首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
Luan RH  Wu FJ  Jen PH  Sun XD 《生理学报》2007,59(6):805-813
本文采用不同重复率的串声刺激,模拟大棕蝠回声定位不同阶段听到的调频声纳信号,利用电生理方法和微电泳技术研究不同重复率串刺激条件下GABA能抑制对下丘神经元强度敏感性的影响。结果发现,随串刺激重复率的增加,有的神经元强度敏感性增强,有的神经元强度敏感性则降低。在不同串刺激条件下,微电泳荷包牡丹碱,神经元放电率均增加,随重复率增加强度敏感性增强或减弱的趋势消失,提示GABA能抑制调制下丘神经元对不同重复率串刺激反应的强度敏感性。串刺激强度在最低闽值附近时,微电泳荷包牡丹碱导致放电率增加的百分率最大,随串刺激强度增加,放电率增加的百分率逐渐减小。提示刺激强度较低时,GABA能抑制对下丘神经元强度敏感性的影响更有效。  相似文献   

2.
自由声场条件下,以强度为神经元最小阈值阈上5dB,时程分别为40、60、80和100ms的纯音作为前掩蔽声,观察和记录了不同时程弱前掩蔽声对小鼠(Musmusculus Km)下丘神经元发放和声强处理的影响。实验记录到154个神经元,对其中的104个神经元做了不同时程掩蔽声影响的测试。结果发现:掩蔽声对神经元放电率的抑制作用在时间上表现为前抑制(41%)、后抑制(9%)和全抑制(50%)三种类型。改变掩蔽声时程时,大部分神经元(72%)的抑制类型不发生改变,但少部分神经元(28%)随掩蔽声时程的增加,大量的后抑制类型转变为前抑制或全抑制类型。此外,超过一半的神经元(58.06%)其强度.放电率函数曲线随掩蔽声时程的改变而发生转变,主要表现为单调型向饱和型转变及饱和型向非单调型转变,这种转变并不随掩蔽声时程增加表现出规律性的变化。结果表明,前掩蔽作用于下丘神经元声反应的时间域和强度域时具有不均衡性,推测不同时程弱前掩蔽声激活的抑制性输入能分化性调制下丘神经元声反应特性。  相似文献   

3.
自由声场刺激条件下,采用单单位胞外微电极记录方法,研究了一种未被研究过的恒频/调频(CF/FM)蝙蝠———菲菊头蝠(Rhinolophuspusillus)的下丘神经元基本声反应特性,其结果发现,在所得的110个下丘神经元中,发放类型包括相位型(54·5%)、紧张型(25·5%)、持续型(7·3%)、梳齿型(7·3%)和暂停型(5·4%)等5种类型。记录深度在208~1855(829·0±328·1)μm之间,最佳频率在16·7~75·6(38·9±15·7)kHz之间,最小阈值在5~74(34·7±13·6)dBSPL之间,阈上10dBSPL潜伏期在5·0~27·5(15·2±3·9)ms之间。最佳频率随记录深度的增加而增大(r=0·9578,P<0·001);记录的54个频率调谐曲线(FTCs)均为开放型,其中52个为单峰型,2个为双峰型。52个单峰型FTC的Q10-dB值介于1·56~31·61之间,并且大部分是狭窄型(Q10-dB值>5),占69·2%(36/52),少部分为宽阔型(Q10-dB值<5),占30·8%(16/52)。2个双峰型神经元FTC在低频处为宽阔型,高频处为狭窄型,Q10-dB值分别为1·95、8和2·89、6·51。共获得34个神经元的强度-发放率函数(RIFs),可分为单调型、非单调型和饱和型。结合先前所研究的FM蝙蝠———普通伏翼蝠(Pipistrellusabramus)下丘神经元的基本声反应特性,比较分析了CF/FM蝙蝠与FM蝙蝠下丘神经元的声反应差异及其行为学意义。  相似文献   

4.
为探讨偏离神经元最佳频率(best frequency,BF)的声刺激对下丘神经元的前掩蔽效应,实验选用5只听力正常的几内亚长翼蝠(Miniopterus magnater),记录它们的下丘神经元对偏离BF的掩蔽声和探测声(BF)的反应.结果发现,当掩蔽声向高或低频方向偏离神经元的BF时,掩蔽效应逐渐降低.根据计算出的...  相似文献   

