首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the efficacy of UV irradiation on the inactivation of Cryptosporidium parvum oocysts in fresh apple cider. Cider was inoculated with oocysts and exposed to 14.32 mJ of UV irradiation/cm2. Oocyst viability was assessed with the gamma interferon gene knockout (GKO) mouse and infant BALB/cByJ mouse models. All GKO mice challenged with UV-treated cider demonstrated no morbidity or mortality, and infant BALB/c mice challenged with treated cider were negative for the presence of C. parvum. In contrast, the GKO mice challenged with non-UV-treated inoculated cider died and the parasite was detected in the ileums of all challenged infant mice. This study shows that UV irradiation can be used to inactivate C. parvum in fresh apple cider.  相似文献   

2.
The purpose of this study was to determine whether gamma-irradiated Cryptosporidium parvum oocysts could elicit protective immunity against cryptosporidiosis in dairy calves. Cryptosporidium parvum Iowa strain oocysts (1 x 10(6) per inoculation) were exposed to various levels of gamma irradiation (350-500 Gy) and inoculated into 1-day-old dairy calves. The calves were examined daily for clinical signs of cryptosporidiosis, and fecal samples were processed for the presence of C. parvum oocysts. At 21 days of age, the calves were challenged by oral inoculation with 1 x 10(5) C. parvum oocysts and examined daily for oocyst shedding and clinical cryptosporidiosis. Calves that were inoculated with C. parvum oocysts exposed to 350-375 Gy shed C. parvum oocysts in feces. Higher irradiation doses (450 or 500 Gy) prevented oocyst development, but the calves remained susceptible to C. parvum challenge infection. Cryptosporidium parvum oocysts exposed to 400 Gy were incapable of any measurable development but retained the capacity to elicit a protective response against C. parvum challenge. These findings indicate that it may be possible to protect calves against cryptosporidiosis by inoculation with C. parvum oocysts exposed to 400-Gy gamma irradiation.  相似文献   

3.
Six Cryptosporidium-free Peking ducks (Anas platyrhynchos) were each orally inoculated with 2.0 x 10(6) Cryptosporidium parvum oocysts infectious to neonatal BALB/c mice. Histological examination of the stomachs jejunums, ilea, ceca, cloacae, larynges, tracheae, and lungs of the ducks euthanized on day 7 postinoculation (p.i.) revealed no life-cycle stages of C. parvum. However, inoculum-derived oocysts extracted from duck feces established severe infection in eight neonatal BALB/c mice (inoculum dose, 2.5 x 10(5) per mouse). On the basis of acid-fast stained direct wet smears, 73% of the oocysts in duck feces were intact (27% were oocyst shells), and their morphological features conformed to those of viable and infectious oocysts of the original inoculum. The fluorescence scores of the inoculated oocysts, obtained by use of the MERIFLUOR test, were identical to those obtained for the feces-recovered oocysts (the majority were 3+ to 4+). The dynamics of oocyst shedding showed that the birds released a significantly higher number of intact oocysts than the oocyst shells (P < 0.01). The number of intact oocysts shed (87%) during the first 2 days p.i. was significantly higher than the number shed during the remaining 5 days p.i. (P < 0.01) and significantly decreased from day 1 to day 2 p.i. (P < 0.01). The number of oocyst shells shed during 7 days p.i. did not vary significantly (P > 0.05). The retention of infectivity of C. parvum oocysts after intestinal passage through an aquatic bird has serious epidemiological and epizootiological implications. Waterfowl may serve as mechanical vectors for the waterborne oocysts and may enhance contamination of surface waters with C. parvum. As the concentration of Cryptosporidium oocysts in source waters is attributable to watershed management practices, the watershed protection program should consider waterfowl as a potential factor enhancing contamination of the source water with C. parvum.  相似文献   

