首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of techniques were tested for their efficiency in extracting adenosine 5'-triphosphate (ATP) from strained rumen fluid (SRF). Extraction with 0.6 N H(2)SO(4), using a modification of the procedure described by Lee et al. (1971), was the most efficient and was better suited for extracting particulate samples. Neutralized extracts could not be stored frozen before assaying for ATP because large losses were incurred. The inclusion of internal standards was necessary to correct for incomplete recovery of ATP. The ATP concentration in rumen contents from a cow receiving a ration of dried roughage (mainly alfalfa hay) ranged from 31 to 56 mug of ATP per g of contents. Approximately 75% of the ATP was associated with the particulate material. The ATP was primarily of microbial origin, since only traces of ATP were present in the feed and none was found in "cell-free" rumen fluid. Fractionation of the bacterial and protozoal populations in SRF resulted in the isolation of an enriched protozoal fraction with a 10-fold higher ATP concentration than that of the separated rumen bacteria. The ATP pool sizes of nine functionally important rumen bacteria during the exponential phase of growth ranged from 1.1 to 17.6 mug of ATP per mg of dry weight. This information indicates that using ATP as a measure of microbial biomass in rumen contents must be done with caution because of possible variations in the efficiency of extraction of ATP from rumen contents and differences in the concentration of ATP in rumen microbes.  相似文献   

2.
The changes in microbial flora and sensory characteristics of fresh ground meat (beef and pork) with pH values ranging from 5.34 to 6.13 were monitored at different isothermal storage temperatures (0 to 20°C) under aerobic conditions. At all conditions tested, pseudomonads were the predominant bacteria, followed by Brochothrix thermosphacta, while the other members of the microbial association (e.g., lactic acid bacteria and Enterobacteriaceae) remained at lower levels. The results from microbiological and sensory analysis showed that changes in pseudomonad populations followed closely sensory changes during storage and could be used as a good index for spoilage of aerobically stored ground meat. The kinetic parameters (maximum specific growth rate [μmax] and the duration of lag phase [λ]) of the spoilage bacteria were modeled by using a modified Arrhenius equation for the combined effect of temperature and pH. Meat pH affected growth of all spoilage bacteria except that of lactic acid bacteria. The “adaptation work,” characterized by the product of μmax and λ(μmax × λ) was found to be unaffected by temperature for all tested bacteria but was affected by pH for pseudomonads and B. thermosphacta. For the latter bacteria, a negative linear correlation between ln(μmax × λ) and meat pH was observed. The developed models were further validated under dynamic temperature conditions using different fluctuating temperatures. Graphical comparison between predicted and observed growth and the examination of the relative errors of predictions showed that the model predicted satisfactorily growth under dynamic conditions. Predicted shelf life based on pseudomonads growth was slightly shorter than shelf life observed by sensory analysis with a mean difference of 13.1%. The present study provides a “ready-to-use,” well-validated model for predicting spoilage of aerobically stored ground meat. The use of the model by the meat industry can lead to effective management systems for the optimization of meat quality.  相似文献   

3.
An improved and simplified apparatus for maintaining the rumen microbial population in continuous culture was constructed. All components were easily obtained from commercial sources or were simple to construct. Mechanical difficulties were minimal, and little attention was needed on the part of the operator. The deoxyribonucleic acid (DNA) content of the cultures (100 to 150 μg/ml) varied little during 7 days of continuous culture, and protozoal concentration decreased from 105 per ml to a steady-state level of 2 × 103 per ml in 4 days. Volatile fatty acid and methane production followed the normal in vivo pattern for 7 days of continuous culture. DNA, protozoal concentrations, and fermentation patterns did not significantly change between 4 and 21 days of continuous culture.  相似文献   

