catechol. Similarities of this route to that for the breakdown of indole acetic acid are indicated.  相似文献   

18.
Broad-substrate-range monooygenase enzymes, including toluene-4-monooxygenase (T4MO), can catalyze the oxidation of indole. The indole oxidation products can then condense to form the industrially important dye indigo. Site-directed mutagenesis of T4MO resulted in the creation of T4MO isoforms with altered pigment production phenotypes. High-pressure liquid chromatography, thin-layer chromatography, and nuclear magnetic resonance analysis of the indole oxidation products generated by the mutant T4MO isoforms revealed that the phenotypic differences were primarily due to changes in the regiospecificity of indole oxidation. Most of the mutations described in this study changed the ratio of the primary indole oxidation products formed (indoxyl, 2-oxindole, and isatin), but some mutations, particularly those involving amino acid G103 of tmoA, allowed for the formation of additional products, including 7-hydroxyindole and novel indigoid pigments. For example, mutant G103L converted 17% of added indole to 7-hydroxyindole and 29% to indigoid pigments including indigo and indirubin and two other structurally related pigments. The double mutant G103L:A107G converted 47% of indole to 7-hydroxyindole, but no detectable indigoid pigments were formed, similar to the product distribution observed with the toluene-2-monooxygenase (T2MO) of Burkholderia cepacia G4. These results demonstrate that modification of the tmoA active site can change the products produced by the enzyme and lead to the production of novel pigments and other indole oxidation products with potential commercial and medicinal utility.  相似文献   

19.
A modified approach to the synthesis of 3-(oxazolyl-5-yl) indoles is reported. This method was applied to the synthesis of series of novel indole based inhibitors of inosine monophosphate dehydrogenase (IMPDH). The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.  相似文献   

20.
Novel 7-phenylsulfanyl-1,2,3,4,10,10a-hexahydro-pyrazino[1,2-a]indoles are synthesized using a six-step protocol. Notably, the synthesis route make use of a new and improved ring-closing methodology for the assembly of the hexahydro-pyrazino[1,2-a]indole scaffold, which is based on intramolecular C–H insertion of a carbene. The compounds act as dual serotonin 5-HT2C- and 5-HT6-ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号