首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Notwithstanding great advances in the engineering and structural analysis of globular proteins, relatively limited success has been achieved with membrane proteins—due largely to their intrinsic high insolubility and the concomitant difficulty in obtaining crystals. Progress with de novo synthesis of model membrane-interactive peptides presents an opportunity to construct simpler peptides with definable structures, and permits one to approach an understanding of the properties of the membrane proteins themselves. In the present article, we review how our laboratory and others have used peptide approaches to assess the detailed interactions of peptides with membranes, and primary folding at membrane surfaces and in membranes. Structural studies of model peptides identified the existence of a “threshold hydrophobicity,” which controls spontaneous peptide insertion into membranes. Related studies of the relative helicity of peptides in organic media such as n-butanol indicate that the helical propensity of individual residues—not simply their hydrophobicity—may dictate the conformations of peptides in membranes. The overall experimental results provide fundamental guidelines for membrane protein engineering. © 1998 John Wiley & Sons, Inc. Biopoly 47: 41–62, 1998  相似文献   

2.
    
An alternative core packing group, involving a set of five positions, has been introduced into human acidic FGF-1. This alternative group was designed so as to constrain the primary structure within the core region to the same threefold symmetry present in the tertiary structure of the protein fold (the beta-trefoil superfold). The alternative core is essentially indistinguishable from the WT core with regard to structure, stability, and folding kinetics. The results show that the beta-trefoil superfold is compatible with a threefold symmetric constraint on the core region, as might be the case if the superfold arose as a result of gene duplication/fusion events. Furthermore, this new core arrangement can form the basis of a structural \"building block\" that can greatly simplify the de novo design of beta-trefoil proteins by using symmetric structural complementarity. Remaining asymmetry within the core appears to be related to asymmetry in the tertiary structure associated with receptor and heparin binding functionality of the growth factor.  相似文献   

3.
    
The stability toward thermal and urea denaturation was measured for HAMLET (human alpha-lactalbumin made lethal to tumor cells) and alpha-lactalbumin, using circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry. Under all conditions examined, HAMLET appears to have the same or lower stability than alpha-lactalbumin. The largest difference is seen for thermal denaturation of the calcium free (apo) forms, where the temperature at the transition midpoint is 15 degrees C lower for apo HAMLET than for apo alpha-lactalbumin. The difference becomes progressively smaller as the calcium concentration increases. Denaturation of HAMLET was found to be irreversible. Samples of HAMLET that have been renatured after denaturation have lost the specific biological activity toward tumor cells. Three lines of evidence indicate that HAMLET is a kinetic trap: (1) It has lower stability than alpha-lactalbumin, although it is a complex of alpha-lactalbumin and oleic acid; (2) its denaturation is irreversible and HAMLET is lost after denaturation; (3) formation of HAMLET requires a specific conversion protocol.  相似文献   

4.
    
N1 is the first residue in an alpha-helix. We have measured the contribution of all 20 amino acids to the stability of a small helical peptide CH(3)CO-XAAAAQAAAAQAAGY-NH(2) at the N1 position. By substituting every residue into the N1 position, we were able to investigate the stabilizing role of each amino acid in an isolated context. The helix content of each of the 20 peptides was measured by circular dichroism (CD) spectroscopy. The data were analyzed by our modified Lifson-Roig helix-coil theory, which includes the n1 parameter, to find free energies for placing a residue into the N1 position. The rank order for free energies is Asp(-), Ala > Glu(-) > Glu(0) > Trp, Leu, Ser > Asp(0), Thr, Gln, Met, Ile > Val, Pro > Lys(+), Arg, His(0) > Cys, Gly > Phe > Asn, Tyr, His(+). N1 preferences are clearly distinct from preferences for the preceding N-cap and alpha-helix interior. pK(a) values were measured for Asp, Glu, and His, and protonation-free energies were calculated for Asp and Glu. The dissociation of the Asp proton is less favorable than that of Glu, and this reflects its involvement in a stronger stabilizing interaction at the N terminus. Proline is not energetically favored at the alpha-helix N terminus despite having a high propensity for this position in crystal structures. The data presented are of value both in rationalizing mutations at N1 alpha-helix sites in proteins and in predicting the helix contents of peptides.  相似文献   

5.
    