5.
电刺激大马蹄蝠听皮层对下丘神经元听觉敏感性的影响   总被引:3,自引:2,他引:3  
实验在12只大马蹄蝠上进行。用常规电生理学方法研究了电刺激听皮层对下丘212个神经元的听反应的影响,结果表明,有32个神经元的听反应被抑制,19个神经元的听反应褐易化。  相似文献   

6.
研究了菲菊头蝠自由飞行状态下的回声定位信号和下丘神经元的声反应特性。菲菊头蝠在自由飞行时发射的CF/FM型回声定位叫声含2-3个谐波,主频为105.3±1.7kHz,时程为39.5±9.6ms,脉冲间隔为73.9±16.0ms。在所记录到的159个下丘神经元中,E型(Echolocation)神经元为32.7%(52/159),其中CF1型(Constantfrequency)占11.3%(18/159),FM1型(Frequencymodulated)占20.1%(32/159),FM2型占1.3%(2/159);NE型(Nonecholocation)神经元的比例为67.3%(107/159)。这些神经元的最佳频率(Bestfrequency,BF)与记录深度之间存在线性关系(r=0.9471,P<0.01)。E型神经元的深度范围为349-1855(1027.5±351.6)μm,阈值范围为6-74(43.1±14.5)dBSPL,潜伏期范围为10.0-26.0(14.6±3.8)ms。NE型神经元的分别为93.0-1745.0(733.3±290.3)μm、2-70(36.5±23.8)dBSPL、5.0-23.0(13.5±3.7)ms。记录到的53个IC神经元的调谐曲线(Frequencytuningcurve,FTC)均为开放型,51个为单峰型,2个为双峰型。单峰型神经元中大部分为狭窄型(Q10dB>5),占70.6%(36/51),E型神经元全部为狭窄型,Q10dB为10.4±7.1(5.5-31.6),其中CF1型为18.3±11.2(5.5-31.6),FM1型为8.7±4.7(5.5-24.3),FM2型为6.9±0.3(6.7-7.1);NE型神经元既有宽阔型也有狭窄型,Q10dB为6.6±5.1(1.6-25.6)。两个双峰型FTC主、副峰分别偏向高、低频区,高频边对应的是E型神经元。  相似文献   

7.
自由声场刺激条件下,采用单单位胞外微电极记录方法,研究了一种未被研究过的恒频/调频(CF/FM)蝙蝠——菲菊头蝠(Rhinolophus pusillus)的下丘神经元基本声反应特性,其结果发现,在所得的110个下丘神经元中,发放类型包括相位型(54.5%)、紧张型(25.5%)、持续型(7.3%)、梳齿型(7.3%)和暂停型(5.4%)等5种类型。记录深度在208~1 855(829.0±328.1)μm之间,最佳频率在16.7~75.6(38.9±15.7)kHz之间,最小阈值在5~74(34.7±13.6)dB SPL之间,阈上10 dB SPL潜伏期在5.0~27.5(15.2±3.9)ms之间。最佳频率随记录深度的增加而增大(r=0.957 8,P<0.001);记录的54个频率调谐曲线(FTCs)均为开放型,其中52个为单峰型,2个为双峰型。52个单峰型FTC的Q10-dB值介于1.56~31.61之间,并且大部分是狭窄型(Q 10-dB值>5),占69.2%(36/52),少部分为宽阔型(Q 10-dB值<5),占30.8%(16/52)。2个双峰型神经元FTC在低频处为宽阔型,高频处为狭窄型,Q 10-dB值分别为1.95、8和2.89、6.51。共获得34个神经元的强度-发放率函数(RIFs),可分为单调型、非单调型和饱和型。结合先前所研究的FM蝙蝠——普通伏翼蝠(Pipistrellus abramus)下丘神经元的基本声反应特性,比较分析了CF/FM蝙蝠与FM蝙蝠下丘神经元的声反应差异及其行为学意义。  相似文献   