4.
The lack of immunocompetent laboratory animal models has limited our understanding of functional immune responses to Cryptosporidium parvum infection, but such responses have been studied in susceptible laboratory rodents with genetic, acquired, or induced immunodeficiencies. We previously observed that athymic C57BL/6J nude mice inoculated with C. parvum oocysts had lower or absent fecal oocyst excretion when compared to inoculated athymic BALB/cJ nude mice. This discrepancy prompted us to explore potential differences in intestinal immune responses in both strains. Prior to and after C. parvum challenge, BALB/cJ nude and C57BL/6J nude mice did not differ in either spleen cell numbers or in parasite-specific proliferation. However, both strains of mice exhibited a significant increase in intra-epithelial lymphocyte (IEL) numbers prior to and following C. parvum inoculation when compared to uninoculated controls (P<0.05). Prior to challenge, C57BL/6J nude mice had a higher percentage of both CD8+ and CD8+ gammadelta+ IEL than BALB/cJ nude mice. Following challenge, resistant C57BL/6J nude mice had a higher percentage of gammadelta+, CD4+, and CD8+ gammadelta+ IEL than uninoculated C57BL/6J nude mice and than susceptible BALB/cJ nude mice (P<0.05). Conversely, inoculated C57BL/6J nude mice had a significantly lower percentage of alphabeta+ IEL than inoculated BALB/cJ nude mice (P<0.05). We conclude that gammadelta+, CD4+, and/or CD8+ gammadelta+ IEL may influence responses to cryptosporidiosis in athymic murine models, and that the increased percentage of alphabeta+ IEL in susceptible BALB/cJ nude mice could reflect a preferential expression during chronic C. parvum infection and/or might downregulate local protective responses.  相似文献   

5.
To determine the role of cytokines and a chemokine receptor in the susceptibility to, and outcome of, infection, 4 different knockout mice (IL-4, IL-10, IL-12, and CCR5) were infected with Cryptosporidium parvum and monitored for infection intensity by collection of fecal pellets from individual mice. Because adult immunocompetent mice are refractory to infection, wild-type mice on the same background as the knockout mice (C57BL/6) were used as a negative control. No infection was detected over a 4-wk time period in IL-4, IL-10, and CCR5 knockout mice inoculated with 106 oocysts. IL-12 knockout mice inoculated with as little as 100 oocysts shed up to 10,000 oocysts/100 microl of feces on the peak infection day (day 8) and were able to fully recover by 2 wk after infection. IL-12 is an important inducer of IFN-gamma, which probably accounted for susceptibility to infection. Previous studies using IFN-gamma knockout mice have shown strain-related differences in infection intensity and outcome, with increased parasite loads and decreased survival among IFN-gamma knockout mice on a C57BL/6 background compared with those on a BALB/c background. Similar results were observed in IL-12 knockout mice on a BALB/c background, which exhibited little or no infection, despite higher levels of inoculation (10(6) oocysts/mouse).  相似文献   

6.
Abstract The present study was undertaken to determine the infectivity of Cryptosporidium parvum oocysts for immunosup-pressed adult C57BL/6N mice after the oocysts had been stored from 1–48 months at 4°C in 2.5% potassium dichromate. All mice inoculated with oocysts 1–18 months old developed patent infections, while mice inoculated with older oocysts remained uninfected. The prepatent period was extended from 2 to 6 or 7 days as the storage time for oocysts increased. The finding that C. parvum oocysts remain infective for mice for at least 18 months offers important economic and time-saving advantages for investigators who frequently require large numbers of oocysts that must be painstakingly purified from calf manure.  相似文献   

7.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ x cm-2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4',6'-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ x cm-2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ x cm-2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ x cm-2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