The role of hither-to-fore unrecognized long-range hydrogen bonds between main-chain amide hydrogens and polar side chains on the stability of a well-studied (betaalpha)8, TIM barrel protein, the alpha subunit of tryptophan synthase (alphaTS), was probed by mutational analysis. The F19-D46 and I97-D124 hydrogen bonds link the N terminus of a beta-strand with the C terminus of the succeeding antiparallel alpha-helix, and the A103-D130 hydrogen bond links the N terminus of an alpha-helix with the C terminus of the succeeding antiparallel beta-strand, forming clamps for the respective betaalpha or alphabeta hairpins. The individual replacement of these aspartic acid side chains with alanine leads to what appear to be closely related partially folded structures with significantly reduced far-UV CD ellipticity and thermodynamic stability. Comparisons with the effects of eliminating another main-chain-side-chain hydrogen bond, G26-S33, and two electrostatic side-chain-side-chain hydrogen bonds, D38-H92 and D112-H146, all in the same N-terminal folding unit of alphaTS, demonstrated a unique role for the clamp interactions in stabilizing the native barrel conformation. Because neither the asparagine nor glutamic acid variant at position 46 can completely reproduce the spectroscopic, thermodynamic, or kinetic folding properties of aspartic acid, both size and charge are crucial to its unique role in the clamp hydrogen bond. Kinetic studies suggest that the three clamp hydrogen bonds act in concert to stabilize the transition state leading to the fully folded TIM barrel motif.  相似文献   

6.
    
N3 is the third position from the N terminus in the alpha-helix with helical backbone dihedral angles. All 20 amino acids have been placed in the N3 position of a synthetic helical peptide (CH(3)CO-[AAX AAAAKAAAAKAGY]-NH(2)) and the helix content measured by circular dichroism spectroscopy at 273 K. The dependence of peptide helicity on N3 residue identity has been used to determine a free energy scale by analysis with a modified Lifson-Roig helix coil theory that includes a parameter for the N3 energy (n3). The most stabilizing residues at N3 in rank order are Ala, Glu, Met/Ile, Leu, Lys, Ser, Gln, Thr, Tyr, Phe, Asp, His, and Trp. Free energies for the most destabilizing residues (Cys, Gly, Asn, Arg, and Pro) could not be fitted. The results correlate with N1, N2, and helix interior energies and not at all with N-cap preferences. This completes our work on studying the structural and energetic preferences of the amino acids for the N-terminal positions of the alpha-helix. These results can be used to rationally modify protein stability, help design helices, and improve prediction of helix location and stability.  相似文献   

7.
  总被引:1,自引:0,他引:1  
Previous reports detailing mutational effects within the hydrophobic core of human acidic fibroblast growth factor (FGF-1) have shown that a symmetric primary structure constraint is compatible with a stably folded protein. In the present report, we investigate symmetrically related pairs of buried hydrophobic residues in FGF-1 (termed \"mini-cores\") that are not part of the central core. The effect upon the stability and function of FGF-1 mutations designed to increase primary structure symmetry within these \"mini-core\" regions was evaluated. At symmetry-related positions 22, 64, and 108, the wild-type protein contains either Tyr or Phe side chains. The results show that either residue can be readily accommodated at these positions. At symmetry-related positions 42, 83, and 130, the wild-type protein contains either Cys or Ile side chains. While positions 42 and 130 can readily accommodate either Cys or Ile side chains, position 83 is substantially destabilized by substitution by Ile. Tertiary structure asymmetry in the vicinity of position 83 appears responsible for the inability to accommodate an Ile side chain at this position, and is known to contribute to functional half-life. A mutant form of FGF-1 with enforced primary structure symmetry at positions 22, 64, and 108 (all Tyr) and 42, 83, and 130 (all Cys) is shown to be more stable than the reference FGF-1 protein. The results support the hypothesis that a symmetric primary structure within a symmetric protein superfold represents a solution to achieving a foldable, stable polypeptide, and highlight the role that function may play in the evolution of asymmetry within symmetric superfolds.  相似文献   

8.
    