8.
Li AA  Chen QC  Wu FJ 《生理学报》2006,58(2):141-148
有关听中枢神经元纯音前掩蔽效应的神经表征已进行了大量研究,但是,噪声前掩蔽尤其是间断噪声前掩蔽效应的神经表征却鲜有报道。本研究观察了自由声场条件下,昆明小鼠下丘神经元在持续与间断噪声前掩蔽条件下对纯音探测声的反应。共记录到96个下丘神经元,测量了其中51个神经元在不同声刺激条件下的强度一放电率函数。结果显示,掩蔽声强度分布较广(探测声阈下21dB至阈上19dB之间)。在将近一半的神经元中,间断噪声的前掩蔽效应比持续噪声强(Ⅰ型,45.10%,P〈0.001),但也有少数神经元其间断噪声的掩蔽效应较持续噪声的弱(Ⅲ型,17.65%,P〈0.001),部分神经元无显著性差异(Ⅱ型,37.25%,P〉0.05)。无论Ⅰ型还是Ⅲ型神经元,持续噪声和间断噪声均在探测声强度较低时产生较强的抑制效应,随着探测声强度的升高,抑制效应逐渐降低(P〈0.001);同时,持续噪声和间断噪声之间前掩蔽效应差异亦不复存在(P〉0.05)。此外,当掩蔽声由持续噪声换为间断噪声后,部分Ⅰ型神经元掩蔽时相的类型发生转变,其中最主要的转变为由前期抑制转变为均衡抑制(53.85%,7/13)。对下丘神经元声反应的时间域以及强度域,持续与间断噪声具有分化性前掩蔽效应,提示噪声前掩蔽并非简单的神经元发放压抑源,某些主动性神经调制机制可能参与了噪声条件下时相声信息的编码过程。  相似文献   

9.
普通伏翼蝠下丘神经元基本声反应特性   总被引:5,自引:0,他引:5  
自由声场条件下,采用单单位胞外微电极记录方法,研究了普通伏翼蝠(Pipistrellusabramus)下丘神经元基本声反应特性。结果发现,在所得的65个下丘神经元中:特征频率在18.9~76.7kHz(42.94±11.29)之间,最小阈值在29.1~80.1dBSPL(58.65±12.62)之间,潜伏期在3.1~10.4ms(6.10±1.47)之间;特征频率随记录深度的增加而增大,与最小阈值之间没有显著相关性;发放类型包括相位型(73.85%)、梳齿型(15.38%)和紧张型(10.77%)3种基本类型;频率调谐曲线均为开峰型,多数神经元(72.30%)调谐曲线较宽阔,少数(27.70%)较狭窄,并且多数神经元的频率调谐曲线高频边比低频边陡。  相似文献   

10.
采用超声监测仪录制超声信号和细胞外电生理记录下丘神经元的频率调谐曲线(frequency tuningcurqes,FTCs)的方法,探讨了大蹄蝠(Hipposideros armiger)回声定位信号与下丘(inferior colliculus,IC)神经元频率调谐之间的相关性.结果发现,大蹄蝠回声定位叫声为恒频-调频(consrant frequency-frequenevmodulated,CF-FM)信号,一般含有2-3个谐波,第二谐波为其主频,cF成分频率(Mean±SD,n=18)依次为:(33.3 4±0.2)、(66.5±0.3)、(99.4 4±0.5)kHz;电生理实验共获得72个神经元的频率调谐曲线,Q10-dB值的范围是0.5-95.4(9.2±14.6,rg=72),最佳频率(best frequency,BF)在回声定位主频附近的神经元具有尖锐的频率调谐特性.结果表明,大蹄蝠回声定位信号与下丘神经元频率调谐存在相关性,表现为最佳频率在回声定位信号主频附近的神经元频率调谐曲线的Q10-dB值较大,具有很强的频率分析能力.  相似文献   