8.
He H  Zhao B  Liu L  Zhou K  Qin X  Zhang Q  Li X  Zheng C  Duan M 《DNA and cell biology》2004,23(5):335-339
Cryptosporidiosis, a protozoan disease, is caused by Cryptosporidium parvum in animals and humans. To study the humoral and cellular immune responses induced by DNA vaccine expressing the sporozoite surface protein, CP15/60, of Cryptosporidium parvum, the recombinant plasmid containing the CP15/60 gene was injected into tibialis a interior muscle of BALB/c mice. The mice were subsequently given booster doses twice at 3-week intervals. The humoral and cellular immune responses were detected at different times after immunization. The mice were then challenged by inoculation of 1 x 10(6) oocysts of C. parvum. The experimental results have shown that the recombinant plasmid can induce corresponding specific immune responses and thus protect the mice from challenge of the oocysts, suggesting that the recombinant plasmid could be a potential candidate of DNA vaccine.  相似文献   

9.
R Fayer 《Applied microbiology》1994,60(8):2732-2735
Cryptosporidium parvum oocysts suspended in 0.5 ml of distilled water were pipetted into plastic vials which were inserted into wells in the heated metal block of a thermal DNA cycler. Block temperatures were set at 5 degrees C incremental temperatures from 60 to 100 degrees C. At each temperature setting four vials containing C. parvum oocysts were placed into wells and held for 15 s before time was recorded as zero, and then pairs of vials were removed 1 and 5 min later. Upon removal, all vials were immediately cooled on crushed ice. Also, at each temperature interval one vial containing 0.5 ml of distilled water was placed in a well and a digital thermometer was used to record the actual water temperature at 30-s intervals. Heated oocyst suspensions as well as unheated control suspensions were orally inoculated by gavage into 7- to 10-day-old BALB/c mouse pups to test for infectivity. At 96 h after inoculation the ileum, cecum, and colon from each mouse were removed and prepared for histology. Tissue sections were examined microscopically. Developmental-stage C. parvum was found in all three gut segments from all mice that received oocysts in unheated water and in water that reached temperatures of 54.4, 59.9, and 67.5 degrees C at 1 min when vials were removed from the heat source. C. parvum was also found in the ileum of one of six mice that received oocysts in water that reached a temperature of 59.7 degrees C at 5 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Differences in the immune response between 2 strains of interferon-gamma knockout mice (BALB/c-GKO and C57BL/6-GKO) infected with Cryptosporidium parvum were examined because the course of infection among these 2 strains is markedly different. Infection of the BALB/c-GKO with C. parvum (2 X 10(6) oocysts/mouse) resulted in slight weight loss, oocyst shedding, and recovery from infection by 2 wk postinfection (PI). Infection with 100 oocysts in the C57BL/6-GKO mice resulted in significant weight loss, oocyst shedding, and death by day 10 PI. Splenocytes from infected mice were able to proliferate in a dose-dependent manner to soluble C. parvum-sporozoite antigen (SAg). In vitro stimulation with SAg resulted in an increase in interleukin (IL)-2, IL-4, IL-5, and tumor necrosis factor-alpha mRNA cytokine expression from splenocytes of infected BALB/cGKO mice. In contrast, only IL-5 mRNA expression was increased in the splenocytes from C. parvum-infected C57BL/6-GKO mice. Phenotypic analysis indicated no significant differences in the splenic cell populations. Previous studies indicated that susceptibility to C. parvum is dependent on CD4+ T cells and interferon-gamma production. The present study indicates that although both of these strains of knockout mice become infected with C. parvum, resolution of infection may be in part dependent on the expression of Th2 cytokines.  相似文献   

11.
The present study was designed to determine the minimum number of Cryptosporidium parvum oocysts capable of producing patent infections in immunosuppressed C57BL/6N adult mice. Sixty-four female mice were divided into 6 groups of 8 mice each, except group 1 that contained 24 mice. Mice in groups 1-3 were immunosuppressed with dexamethasone and inoculated with 1, 5, and 10 oocysts per mouse, respectively. The accuracy of the inoculum size was microscopically confirmed. Mice in groups 4-6 served as controls: they received either only oocyst inoculation (group 4), or immunosuppression (group 5), or no treatments (group 6). Fecal oocyst shedding was monitored daily for each mouse using an indirect immunofluorescent assay. Parasite colonization in the terminal ileum of each mouse was evaluated histologically. Four of 24 mice in group 1 developed patent infections, with a prepatent period of approximately 6 days. All mice in groups 2 and 3 developed patent infections, with prepatent periods ranging from 4 to 7 days. Mice in groups 4-6 remained uninfected. Parasite colonization was observed in the terminal ilea of all mice in groups 1-3 that shed fecal oocysts. The present study experimentally demonstrates that a single viable oocyst can induce patent C. parvum infections in immunosuppressed C57BL/6N adult mice and indicates that this mouse model could be used for the parasite genotype or isolate cloning.  相似文献   