4.
Association of methanogenic bacteria with rumen protozoa   总被引:6,自引:0,他引:6  
Methanogenic bacteria superficially associated with rumen entodiniomorphid protozoa were observed by fluorescence microscopy. A protozoal suspension separated from strained rumen fluid (SRF) by gravity sedimentation exhibited a rate of methane production six times greater (per millilitre) than SRF. The number of protozoa (per millilitre) in the protozoal suspension was three times greater than that of SRF; however, the urease activity of this fraction was half that of SRF. The methanogenic activity of SRF and the discrete fractions obtained by sedimentation of protozoa correlated with the numbers of protozoa per millilitre in each fraction. Gravity-sedimented protozoa, washed four times with cell-free rumen fluid, retained 67-71% of the recoverable methanogenic activity. Thus it is evident from our observations that many methanogens adhere to protozoa and that the protozoa support methanogenic activity of the attached methanogens. When protozoa-free sheep were inoculated with rumen contents containing a complex population of protozoa, methanogenic activity of the microflora in SRF samples was not significantly enhanced.  相似文献   

5.
It is thought that monensin increases the efficiency of feed utilization by cattle by altering the rumen fermentation. We studied the effect of monensin and the related ionophore antibiotic lasalocid-sodium (Hoffman-LaRoche) on the growth of methanogenic and rumen saccharolytic bacteria in a complex medium containing rumen fluid. Ruminococcus albus, Ruminococcus flavefaciens, and Butyrivibrio fibrisolvens were inhibited by 2.5 μg of monensin or lasalocid per ml. Growth of Bacteroides succinogenes and Bacteroides ruminicola was delayed by 2.5 μg of monensin or lasalocid per ml. Populations of B. succinogenes and B. ruminicola that were resistant to 20 μg of either drug per ml were rapidly selected by growth in the presence of each drug at 5.0 μg/ml. Selenomonas ruminantium was insensitive to 40 μg of monensin or lasalocid per ml. Either antibiotic (10 μg/ml) inhibited Methanobacterium MOH, Methanobacterium formicicum, and Methanosarcina barkeri MS. Methanobacterium ruminantium PS was insensitive to 40 μg of monensin or 20 μg of lasalocid per ml. The methanogenic strain 442 was insensitive to 40 μg of monensin but sensitive to 10 μg of lasalocid per ml. The results suggest that monensin or lasalocid acts in the rumen by selecting for succinate-forming Bacteroides and for S. ruminantium, a propionate producer that decarboxylates succinate to propionate. The selection could lead to an increase in rumen propionate formation. Selection against H2 and formate producers, e.g. R. albus, R. flavefaciens, and B. fibrisolvens, could lead to a depression of methane production in the rumen.  相似文献   

6.
Cultures of Streptococcus bovis and mixed populations of rumen bacteria were used to investigate the concentration of ATP and rumen bacterial numbers at various stages of growth. ATP, extracted with Tris buffer, was analyzed using the firefly luciferin-luciferase bioluminescent reaction. ATP concentrations of S. bovis and mixed cultures of rumen bacteria significantly correlated with live cell counts during the log phase of growth but not during the stationary phase. The average cellular ATP concentration of rumen bacteria was calculated to be 0.3 fg of ATP per cell. Studies done with in vivo artificial rumen apparatus revealed that the protozoal contribution to rumen fluid ATP pool size was much more substantial than was the bacterial contribution. The rumen fluid ATP concentration was greater in cattle with protozoa than in those that were defaunated. Differences in ATP concentration due to size differences of ciliate protozoa were observed. Due to the unbalanced distribution of ATP in rumen microbes, ATP appears to be an unsuitable indicator of rumen microbial biomass.  相似文献   

7.
Proteolytic activity of the bovine rumen microflora was studied with azocasein as the substrate. Approximately 25% of the proteolytic activity of rumen contents was recovered in the strained rumen fluid fraction, and the balance of the activity was associated with the particulate fraction. The proportion of proteinase activity associated with particulate material decreased when the quantity of particulate material in rumen contents was reduced. The specific activity of the proteinase from the bacterial fraction was 6 to 10 times higher than that from the protozoal fraction. Proteinase inhibitors of synthetic, plant, and microbial origin were tested on proteolytic activity of the separated bacteria. Synthetic proteinase inhibitors that caused significant inhibition of proteolysis included phenylmethylsulfonyl fluoride, N-tosyl-1-lysine chloromethyl ketone, N-tosylphenylalanine chloromethyl ketone, EDTA, cysteine, dithiothreitol, iodoacetate, and Merthiolate. Plant proteinase inhibitors that had an inhibitory effect included soybean trypsin inhibitors types I-S and II-S and the lima bean trypsin inhibitor. Proteinase inhibitors of microbial origin that showed an inhibitory effect included antipain, leupeptin, and chymostatin; phosphoramidon and pepstatin had little effect. We tentatively concluded that rumen bacteria possess, primarily, serine, cysteine, and metalloproteinases.  相似文献   