11.
This study examined if corticofugal modulation of subcortical frequency-tuning curves varied with sound direction. Both excitatory and inhibitory frequency tuning curves of inferior collicular neurons of the big brown bat, Eptesicus fuscus were plotted before and during electrical stimulation in the auditory cortex at two sound directions (contra-40 degrees and ipsi-40 degrees). Most collicular neurons had broader excitatory frequency-tuning curves at contra-40 degrees but had broader inhibitory frequency-tuning curves at ipsi-40 degrees. Cortical electrical stimulation changed the excitatory minimum thresholds of most collicular neurons at a greater degree at ipsi-40 degrees than at contra-40 degrees. However, cortical electrical stimulation produced a greater increase in the sharpness of excitatory frequency-tuning curves of most corticofugally inhibited collicular neurons at contra-40 degrees but produced a greater decrease in the sharpness of excitatory frequency-tuning curves of most corticofugally facilitated collicular neurons at ipsi-40 degrees. Cortical electrical stimulation also produced a greater change in the sharpness of inhibitory frequency-tuning curves of most corticofugally inhibited collicular neurons at contra-40 degrees than at ipsi-40 degrees. Possible mechanisms for this direction-dependent corticofugal modulation of frequency-tuning curves of collicular neurons are discussed.  相似文献   

12.
To study the effects of different durations of forward masker sound on neuronal firing and rate-intensity function(RIF)of mouse inferior collicular(IC)neurons,a tone relative to 5 dB above the minimum threshold(re MT+5 dB)of the best frequency of recorded neurons was used as forward masker sound under free field stimulation condition.The masker durations used were 40,60,80,and 100 ms.Results showed that as masker duration was increased,inhibition in neuronal firing was enhanced(P<0.0001,n=41)and the latency of neurons was lengthened(P<0.01,n=41).In addition,among 41 inhibited IC neurons,90.2%(37/41)exhibited narrowed dynamic range(DR)when masker sound duration was increased(P<0.0001),whereas the DR of 9.8%(4/41)became wider.These data suggest that masking effects of different durations of forward masker sound might be correlated with the amplitude and duration of inhibitory input to IC neurons elicited by the masker sound.  相似文献   

13.
To study the effects of different durations of forward masker sound on neuronal firing and rate-intensity function (RIF) of mouse inferior collicular (IC) neurons, a tone relative to 5 dB above the minimum threshold (re MT+5 dB) of the best frequency of recorded neurons was used as forward masker sound under free field stimulation condition. The masker durations used were 40, 60, 80, and 100 ms. Results showed that as masker duration was increased, inhibition in neuronal firing was enhanced (P < 0.000 1, n = 41) and the latency of neurons was lengthened (P<0.01, n = 41). In addition, among 41 inhibited IC neurons, 90.2% (37/41) exhibited narrowed dynamic range (DR) when masker sound duration was increased (P < 0.000 1), whereas the DR of 9.8%(4/41) became wider. These data suggest that masking effects of different durations of forward masker sound might be correlated with the amplitude and duration of inhibitory input to IC neurons elicited by the masker sound. __________ Translated from Journal of Central China Normal University (Nat. Sci.), 2005, 39(2): 236–240 [译自: 华中师范大学学报 (自然科学版), 2005, 39(2): 236–240]  相似文献   

14.
The directional sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus, was studied under free field stimulation conditions with 3 temporally patterned trains of sound pulses which differed in pulse repetition rate and duration. The directional sensitivity curves of 92 neurons studied can be described as hemifield, directionally-selective, or non-directional according to the variation in the number of impulses with pulse train direction. When these neurons were stimulated with all 3 pulse trains, the directional sensitivity curves of 50 neurons was unchanged but that of the other 42 neurons changed from one type into another. When these pulse trains were delivered at high pulse repetition rate and short pulse duration, they significantly sharpened the directional sensitivity of two thirds of the neurons examined by reducing the angular range and increasing the slope of their impulse directional sensitivity curves. These pulse trains also sharpened the slope of the threshold directional sensitivity curves of 25 neurons studied. However, when directional sensitivity of collicular neurons was determined with pulse trains that differed only in pulse repetition rate or in pulse duration, significant sharpening of directional sensitivity was rarely observed in all experimental conditions tested. Possible mechanisms underlying these findings are discussed.  相似文献   