12.
Cryptosporidiosis has emerged as one of the life-threatening opportunistic enteric infections in HIV-infected persons. To date, Cryptosporidium parvum is known to infect man via person-to-person or zoonotic transmission. We studied the sequential stages of the life cycle of C. parvum by Normarski interference-contrast microscopy in fresh gut specimens of newborn mice, infected with a strain derived from an AIDS patient with cryptosporidial diarrheal enteritis. Many 4- to 5-day-old suckling BALB/C mice were orally inoculated with 1 x 10(6) oocysts, obtained by acid flocculation of the patient's stools. The animals were sacrificed from 4 to 96 h post-infection and the ileum was examined microscopically. All stages of the asexual life cycle of C. parvum, from excysted sporozoites in the intestinal lumen through the development of type II mature meronts, 12- to 72-h post-infection, were documented by extemporaneous microscopic evaluation of fresh gut samples. The sexual cycle, characterized by the appearance of micro- and macrogametocytes, followed by a zygote developing into a sporulated oocyst, was documented as early 48-h post-infection. Our Nomarski interference-contrast observations on the life cycle of C. parvum yielded data comparable with those originally published by Current and Reese, and confirm the results of previous electron microscopic studies performed by several other authors.  相似文献   

13.
Demineralized water was seeded with controlled numbers of oocysts of Cryptosporidium parvum purified from fresh calf feces and subjected to different treatments with ozone or chlorine dioxide. The disinfectants were neutralized by sodium thiosulfate, and neonatal mice were inoculated intragastrically and sacrificed 7 days later for enumeration of oocyst production. Preliminary trials indicated that a minimum infection level of 1,000 oocysts (0.1-ml inoculum) per mouse was necessary to induce 100% infection. Treatment of water containing 10(4) oocysts per ml with 1.11 mg of ozone per liter (concentration at time zero [C0]) for 6 min totally eliminated the infectivity of the oocysts for neonatal mice. A level of 2.27 mg of ozone per liter (C0) was necessary to inactivate water containing 5 x 10(5) oocysts per ml within 8 min. Also, 0.4 mg of chlorine dioxide per liter (C0) significantly reduced infectivity within 15 min of contact, although some oocysts remained viable.  相似文献   

14.
Demineralized water was seeded with controlled numbers of oocysts of Cryptosporidium parvum purified from fresh calf feces and subjected to different treatments with ozone or chlorine dioxide. The disinfectants were neutralized by sodium thiosulfate, and neonatal mice were inoculated intragastrically and sacrificed 7 days later for enumeration of oocyst production. Preliminary trials indicated that a minimum infection level of 1,000 oocysts (0.1-ml inoculum) per mouse was necessary to induce 100% infection. Treatment of water containing 10(4) oocysts per ml with 1.11 mg of ozone per liter (concentration at time zero [C0]) for 6 min totally eliminated the infectivity of the oocysts for neonatal mice. A level of 2.27 mg of ozone per liter (C0) was necessary to inactivate water containing 5 x 10(5) oocysts per ml within 8 min. Also, 0.4 mg of chlorine dioxide per liter (C0) significantly reduced infectivity within 15 min of contact, although some oocysts remained viable.  相似文献   