8.
Proteolytic activity of the bovine rumen microflora was studied with azocasein as the substrate. Approximately 25% of the proteolytic activity of rumen contents was recovered in the strained rumen fluid fraction, and the balance of the activity was associated with the particulate fraction. The proportion of proteinase activity associated with particulate material decreased when the quantity of particulate material in rumen contents was reduced. The specific activity of the proteinase from the bacterial fraction was 6 to 10 times higher than that from the protozoal fraction. Proteinase inhibitors of synthetic, plant, and microbial origin were tested on proteolytic activity of the separated bacteria. Synthetic proteinase inhibitors that caused significant inhibition of proteolysis included phenylmethylsulfonyl fluoride, N-tosyl-1-lysine chloromethyl ketone, N-tosylphenylalanine chloromethyl ketone, EDTA, cysteine, dithiothreitol, iodoacetate, and Merthiolate. Plant proteinase inhibitors that had an inhibitory effect included soybean trypsin inhibitors types I-S and II-S and the lima bean trypsin inhibitor. Proteinase inhibitors of microbial origin that showed an inhibitory effect included antipain, leupeptin, and chymostatin; phosphoramidon and pepstatin had little effect. We tentatively concluded that rumen bacteria possess, primarily, serine, cysteine, and metalloproteinases.  相似文献   

9.
The content of assimilable organic carbon has been proposed to control the growth of microbes in drinking water. However, recent results have shown that there are regions where it is predominantly phosphorus which determines the extent of microbial growth in drinking waters. Even a very low concentration of phosphorus (below 1 μg of P liter−1) can promote extensive microbial growth. We present here a new sensitive method to determine microbially available phosphorus concentrations in water down to 0.08 μg of P liter−1. The method is a bioassay in which the analysis of phosphorus in a water sample is based on maximum growth of Pseudomonas fluorescens P17 when the energy supply and inorganic nutrients, with the exception of phosphorus, do not limit bacterial growth. Maximum growth (CFU) in the water sample is related to the concentration of phosphorus with the factor 373,200 ± 9,400 CFU/μg of PO4-P. A linear relationship was found between cell growth and phosphorus concentration between 0.05 to 10 μg of PO4-P liter−1. The content of microbially available phosphorus in Finnish drinking waters varied from 0.1 to 10.2 μg of P liter−1 (median, 0.60 μg of P liter−1).  相似文献   

10.
11.
1. The kinetic properties of the soluble and particulate hexokinases from rat heart have been investigated. 2. For both forms of the enzyme, the Km for glucose was 45μm and the Km for ATP 0·5mm. Glucose 6-phosphate was a non-competitive inhibitor with respect to glucose (Ki 0·16mm for the soluble and 0·33mm for the particulate enzyme) and a mixed inhibitor with respect to ATP (Ki 80μm for the soluble and 40μm for the particulate enzyme). ADP and AMP were competitive inhibitors with respect to ATP (Ki for ADP was 0·68mm for the soluble and 0·60mm for the particulate enzyme; Ki for AMP was 0·37mm for the soluble and 0·16mm for the particulate enzyme). Pi reversed glucose 6-phosphate inhibition with both forms at 10mm but not at 2mm, with glucose 6-phosphate concentrations of 0·3mm or less for the soluble and 1mm or less for the particulate enzyme. 3. The total activity of hexokinase in normal hearts and in hearts from alloxan-diabetic rats was 21·5μmoles of glucose phosphorylated/min./g. dry wt. of ventricle at 25°. The temperature coefficient Q10 between 22° and 38·5° was 1·93; the ratio of the soluble to the particulate enzyme was 3:7. 4. The kinetic data have been used to predict rates of glucose phosphorylation in the perfused heart at saturating concentrations of glucose from measured concentrations of ATP, glucose 6-phosphate, ADP and AMP. These have been compared with the rates of glucose phosphorylation measured with precision in a small-volume recirculation perfusion apparatus, which is described. The correlation between predicted and measured rates was highly significant and their ratio was 1·07. 5. These findings are consistent with the control of glucose phosphorylation in the perfused heart by glucose 6-phosphate concentration, subject to certain assumptions that are discussed in detail.  相似文献   