N2 is the second position in the alpha-helix. All 20 amino acids were placed in the N2 position of a synthetic helical peptide (CH(3)CO-[AXAAAAKAAAAKAAGY]-NH(2)) and the helix content was measured by circular dichroism spectroscopy at 273K. The dependence of peptide helicity on N2 residue identity has been used to determine a free-energy scale by analysis with a modified Lifson-Roig helix-coil theory that includes a parameter for the N2 energy (n2). The rank order of DeltaDeltaG((relative to Ala)) is Glu(-), Asp(-) > Ala > Glu(0), Leu, Val, Gln, Thr, Ile, Ser, Met, Asp(0), His(0), Arg, Cys, Lys, Phe > Asn, > Gly, His(+), Pro, Tyr. The results correlate very well with N2 propensities in proteins, moderately well with N1 and helix interior preferences, and not at all with N-cap preferences. The strongest energetic effects result from interactions with the helix dipole, which favors negative charges at the helix N terminus. Hydrogen bonds to side chains at N2, such as Gln, Ser, and Thr, are weak, despite occurring frequently in protein crystal structures, in contrast to the N-cap position. This is because N-cap hydrogen bonds are close to linear, whereas N2 hydrogen bonds have poor geometry. These results can be used to modify protein stability rationally, help design helices, and improve prediction of helix location and stability.  相似文献   

9.
    
The stoichiometry of the first shell of lipids interacting with a transmembrane protein is defined operationally by the population of spin-labeled lipid chains whose motion is restricted directly by the protein. Interaction stoichiometries have been determined experimentally for a wide range of alpha-helical integral membrane proteins by using spin-label ESR spectroscopy. Here, we determine the spatially defined number of first-shell lipids at the hydrophobic perimeter of integral membrane proteins whose 3D structure has been determined by X-ray crystallography and lipid-protein interactions characterized by spin-labeling. Molecular modeling is used to build a single shell of lipids surrounding transmembrane structures derived from the PDB. Constrained energy optimization of the protein-lipid assemblies is performed by molecular mechanics. For relatively small proteins (up to 7-12 transmembrane helices), the geometrical first shell corresponds to that defined experimentally by perturbation of the lipid-chain dynamics. For larger, multi-subunit alpha-helical proteins, the lipids perturbed directly by the protein may either exceed or be less in number than those that can be accommodated at the intramembranous perimeter. In these latter cases, the motionally restricted spin-labeled lipids can be augmented by intercalation, or can correspond to a specific subpopulation at the protein interface, respectively. For monomeric beta-barrel proteins, the geometrical lipid stoichiometry corresponds to that determined from lipid mobility for a 22-stranded barrel, but fewer lipids are motionally restricted than can be accommodated around an eight-stranded barrel. Deviations from the geometrical first shell, in the beta-barrel case, are for the smaller protein with a highly curved barrel.  相似文献   

10.
Detailed structural analysis of protein necessitates investigation at primary, secondary and tertiary levels, respectively. Insight into protein secondary structures pave way for understanding the type of secondary structural elements involved (α-helices, β-strands etc.), the amino acid sequence that encode the secondary structural elements, number of residues, length and, percentage composition of the respective elements in the protein. Here we present a standalone tool entitled "ExSer" which facilitate an automated extraction of the amino acid sequence that encode for the secondary structural regions of a protein from the protein data bank (PDB) file. AVAILABILITY: ExSer is freely downloadable from http://code.google.com/p/tool-exser/  相似文献   

11.
    
The unfolded states of three homologous proteins with a very similar fold have been investigated by heteronuclear NMR spectroscopy. Secondary structure propensities as derived from interpretation of chemical shifts and motional restrictions as evidenced by heteronuclear (15)N relaxation rates have been analyzed in the reduced unfolded states of hen lysozyme and the calcium-binding proteins bovine alpha-lactalbumin and human alpha-lactalbumin. For all three proteins, significant deviations from random-coil predictions can be identified; in addition, the unfolded states also differ from each other, despite the fact that they possess very similar structures in their native states. Deviations from random-coil motional properties are observed in the alpha- and the beta-domain in bovine alpha-lactalbumin and lysozyme, while only regions within the alpha-domain deviate in human alpha-lactalbumin. The motional restrictions and residual secondary structure are determined both by the amino acid sequence of the protein and by residual long-range interactions. Even a conservative single point mutation from I to L in a highly conserved region between the two alpha-lactalbumins results in considerable differences in the motional properties. Given the differences in oxidative folding between hen lysozyme and alpha-lactalbumin, the results obtained on the unfolded states suggest that residual long-range interactions, i.e., those between the alpha- and the beta-domain of lysozyme, may act as nucleation sites for protein folding, while this property of residual structure is replaced by the calcium-binding site between the domains in alpha-lactalbumin.  相似文献   