15.
Purified oocysts of Cryptosporidium parvum suspended in approximately 400 microliters of phosphate-buffered saline or deionized water in microcentrifuge tubes were exposed at 21 to 23 degrees C for 24 h to a saturated atmosphere of ammonia, carbon monoxide, ethylene oxide, formaldehyde, or methyl bromide gas. Controls were exposed to air. Oocysts in each tube were then rinsed and resuspended in fresh, deionized water, and 1 million oocysts exposed to each gas were orally administered to each of three to six neonatal BALB/c mice in replicate groups. Histologic sections of ileum, cecum, and colon tissues taken from each mouse 72 h after oral administration of oocysts were examined microscopically to determine if infection had been established. All 15 mice given oocysts exposed to carbon monoxide had numerous developmental stages of cryptosporidium in all three intestinal segments. Of 10 mice given oocysts exposed to formaldehyde, 6 had a few developmental stages of cryptosporidium in the ileum. No mice given oocysts exposed to ammonia, ethylene oxide, or methyl bromide were found to be infected. These findings indicate the efficacy of these low-molecular-weight gases (ammonia, ethylene oxide, and methyl bromide) as potential disinfectants for C. parvum oocysts where soil, rooms, buildings, tools, or instruments might be contaminated.  相似文献   

16.
R Fayer  T Nerad 《Applied microbiology》1996,62(4):1431-1433
Microcentrifuge tubes containing 8 x 10(6) purified oocysts of Cryptosporidium parvum suspended in 400 microliters of deionized water were stored at 5 degrees C for 168 h or frozen at -10, -15, -20, and -70 degrees C for 1 h to 168 h and then thawed at room temperature (21 degrees C). Fifty microliters containing 10(6) oocysts was administered to each of five to seven neonatal BALB/c mice by gastric intubation. Segments of ileum, cecum, and colon were taken for histology from each mouse 72 or 96 h later. Freeze-thawed oocysts were considered viable and infectious only when developmental-stage C. parvum organisms were found microscopically in the tissue sections. Developmental-stage parasites were not found in tissues from any mice that received oocysts frozen at -70 degrees C for 1, 8, or 24 h. All mice that received oocysts frozen at -20 degrees C for 1, 3, and 5 h had developmental-stage C. parvum; one of 6 mice that received oocysts frozen at -20 degrees C for 8 h had a few developmental-stage parasites; mice that received oocysts frozen at -20 degrees C for 24 and 168 h had no parasites. All mice that received oocysts frozen at -15 degrees C for 8 and 24 h had developmental-stage parasites; mice that received oocysts frozen at -15 degrees C for 168 h had no parasites. All mice that received oocysts frozen at -10 degrees C for 8, 24, and 168 h and those that received oocysts stored at 5 degrees C for 168 h had developmental-stage parasites. These findings demonstrate for the first time that oocysts of C. parvum in water can retain viability and infectivity after freezing and that oocysts survive longer at higher freezing temperatures.  相似文献   

17.
This study was performed to investigate experimental transmission of Cryptosporidium parvum in a calf. A 25-day-old Korean native calf was inoculated per os with 1 x 10(6) C. parvum oocysts isolated from a Korean mouse. The calf commenced oocyst discharge in feces on post-inoculation day 4, and continued until the day 11. The number of discharged oocysts peaked (4.9 x 10(5)) on post-inoculation day 6. However, the calf did not show signs of diarrhea. The present results indicate that C. parvum is cross-transmissible between the calf and the mouse.  相似文献   

18.
Transmission of infectious oocysts of Cryptosporidium parvum via surface- and drinking-water supplies has been reported and many surface waters flow into the sea, potentially causing runoff of animal-infected faeces. Eating raw mussels is a common practice in many countries, increasing the public's risk of acquiring enteric pathogens. The aims of the present study were to estimate how long C. parvum oocysts remain infectious in artificial seawater, to determine if the oocysts are retained in mussel tissues (Mytilus galloprovincialis), and how long they maintain their infectivity. Oocysts were incubated in artificial seawater at 6-8 degrees C under moderate oxygenation and the infectivity of oocysts was tested five times, over a 12 month period after incubation in seawater, in BALB/c mice. Each pup was inoculated per os with 10(5) oocysts and killed 5 days p.i. Oocysts remained infectious for 1 year. Forty mussels held in an aquarium containing artificial seawater filtered out more than 4 x 10(8) oocysts in a 24 h period. Oocysts were detected in the gill washing up to 3 days p.i., in the haemolymph up to 7 days p.i., and in the intestinal tract up to 14 days p.i. Oocysts collected from the gut of mussels 7 and 14 days p.i. were observed to have infected mice. These results suggest that C. parvum oocysts can survive in seawater for at least 1 year and can be filtered out by benthic mussels, retaining their infectivity up to 14 days, so seawater and molluscs are a potential source of C. parvum infection for humans.  相似文献   

