首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 406 毫秒
1.
为探讨偏离神经元最佳频率(best frequency,BF)的声刺激对下丘神经元的前掩蔽效应,实验选用5只听力正常的几内亚长翼蝠(Miniopterus magnater),记录它们的下丘神经元对偏离BF的掩蔽声和探测声(BF)的反应.结果发现,当掩蔽声向高或低频方向偏离神经元的BF时,掩蔽效应逐渐降低.根据计算出的...  相似文献   

2.
自由声场条件下,以强度为神经元最小阈值阈上5dB,时程分别为40、60、80和100ms的纯音作为前掩蔽声,观察和记录了不同时程弱前掩蔽声对小鼠(Musmusculus Km)下丘神经元发放和声强处理的影响。实验记录到154个神经元,对其中的104个神经元做了不同时程掩蔽声影响的测试。结果发现:掩蔽声对神经元放电率的抑制作用在时间上表现为前抑制(41%)、后抑制(9%)和全抑制(50%)三种类型。改变掩蔽声时程时,大部分神经元(72%)的抑制类型不发生改变,但少部分神经元(28%)随掩蔽声时程的增加,大量的后抑制类型转变为前抑制或全抑制类型。此外,超过一半的神经元(58.06%)其强度.放电率函数曲线随掩蔽声时程的改变而发生转变,主要表现为单调型向饱和型转变及饱和型向非单调型转变,这种转变并不随掩蔽声时程增加表现出规律性的变化。结果表明,前掩蔽作用于下丘神经元声反应的时间域和强度域时具有不均衡性,推测不同时程弱前掩蔽声激活的抑制性输入能分化性调制下丘神经元声反应特性。  相似文献   

3.
Li AA  Chen QC  Wu FJ 《生理学报》2006,58(2):141-148
有关听中枢神经元纯音前掩蔽效应的神经表征已进行了大量研究,但是,噪声前掩蔽尤其是间断噪声前掩蔽效应的神经表征却鲜有报道。本研究观察了自由声场条件下,昆明小鼠下丘神经元在持续与间断噪声前掩蔽条件下对纯音探测声的反应。共记录到96个下丘神经元,测量了其中51个神经元在不同声刺激条件下的强度一放电率函数。结果显示,掩蔽声强度分布较广(探测声阈下21dB至阈上19dB之间)。在将近一半的神经元中,间断噪声的前掩蔽效应比持续噪声强(Ⅰ型,45.10%,P〈0.001),但也有少数神经元其间断噪声的掩蔽效应较持续噪声的弱(Ⅲ型,17.65%,P〈0.001),部分神经元无显著性差异(Ⅱ型,37.25%,P〉0.05)。无论Ⅰ型还是Ⅲ型神经元,持续噪声和间断噪声均在探测声强度较低时产生较强的抑制效应,随着探测声强度的升高,抑制效应逐渐降低(P〈0.001);同时,持续噪声和间断噪声之间前掩蔽效应差异亦不复存在(P〉0.05)。此外,当掩蔽声由持续噪声换为间断噪声后,部分Ⅰ型神经元掩蔽时相的类型发生转变,其中最主要的转变为由前期抑制转变为均衡抑制(53.85%,7/13)。对下丘神经元声反应的时间域以及强度域,持续与间断噪声具有分化性前掩蔽效应,提示噪声前掩蔽并非简单的神经元发放压抑源,某些主动性神经调制机制可能参与了噪声条件下时相声信息的编码过程。  相似文献   

4.
细胞外记录研究报道听中枢神经元的调制方向选择性和前掩蔽均与神经抑制有关,但由于未能获得抑制性突触输入作用的直接证据,尚存有争议。本研究在20只昆明小鼠(Mus musculus Km)上进行在体细胞内记录,研究了下丘神经元调频声的调制方向选择性或偏好与其前掩蔽之间的关系。共获得93个下丘神经元,对其中37个产生动作电位(action potential,AP)发放且数据完整的神经元做了分析和讨论。在上扫选择性神经元(n=12)频率调谐的高频边存在抑制性突触后电位构成的抑制区,而在下扫选择性神经元(n=8)的低频边存在抑制区,在不具有调制方向选择性的神经元(n=17)频率调谐的高、低频边均未观察到有明显的抑制区,表明这些抑制区是调频声调制方向选择性形成的重要原因。比较上扫和下扫调频声对上、下扫选择性和非选择性神经元的前掩蔽效应,结果显示具有调制方向选择性的神经元,其所偏好方向的调频声对最佳频率(best frequency,BF)声产生的前掩蔽强于非偏好的调频声;而无调制方向选择性神经元,上、下扫调频声的掩蔽效应无差异。以上结果提示,AP后跟随的强抑制性突触后电位可能是调制方向选择性神经元前掩蔽产生的机制。  相似文献   