12.
Fifteen Fusarium species were analyzed by high-performance liquid chromatography for the production of six mycotoxins in corn grits cultures. Production of mycotoxins ranged from 66 to 2,500 μg/kg for fumonisin B1, 0.6 to 1,500 μg/g for moniliformin, 2.2 to 720 μg/g for beauvericin, and 12 to 130 μg/g for fusaproliferin. Fumonisin B2 (360 μg/kg) was produced by two species, fumonisin B3 was not detected in any of the 15 species examined, and Fusarium bulbicola produced none of the six mycotoxins that we analyzed.  相似文献   

13.
The quantitative contribution of fatty acids and CO2 to methanogenesis was studied by using stirred, 3-liter bench-top digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60°C under identical loading conditions (6 g of volatile solids per liter of reactor volume per day, 10-day retention time). In the thermophilic digestor, acetate turnover increased from a prefeeding level of 16 μM/min to a peak (49 μM/min) 1 h after feeding and then gradually decreased. Acetate turnover in the mesophilic digestor increased from 15 to 40 μM/min. Propionate turnover ranged from 2 to 5.2 and 1.5 to 4.5 μM/min in the thermophilic and mesophilic digestors, respectively. Butyrate turnover (0.7 to 1.2 μM/min) was similar in both digestors. The proportion of CH4 produced via the methyl group of acetate varied with time after feeding and ranged from 72 to 75% in the mesophilic digestor and 75 to 86% in the thermophilic digestor. The contribution from CO2 reduction was 24 to 29% and 19 to 27%, respectively. Propionate and butyrate turnover accounted for 20% of the total CH4 produced. Acetate synthesis from CO2 was greatest shortly after feeding and was higher in the thermophilic digestor (0.5 to 2.4 μM/min) than the mesophilic digestor (0.3 to 0.5 μM/min). Counts of fatty acid-degrading bacteria were related to their turnover activity.  相似文献   

14.
The effect of aqueous extracts of carob (Ceratonia siliqua) pods, gallotannic acid, gallic acid, and catechol on several microorganisms was studied. Carob pod extract and tannic acid showed a strong antimicrobial activity toward some cellulolytic bacteria. On the basis of tannin content, to which antimicrobial effect was related, carob pod extracts inhibited Cellvibrio fulvus and Clostridium cellulosolvens at 15 μg/ml, Sporocytophaga myxococcoides at 45 μg/ml, and Bacillus subtilis at 75 μg/ml. The inhibiting concentrations for tannic acid were found to be 12, 10, 45, and 30 μg/ml, respectively. Gallic acid and catechol were much less effective. Tannic acid and the tannin fraction of carob extract exerted both bacteriostatic and bactericidal effects on C. fulvus. Respiration of C. fulvus in the presence of bactericidal concentrations of tannic acid or tannin fraction of carob extract was inhibited less than 30%. A partial formation of “protoplasts” by C. fulvus was obtained after 2 hr of incubation in a growth medium to which 20% sucrose, 0.15% MgSO4·7H2O, and 10 to 50 μg/ml of tannic acid or 500μg/ml of penicillin, or both, had been added. Tannic acid and the tannin fraction of carob extract protected C. fulvus from metabolic lysis in sucrose solution. Although the growth of other microorganisms tested was only slightly affected, the morphology of some of them was drastically changed in the presence of subinhibitory concentrations of carob pod extracts of tannic acid. It is suggested that the site of action of tannins on sensitive microorganisms is primarily the cell envelope.  相似文献   