12.
Aromatic-aromatic hydrogen bonds are important in many areas of chemistry, biology and materials science. In this study we haveanalyzed the roles played by the π-π interactions in interleukins (ILs) and tumor necrosis factor (TNF) proteins. Majority of π-πinteracting residues are conserved in ILs and TNF proteins. The accessible surface area calculations in these proteins reveal thatthese interactions might be important in stabilizing the inner core regions of these proteins. In addition to π-π interactions, thearomatic residues also form π-networks in ILs and TNF proteins. The results obtained in the present study indicate that π-πinteractions and π-π networks play important roles in the structural stability of ILs and TNF proteins.  相似文献   

13.
Neuronal nicotinic alpha7 subunits assemble into cell-surface complexes that neither function nor bind alpha-bungarotoxin when expressed in tsA201 cells. Functional alpha-bungarotoxin receptors are expressed if the membrane-spanning and cytoplasmic domains of the alpha7 subunit are replaced by the homologous regions of the serotonin-3 receptor subunit. Bgt-binding surface receptors assembled from chimeric alpha7/serotonin-3 subunits contain subunits in two different conformations as shown by differences in redox state and other features of the subunits. In contrast, alpha7 subunit complexes in the same cell line contain subunits in a single conformation. The appearance of a second alpha7/serotonin-3 subunit conformation coincides with the formation of alpha-bungarotoxin-binding sites and intrasubunit disulfide bonding, apparently within the alpha7 domain of the alpha7/serotonin-3 chimera. In cell lines of neuronal origin that produce functional alpha7 receptors, alpha7 subunits undergo a conformational change similar to alpha7/serotonin-3 subunits. alpha7 subunits, thus, can fold and assemble by two different pathways. Subunits in a single conformation assemble into nonfunctional receptors, or subunits expressed in specialized cells undergo additional processing to produce functional, alpha-bungarotoxin-binding receptors with two alpha7 conformations. Our results suggest that alpha7 subunit diversity can be achieved postranslationally and is required for functional homomeric receptors.  相似文献   

14.
15.
BET3 is a component of TRAPP, a complex involved in the tethering of transport vesicles to the cis-Golgi membrane. The crystal structure of human BET3 has been determined to 1.55-A resolution. BET3 adopts an alpha/beta-plait fold and forms dimers in the crystal and in solution, which predetermines the architecture of TRAPP where subunits are present in equimolar stoichiometry. A hydrophobic pocket within BET3 buries a palmitate bound through a thioester linkage to cysteine 68. BET3 and yeast Bet3p are palmitoylated in recombinant yeast cells, the mutant proteins BET3 C68S and Bet3p C80S remain unmodified. Both BET3 and BET3 C68S are found in membrane and cytosolic fractions of these cells; in membrane extractions, they behave like tightly membrane-associated proteins. In a deletion strain, both Bet3p and Bet3p C80S rescue cell viability. Thus, palmitoylation is neither required for viability nor sufficient for membrane association of BET3, which may depend on protein-protein contacts within TRAPP or additional, yet unidentified modifications of BET3. A conformational change may facilitate palmitoyl extrusion from BET3 and allow the fatty acid chain to engage in intermolecular hydrophobic interactions.  相似文献   

16.
Subsequent to wounding, keratinocytes must quickly restore barrier function. In vitro wound models have served to elucidate mechanisms of epithelial closure and key roles for integrins alpha6beta4 and alpha3beta1. To extrapolate in vitro data to in vivo human tissues, we used ultrathin cryomicrotomy to simultaneously observe tissue ultrastructure and immunogold localization in unwounded skin and acute human cutaneous wounds. Localization of the beta4 integrin subunit in unwounded skin shows dominant hemidesmosomal association and minor basal keratinocyte lateral filopodic cell-cell expression. After wounding, beta4 dominantly localized to cytokeratin-rich regions (trailing edge hemidesmosomes) and minor association with lamellipodia (leading edge). beta4 colocalizes with alpha3 within filopodia juxtaposed to wound matrix, and increased concentrations of beta4 were found in cytoplasmic vesicles within basal keratinocytes of the migrating tongue. alpha3 integrin subunit dominantly localized to filopodia within basal keratinocyte lateral cell-cell interfaces in unwounded skin and both cell-cell and cell-matrix filopodic interactions in wounded skin. This study indicates that beta4 interacts with the extracellular environment through both stable and transient interactions and may be managed through a different endosomal trafficking pathway than alpha3. alpha3 integrin, despite its ability to respond to alternate ligands after wounding, does so through a single structure, the filopodia.  相似文献   