5.
小鼠下丘神经元声刺激跟随力与声时程及强度的关系   总被引:2,自引:0,他引:2  
自由声场条件下,通过给予小鼠具有不同时程(10、40及100ms)、强度(最小阈值以上5、15、25、35及45dBSPL)、呈现率(0.5、1、2、3.3、5、6.7、10和20Hz)的纯音短声刺激,分析探讨了昆明小鼠下丘神经元声刺激跟随力与声时程及强度的关系。结果发现:多数神经元的脉冲发放数随声强增高而增加,随短声时程的延长而减少;随声强的增高,多数神经元的临界呈现率(CPR)和最大呈现率(MPR)变大,而随短声时程的延长,神经元的CPR、MPR变小为主要趋势;下丘神经元的声反应跟随力总体上随时程延长而下降,随声强加大而提高。推测当声时程延长、强度下降时,前次刺激对后继刺激声反应的抑制性影响增强,提示声时程适当缩短、声强增大可能有助于下丘神经元汇聚更多的声信息进行高级神经处理,从而提高听中枢表征高密度声信息的能力。  相似文献   

6.
昆明小鼠下丘神经元对调频声的反应   总被引:1,自引:0,他引:1  
尽管昆明小鼠下丘神经元对纯音的反应已有深入研究,但其对调频声的反应情况却未见报道。本研究在自由声场条件下,采用单单位细胞外记录方法,观察了昆明小鼠下丘神经元对调频声刺激的反应情况。根据神经元对调频声及纯音反应的阈值差异,所记录的99个下丘神经元可分为三种类型:对调频声刺激反应的阈值低于纯音的为Ⅰ型(57/99,57.6%),二者阈值相当的为Ⅱ型(12/99,12.1%),而纯音阈值低于调频声的为Ⅲ型(30/99,30.3%)。与Ⅲ型神经元相比,Ⅰ型神经元具有较低的CF和Q20dB(P<0.05和P<0.001)和较高的RB20dB(P<0.05)。通过分析下丘神经元对上、下扫时发放数的差异,发现有36个(36/99,36.4%)神经元表现出方向选择性,其中22个(22/99,22.2%)为上扫敏感,其余14个(14/99,14.2%)为下扫敏感,且上扫敏感性神经元比下扫敏感性神经元在Ⅰ、Ⅱ和Ⅲ型神经元中有更广的分布范围。通过比较发现,Ⅰ型神经元和方向选择性神经元的特征频率都非常集中地分布在10kHz-20kHz范围内(77.2%和83.3%)。此外,对其中24个神经元采取了不同调制速度的调频声刺激,大多数(15/24,62.5%)神经元对快调频声反应最为敏感,并且随着调制速度的升高,方向选择性神经元的比例有下降趋势(45.8%vs41.7%vs33.3%)。上述结果提示,昆明小鼠下丘神经元能有效处理调频声刺激,且具有方向选择性的调频声在昆明小鼠的声通讯中占有重要地位。  相似文献   

7.
34例听觉正常受试者(共48耳)进行疏波短声诱发性耳声发射(EOAE)掩蔽实验,项目包括同侧同时掩蔽、同侧后掩蔽和对倒后掩蔽。同时掩蔽的掩蔽声是稳态白噪声,后掩蔽的掩蔽声是宽带噪声。同侧同时掩蔽强度达30dBSL时,未观察到对EOAE的掩蔽效应,但对主观听觉感受有掩蔽作用,表明EOAE的客观属性反映听觉行为有其局限性、同侧及对侧后掩蔽出现掩蔽效应时的掩蔽强度分别为30和50dBSL,掩蔽阈约分别为59和68dBSL。耳蜗的机械特性-非线性或耳蜗内存在的某种功能性的反馈调节系统可能是同侧后掩蔽的作用机理。下行的对侧橄榄耳蜗内侧束对外毛细胞主动收缩的抑制性作用,可有效解释对倒后掩蔽的EOAE变化。  相似文献   