15.
A Janthinobacterium sp. and an actinomycete, both capable of mineralizing 2,4-dinitrophenol (DNP), were used to construct a consortium to mineralize DNP in nonaxenic bench-scale sequencing batch reactors (SBRs). Average Km values for DNP mineralization by pure cultures of the Janthinobacterium sp. and the actinomycete were 0.01 and 0.13 μg/ml, respectively, and the average maximum specific growth rate (μmax) values for them were 0.06 and 0.23/h, respectively. In the presence of NH4Cl, nitrite accumulation in pure culture experiments and in the SBRs was stoichiometric to initial DNP concentration and the addition of nitrogen enhanced DNP mineralization in the SBRs. Mineralization of 10 μg of DNP per ml was further enhanced in SBRs by the addition of glucose at concentrations of 100 and 500 μg/ml but not at 10 μg/ml. Possible mechanisms for this enhanced DNP mineralization in SBRs were suggested by kinetic analyses and biomass measurements. Average μmax values for DNP mineralization in the presence of 0, 10, 100, and 500 μg of glucose per ml were 0.33, 0.13, 0.42, and 0.59/h, respectively. In addition, there was greater standing biomass in reactors amended with glucose. At steady-state operation, all SBRs contained heterogeneous microbial communities but only one organism, an actinomycete, that was capable of mineralizing DNP. This research demonstrates the usefulness of supplemental substrates for enhancing the degradation of toxic chemicals in bioreactors that contain heterogeneous microbial communities.  相似文献   

16.
The effect of vanadate on the ATP-induced disruption of trypsin-treated axonemes and the ATP-induced straightening of rigor wave preparations of sea urchin sperm was investigated. Addition of ATP to a suspension of trypsin-treated axonemes results in a rapid decrease in turbidity (optical density measured at 350 nm) concomitant with the disruption of the axonemes by sliding between microtubules to form tangles of connected doublet microtubules (Summers and Gibbons, 1971; Sale and Satir, 1977). For axonemes digested to approximately 93 percent of their initial turbidity, 5 {muM} vanadate completely inhibits the ATP-induced decrease in turbidity and the axonemes maintain their structural integrity. However, with axonemes digested to approximately 80 percent of their initial turbidity, vanadate fails to inhibit the ATP-induced decrease in turbidity and the ATP-induced structural disruption of axonemes, even when the vanadate concentration is raised as high as 100 μm. For such axonemes digested to 80 percent of their initial turbidity, the form of ATP-induced structural changes, in the presence of 25 μM vanadate, was observed by dark-field light microscopy and revealed that the axonemes become disrupted into curved, isolated doublet microtubules, small groups of doublet microtubules, and “banana peel” structures in which tubules have peeled back from the axoneme. Addition of 5 μM ATP to rigor wave sperm, which were prepared by abrupt removal of ATP from reactivated sperm, causes straightening of the rigor waves within 1 min, and addition of more than 10 μM ATP causes resumption of flagellar beating. Addition of 40 μM vanadate to the rigor wave sperm does not inhibit straightening of the rigor waves of 2 μM-1 mM ATP, although oscillatory beating is completely inhibited. These results suggest that vanadate inhibits the mechanochemical cycle of dyein at a step subsequent to the MgATP(2-)-induced release of the bridged dynein arms.  相似文献   

17.
The phenotypic and genotypic adaptation of a freshwater sedimentary microbial community to elevated (22 to 217 μg g [dry weight] of sediment−1) levels of polycyclic aromatic hydrocarbons (PAHs) was determined by using an integrated biomolecular approach. Central to the approach was the use of phospholipid fatty acid (PLFA) profiles to characterize the microbial community structure and nucleic acid analysis to quantify the frequency of degradative genes. The study site was the Little Scioto River, a highly impacted, channelized riverine system located in central Ohio. This study site is a unique lotic system, with all sampling stations having similar flow and sediment characteristics both upstream and downstream from the source of contamination. These characteristics allowed for the specific analysis of PAH impact on the microbial community. PAH concentrations in impacted sediments ranged from 22 to 217 μg g (dry weight) of sediment−1, while PAH concentrations in ambient sediments ranged from below detection levels to 1.5 μg g (dry weight) of sediment−1. Total microbial biomass measured by phospholipid phosphate (PLP) analysis ranged from 95 to 345 nmol of PLP g (dry weight) of sediment−1. Nucleic acid analysis showed the presence of PAH-degradative genes at all sites, although observed frequencies were typically higher at contaminated sites. Principal component analysis of PLFA profiles indicated that moderate to high PAH concentrations altered microbial community structure and that seasonal changes were comparable in magnitude to the effects of PAH pollution. These data indicate that this community responded to PAH contamination at both the phenotypic and the genotypic level.  相似文献   