17.
The molecular mechanism by which HFIP stabilizes the alpha-helical structure of peptides is not well understood. In the present study, we use melittin as a model to gain insight into the details of the atomistic interactions of HFIP with the peptide. We have performed extensive comparative molecular dynamics simulations (up to 100 nsec) in the absence and in the presence of HFIP. In agreement with recent NMR experiments, the simulations show rapid loss of tertiary structure in water at pH 2 but much higher helicity in 35% HFIP. The MD simulations also indicate that melittin adopts a highly dynamic global structure in 35% HFIP solution with two alpha-helical segments sampling a wide range of angular orientations. The analysis of the HFIP distribution shows the tendency of HFIP to aggregate around the peptide, increasing the local cosolvent concentration to more than two times that in the bulk concentration. The correlation of local peptide structure with HFIP coating suggests that displacement of water at the peptide surface is the main contribution of HFIP in stabilizing the secondary structure of melittin. Finally, a stabilizing effect promoted by the presence of counter-ions was also observed in the simulations.  相似文献   

18.
    
Penicillin-binding proteins (PBPs) catalyze the final stages of bacterial cell wall biosynthesis. PBPs form stable covalent complexes with beta-lactam antibiotics, leading to PBP inactivation and ultimately cell death. To understand more clearly how PBPs recognize beta-lactam antibiotics, it is important to know their energies of interaction. Because beta-lactam antibiotics bind covalently to PBPs, these energies are difficult to measure through binding equilibria. However, the noncovalent interaction energies between beta-lactam antibiotics and a PBP can be determined through reversible denaturation of enzyme-antibiotic complexes. Escherichia coli PBP 5, a D-alanine carboxypeptidase, was reversibly denatured by temperature in an apparently two-state manner with a temperature of melting (T(m)) of 48.5 degrees C and a van't Hoff enthalpy of unfolding (H(VH)) of 193 kcal/mole. The binding of the beta-lactam antibiotics cefoxitin, cloxacillin, moxalactam, and imipenem all stabilized the enzyme significantly, with T(m) values as high as +4.6 degrees C (a noncovalent interaction energy of +2.7 kcal/mole). Interestingly, the noncovalent interaction energies of these ligands did not correlate with their second-order acylation rate constants (k(2)/K'). These rate constants indicate the potency of a covalent inhibitor, but they appear to have little to do with interactions within covalent complexes, which is the state of the enzyme often used for structure-based inhibitor design.  相似文献   

19.
    
About 30% of proteins require cofactors for their proper folding. The effects of cofactors on the folding reaction have been investigated with alpha-lactalbumin as a model protein and metal ions as cofactors. Metal ions accelerate the refolding of alpha-lactalbumin by lessening the energy barrier between the molten globule state and the transition state, mainly by decreasing the difference of entropy between the two states. These effects are linked to metal ion binding to the protein in the native state. Hence, relationships between the metal affinities for the intermediate states and those for the native state are observed. Some residual specificity for the calcium ion is still observed in the molten globule state, this specificity getting closer in the transition state to that of the native state. The comparison between kinetic and steady-state data in association with the Phi value method indicates the binding of the metal ions on the unfolded state of alpha-lactalbumin. Altogether, these results provide insight into cofactor effects on protein folding. They also suggest new possibilities to investigate the presence of residual native structures in the unfolded state of protein and the effects of such structures on the protein folding reaction and on protein stability.  相似文献   

20.
The integrin alpha9beta1 has been shown to be widely expressed on smooth muscle and epithelial cells, and to mediate adhesion to the extracellular matrix proteins osteopontin and tenascin-C. We have found that the peptide sequence this integrin recognizes in tenascin-C is highly homologous to the sequence recognized by the closely related integrin alpha4beta1, in the inducible endothelial ligand, vascular cell adhesion mole-cule-1 (VCAM-1). We therefore sought to determine whether alpha9beta1 also recognizes VCAM-1, and whether any such interaction would be biologically significant. In this report, we demonstrate that alpha9beta1 mediates stable cell adhesion to recombinant VCAM-1 and to VCAM-1 induced on human umbilical vein endothelial cells by tumor necrosis factor-alpha. Furthermore, we show that alpha9beta1 is highly and selectively expressed on neutrophils and is critical for neutrophil migration on VCAM-1 and tenascin-C. Finally, alpha9beta1 and alpha4 integrins contribute to neutrophil chemotaxis across activated endothelial monolayers. These observations suggest a possible role for alpha9beta1/VCAM-1 interactions in extravasation of neutrophils at sites of acute inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号