8.
弱噪声对下丘神经元声强敏感性的动态调制   总被引:2,自引:2,他引:2  
Wang D  Pi JH  Tang J  Wu FJ  Chen QC 《生理学报》2005,57(1):59-65
为探讨复杂听环境下行为相关声信号提取的可能机制,研究了弱噪声对下丘(IC)神经元强度.放电率函数(RIF)的影响。实验在9只昆明小鼠(Musmusculus Km)上进行,在自由声场刺激条件下,分别记录短纯音刺激以及同步输出短纯音阂下5dB包络白噪声刺激时IC神经元的RIF,共获112个IC神经元,测量了其中44个神经元在加入噪声前(W/O)后(w)的RIF。以加入噪声前后RIF的声强动力学范围(DR)、斜率、以及不同声刺激强度的放电率抑制百分比变化为指标,比较分析发现:弱噪声对神经元发放率的影响呈三种类型,即抑制(39/44,88.6%)、易化(2/44,4.6%)和无影响(3/44,6.8%),但只有抑制性影响有显著性意义(P<0.001,n=39);弱噪声对阂反应的抑制效应最强,并随纯音强度的增加而逐步减弱(P<0.01301,n=39);此外,弱噪声的抑制作用还使大部分神经元的(31/39,79.5%)DR变窄(P<0.01,,l=31)、RIF的斜率增加(P<0.01,n=31)。上述结果提示,弱噪声参与下丘神经元声强敏感性的动态调制过程。这一观察为人们深入了解自然听环境中声信号提取的中枢机制提供了新认识。  相似文献   

9.
抑制性频谱整合对大棕蝠下丘神经元声强敏感性的影响   总被引:4,自引:2,他引:4  
自由声场条件下 ,采用特定双声刺激方法研究了不同频率通道之间的非线性整合对下丘神经元声强敏感性的调制作用。实验在 1 2只麻醉与镇定的大棕蝠 (Eptesicusfuscus)上进行 ,双电极同步记录 2个配对神经元的声反应动作电位。主要结果如下 :1 )所获 1 1 0个 (5 5对 )配对神经元中 ,85 5 %表现为抑制性频谱整合作用 ,其余 1 4 5 %为易化性频谱整合 ;2 )阈上 1 0dB (SPL)放电率抑制百分比与神经元最佳频率 (BF)及记录深度呈负相关 ;3)抑制效率随声刺激强度升高而逐步下降 ;4 )当掩蔽声分别位于神经元兴奋性频率调谐曲线(FTC)内 (MSin) /外 (MSout)时 ,其抑制效率存在差异。前者的放电率抑制百分比及声反应动力学范围(DR)下降百分比均显著高于后者 ;5 )抑制性频谱整合导致 3类DR改变 :6 1 6 %为下降、 1 0 9%增加、另有2 7 5 %变化小于 1 0 %。本结果进一步支持如下设想 :下丘不同频率通道之间的抑制性频谱整合参与了对强度编码的主动神经调制活动  相似文献   

10.
下丘神经元声信号处理过程中的频谱整合   总被引:2,自引:0,他引:2  
自由声场条件下,采用特定双声刺激、双电极同步记录方法研究了下丘神经元的频谱整合作用。实验在6只大棕蝠(Eptesicus fuscus)上进行,共获得22对频谱整合相关的配对神经元。结果显示:(1)81.8%(36/44)的配对神经元产生相互抑制性频谱整合,18.2%(8/44)为相互易化性频谱整合;(2)频谱整合的范围主要在20~30kHz之间,其中约一半(45.5%,20/44)的配对神经元其最佳频率差小于2kHz,但也可见最佳频率差大于10kHz的配对神经元(13.6%,6/44)产生频谱整合;(3)下丘神经元的频率及强度选择性受频谱整合作用的调制。推测等频层内及等频层之间的下丘神经元在声信号处理过程中存在相互作用机制,以利于对复杂声信号的加工。  相似文献   