18.
Montmorillonite-benzylamine complexes were formed immediately upon addition of 20 pg to 20 μg of amine per ml of suspensions containing the clay. The extent of amine sorbed was a linear function of equilibrium amine concentration in lake water. Increases in the clay concentration decreased the percentage of the organic compound that was mineralized at amine levels of 20 pg to 200 ng, but not at 20 μg/ml. A larger percentage of the chemical was released from the complex during mineralization in the presence of high clay concentrations than in the presence of low clay concentrations. The rates of desorption and mineralization increased linearly with benzylamine levels up to 200 ng/ml. Montmorillonite did not enhance mineralization rates at amine levels of 200 ng/ml or lower, but it was stimulatory at 20 μg/ml. Except at high amine and clay concentrations, mineralization was more rapid than desorption during the early periods of decomposition when the amine concentration in solution was relatively high. However, relative to the microbial demand, desorption was more rapid during later periods of decomposition when the amine level in solution was very low. Mineralization of benzoate was not usually affected by montmorillonite, kaolinite, or glass beads. More than 90% of the carbon from benzylamine and benzoate was often mineralized when the substrate concentration was 250 ng/ml or less. After incubation of the chemical in lake water, none of the radioactivity from benzylamine was in the particulate fraction containing natural sediment and microbial cells. The data indicate that clay may have a significant effect on the microbial decomposition of low concentrations of certain organic compounds.  相似文献   

19.
Male chicks (1 day old; Vantress × Arbor Acre) were fed a basal folic acid-deficient diet, a 5% uric acid-containing diet with and without 5 mg/lb (453.5 g) of bacitracin and 20 mg/lb of sodium penicillin G, the basal diet supplemented with only the antibiotics, and the basal diet plus 500 μg/lb of folic acid. The chicks were reared in a room which had not been used previously for housing chickens (“new” environment). Bacteriological analyses of the contents of the small intestine revealed a decrease in numbers of streptococci and “anaerobic” bacteria in the chicks receiving dietary antibiotics. No persistent changes were seen in the numbers of coliform bacteria. Lactobacilli were not detected in any of the groups until 3 weeks after feeding.  相似文献   

20.
To assess the relative contributions of microbial groups (bacteria, protozoa, and fungi) in rumen fluids to the overall process of plant cell wall digestion in the rumen, representatives of these groups were selected by physical and chemical treatments of whole rumen fluid and used to construct an artificial rumen ecosystem. Physical treatments involved homogenization, centrifugation, filtration, and heat sterilization. Chemical treatments involved the addition of antibiotics and various chemicals to rumen fluid. To evaluate the potential activity and relative contribution to degradation of cell walls by specific microbial groups, the following fractions were prepared: a positive system (whole ruminal fluid), a bacterial (B) system, a protozoal (P) system, a fungal (F) system, and a negative system (cell-free rumen fluid). To assess the interactions between specific microbial fractions, mixed cultures (B+P, B+F, and P+F systems) were also assigned. Patterns of degradation due to the various treatments resulted in three distinct groups of data based on the degradation rate of cell wall material and on cell wall-degrading enzyme activities. The order of degradation was as follows: positive and F systems > B system > negative and P systems. Therefore, fungal activity was responsible for most of the cell wall degradation. Cell wall degradation by the anaerobic bacterial fraction was significantly less than by the fungal fraction, and the protozoal fraction failed to grow under the conditions used. In general, in the mixed culture systems the coculture systems demonstrated a decrease in cellulolysis compared with that of the monoculture systems. When one microbial fraction was associated with another microbial fraction, two types of results were obtained. The protozoal fraction inhibited cellulolysis of cell wall material by both the bacterial and the fungal fractions, while in the coculture between the bacterial fraction and the fungal fraction a synergistic interaction was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号