19.
Studies on cryopreservation of Cryptosporidium parvum   总被引:5,自引:0,他引:5  
Neonatal BALB/c mice received oocysts or sporozoites of Cryptosporidium parvum pretreated by a variety of cryopreservation protocols. Histologic sections of infected and control mice were examined to determine if pretreated organisms established infection in the intestine. Sporozoites were inoculated rectally, oocysts orally. Freshly excysted sporozoites were frozen in Hanks' balanced salt solution (HBSS) containing dimethylsulfoxide (DMSO) or glycerol at concentrations of 5%, 10%, or 15% at cooling rates of -1 C and -10 C per min. Other sporozoites were frozen to -70 C in the absence of cryoprotectant without controlled reduction of temperature, others placed in HBSS with 10% DMSO but not subjected to freezing, whereas others were placed in vitrification media containing 5.5 M propylene glycol, 6.5 M glycerol, or 8 M ethylene glycol for 1 min before resuspension in fresh HBSS and inoculation into mice. Intact oocysts were frozen without controlled reduction of temperature directly to -70 C in HBSS containing no cryoprotectant or in HBSS that contained 10% DMSO. Others were cooled at -0.3 C per min from 4 C to -70 C in HBSS with 5% or 10% DMSO. Still others were cooled at a rate of -1 C per min until reaching -40 C and then cooled at -10 C per min until reaching -70 C in HBSS with 7.5% DMSO. Oocysts and sporozoites not exposed to cryoprotectants were inoculated into mice orally and rectally, respectively, for control purposes. Only unfrozen oocysts and sporozoites not exposed to cryoprotectant, and some of the unfrozen oocysts and sporozoites exposed to 10% DMSO, successfully established infections in mice.  相似文献   

20.
To evaluate the effectiveness of UV irradiation in inactivating Cryptosporidium parvum oocysts, the animal infectivities and excystation abilities of oocysts that had been exposed to various UV doses were determined. Infectivity decreased exponentially as the UV dose increased, and the required dose for a 2-log(10) reduction in infectivity (99% inactivation) was approximately 1.0 mWs/cm(2) at 20 degrees C. However, C. parvum oocysts exhibited high resistance to UV irradiation, requiring an extremely high dose of 230 mWs/cm(2) for a 2-log(10) reduction in excystation, which was used to assess viability. Moreover, the excystation ability exhibited only slight decreases at UV doses below 100 mWs/cm(2). Thus, UV treatment resulted in oocysts that were able to excyst but not infect. The effects of temperature and UV intensity on the UV dose requirement were also studied. The results showed that for every 10 degrees C reduction in water temperature, the increase in the UV irradiation dose required for a 2-log(10) reduction in infectivity was only 7%, and for every 10-fold increase in intensity, the dose increase was only 8%. In addition, the potential of oocysts to recover infectivity and to repair UV-induced injury (pyrimidine dimers) in DNA by photoreactivation and dark repair was investigated. There was no recovery in infectivity following treatment by fluorescent-light irradiation or storage in darkness. In contrast, UV-induced pyrimidine dimers in the DNA were apparently repaired by both photoreactivation and dark repair, as determined by endonuclease-sensitive site assay. However, the recovery rate was different in each process. Given these results, the effects of UV irradiation on C. parvum oocysts as determined by animal infectivity can conclusively be considered irreversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号