11.
Neurons in the central nucleus of the inferior colliculus (IC) receive excitatory and inhibitory inputs from both lower and higher auditory nuclei. Interaction of these two opposing inputs shapes response properties of IC neurons. In this study, we examine the interaction of excitation and inhibition on the responses of two simultaneously recorded IC neurons using a probe and a masker under forward masking paradigm. We specifically study whether a sound that serves as a probe to elicit responses of one neuron might serve as a masker to suppress or facilitate the responses of the other neuron. For each pair of IC neurons, we deliver the probe at the best frequency (BF) of one neuron and the masker at the BF of the other neuron and vice versa. Among 33 pairs of IC neurons recorded, this forward masking produces response suppression in 29 pairs of IC neurons and response facilitation in 4 pairs of IC neurons. The degree of suppression decreases with recording depth, sound level and BF difference between each pair of IC neurons. During bicuculline application, the degree of response suppression decreases in the bicuculline-applied neuron but increases in the paired neuron. Our data indicate that the forward masking of responses of IC neurons observed in this study is mostly mediated through GABAergic inhibition which also shapes the discharge pattern of these neurons. These data suggest that interaction among individual IC neurons improves auditory sensitivity during auditory signal processing.  相似文献   

12.
Natural auditory environment consists of multiple sound sources that are embedded in ambient strong and weak noise. For effective sound communication and signal analysis, animals must somehow extract biologically relevant signals from the inevitable interference of ambient noise. The present study examined how a weak noise may affect the amplitude sensitivity of neurons in the mouse central nucleus of the inferior colliculus (IC) which receives convergent excitatory and inhibitory inputs from both lower and higher auditory centers. Specifically, we studied the amplitude sensitivity of IC neurons using a probe (best frequency pulse) and a masker (weak noise) under simultaneous masking paradigm. For most IC neurons, weak noise masking increases the minimum threshold and decreases the number of impulses. Noise masking also increased the slope and decreased the dynamic range of the rate amplitude function of these IC neurons. The strength of this noise masking was greater at low than at high sound amplitudes. This variation in the amplitude sensitivity of IC neurons in the presence of the weak noise was mostly mediated through GABAergic inhibition. These data indicate that in the real world the ambient weak noise improves amplitude sensitivity of IC neurons through GABAergic inhibition while inevitably decreases the range of overall auditory sensitivity of IC neurons.  相似文献   

13.
To study the effects of different durations of forward masker sound on neuronal firing and rate-intensity function(RIF)of mouse inferior collicular(IC)neurons,a tone relative to 5 dB above the minimum threshold(re MT+5 dB)of the best frequency of recorded neurons was used as forward masker sound under free field stimulation condition.The masker durations used were 40,60,80,and 100 ms.Results showed that as masker duration was increased,inhibition in neuronal firing was enhanced(P<0.0001,n=41)and the latency of neurons was lengthened(P<0.01,n=41).In addition,among 41 inhibited IC neurons,90.2%(37/41)exhibited narrowed dynamic range(DR)when masker sound duration was increased(P<0.0001),whereas the DR of 9.8%(4/41)became wider.These data suggest that masking effects of different durations of forward masker sound might be correlated with the amplitude and duration of inhibitory input to IC neurons elicited by the masker sound.  相似文献   

14.
Goense JB  Feng AS 《PloS one》2012,7(2):e31589
Natural auditory scenes such as frog choruses consist of multiple sound sources (i.e., individual vocalizing males) producing sounds that overlap extensively in time and spectrum, often in the presence of other biotic and abiotic background noise. Detection of a signal in such environments is challenging, but it is facilitated when the noise shares common amplitude modulations across a wide frequency range, due to a phenomenon called comodulation masking release (CMR). Here, we examined how properties of the background noise, such as its bandwidth and amplitude modulation, influence the detection threshold of a target sound (pulsed amplitude modulated tones) by single neurons in the frog auditory midbrain. We found that for both modulated and unmodulated masking noise, masking was generally stronger with increasing bandwidth, but it was weakened for the widest bandwidths. Masking was less for modulated noise than for unmodulated noise for all bandwidths. However, responses were heterogeneous, and only for a subpopulation of neurons the detection of the probe was facilitated when the bandwidth of the modulated masker was increased beyond a certain bandwidth - such neurons might contribute to CMR. We observed evidence that suggests that the dips in the noise amplitude are exploited by TS neurons, and observed strong responses to target signals occurring during such dips. However, the interactions between the probe and masker responses were nonlinear, and other mechanisms, e.g., selective suppression of the response to the noise, may also be involved in the masking release.  相似文献   

15.

Background  

In daily life, we are exposed to different sound inputs simultaneously. During neural encoding in the auditory pathway, neural activities elicited by these different sounds interact with each other. In the present study, we investigated neural interactions elicited by masker and amplitude-modulated test stimulus in primary and non-primary human auditory cortex during ipsi-lateral and contra-lateral masking by means of magnetoencephalography (MEG).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号