15.
抑制性频谱整合对大棕蝠下丘神经元声强敏感性的影响   总被引:4,自引:2,他引:4  
自由声场条件下 ,采用特定双声刺激方法研究了不同频率通道之间的非线性整合对下丘神经元声强敏感性的调制作用。实验在 1 2只麻醉与镇定的大棕蝠 (Eptesicusfuscus)上进行 ,双电极同步记录 2个配对神经元的声反应动作电位。主要结果如下 :1 )所获 1 1 0个 (5 5对 )配对神经元中 ,85 5 %表现为抑制性频谱整合作用 ,其余 1 4 5 %为易化性频谱整合 ;2 )阈上 1 0dB (SPL)放电率抑制百分比与神经元最佳频率 (BF)及记录深度呈负相关 ;3)抑制效率随声刺激强度升高而逐步下降 ;4 )当掩蔽声分别位于神经元兴奋性频率调谐曲线(FTC)内 (MSin) /外 (MSout)时 ,其抑制效率存在差异。前者的放电率抑制百分比及声反应动力学范围(DR)下降百分比均显著高于后者 ;5 )抑制性频谱整合导致 3类DR改变 :6 1 6 %为下降、 1 0 9%增加、另有2 7 5 %变化小于 1 0 %。本结果进一步支持如下设想 :下丘不同频率通道之间的抑制性频谱整合参与了对强度编码的主动神经调制活动  相似文献   

16.
This study examined the effect of temporally patterned pulse trains on intensity and frequency sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus. Intensity sensitivity of inferior collicular neurons was expressed by the dynamic range and slope of rate-intensity functions. Inferior collicular neurons with non-monotonic rate-intensity functions have smaller dynamic ranges and larger slopes than neurons with monotonic or saturated rate-intensity functions. Intensity sensitivity of all inferior collicular neurons improved by increasing the number of non-monotonic rate-intensity functions when the pulse repetition rate of pulse trains increased from 10 to 30 pulses per second. Intensity sensitivity of 43% inferior collicular neurons further improved when the pulse repetition rate of pulse trains increased still from 30 to 90 pulses per second. Frequency sensitivity of inferior collicular neurons was expressed by the Q10, Q20, and Q30 values of threshold frequency tuning curves and bandwidths of isointensity frequency tuning curves. Threshold frequency tuning curves of all inferior collicular neurons were V-shape and mirror-images of their counterpart isointensity frequency tuning curves. The Q10, Q20, and Q30 values of threshold frequency tuning curves of all inferior collicular neurons progressively increased and bandwidths of isointensity frequency tuning curves decreased with increasing pulse repetition rate in temporally patterned pulse trains. Biological relevance of these findings to bat echolocation is discussed.  相似文献   

17.
1. Encoding of temporal stimulus parameters by inferior collicular (IC) neurons of Eptesicus fuscus was studied by recording their responses to a wide range of repetition rates (RRs) and durations at several stimulus intensities under free field stimulus conditions. 2. The response properties of 424 IC neurons recorded were similar to those reported in previous studies of this species. 3. IC neurons were classified as low-pass, band-pass, and high-pass according to their preference for RRs and/or durations characteristic of, respectively, search, approach, or terminal phases of echolocation. These neurons selectively process stimuli characteristic of the various phases of hunting. 4. Best RRs and best durations were not correlated with either the BFs or recording depths This suggests that each isofrequency lamina is capable of processing RRs and durations of all hunting phases. 5. Responses of one half of IC neurons studied were correlated with the stimulus duty cycle. These neurons may preferentially process terminal phase information when the bat's pulse emission duty cycle increases. 6. While the stimulus RR affected the dynamic range and overall profile of the intensity rate function, only little effect was observed with different stimulus durations.  相似文献   

18.
GABAergic inhibition shapes many auditory response properties of neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. This study examined the role of GABAergic inhibition on direction-dependent rate-intensity functions of bat inferior collicular neurons. When plotted at three sound directions (60 degrees contralateral, 0 degrees and 60 degrees ipsilateral relative to recording site), most collicular neurons had nonmonotonic and saturated rate-intensity functions at 60 degrees contralateral and 0 degrees but had monotonic rate-intensity functions at 60 degrees ipsilateral. The dynamic range of rate-intensity functions of majority (>90%) of collicular neurons significantly decreased as the sound direction changed from 60 degrees contralateral to 60 degrees ipsilateral. Bicuculline application increased or decreased the dynamic range of IC neurons in different degrees with sound direction and abolished direction-dependent intensity sensitivity of these IC neurons. Possible mechanisms for these observations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号