首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Engelhard  B Pevec  B Hess 《Biochemistry》1989,28(13):5432-5438
Bacteriorhodopsin (bR) was regenerated from the cation-depleted blue membrane with pentaammineaquocobalt(III) tetrafluoroborate [( Co(NH3)5H2O]3+[BF4-]3). Illumination of the sample with orange light decreased the extinction at 568 nm concomitantly with a hypsochromic shift of the absorption maximum. The photocycle of this sample was inhibited, and the rate of proton pumping was reduced. Chymotryptic cleavage of the corresponding apomembrane into the two fragments C1 and C2 and their subsequent separation revealed that cobalt label is only attached to C1. The maximal incorporation of Co into this peptide was 0.3 Co/C1. After cleavage of C1 with cyanogen bromide and subsequent proteolysis with trypsin and chymotrypsin, this modification could be associated with peptides from cyanogen bromide fragments 6 and 9. The sequences were determined to be 101Val-Asp-Ala-Asp-Gln and 228Ala-Ile-Phe-Gly-Glu-Ala-Glu-Ala. These peptides contain the sequences Asp-Ala-Asp and Glu-Ala-Glu, respectively, which might be constituents of the same cation binding site. The observation that the incorporation of Co into bacteriorhodopsin is enhanced under illumination with orange light indicates that this site might be involved in the proton uptake.  相似文献   

2.
The intensity of the "steady-state" fluorescence of "aerobic" Anacystis nidulans is variable under prolonged illumination with orange (590 mmu) or blue (440 mmu) light for both normally photosynthesizing and DCMU-poisoned cells. In general, orange light illumination causes an increase of the fluorescence intensity followed by a decrease, while blue light causes an increase until a steady level is reached. Poisoned Anacystis cells show four to eight times larger changes in fluorescence intensity than the normal cells; the detailed time course of fluorescence changes is also different in poisoned and normal cells. When algae are cooled to -196 degrees C in light, the light-induced changes in the "steady-state" fluorescence disappear in both types of cells. Difference fluorescence spectra, constructed by subtracting the fluorescence spectra taken after 5-15 min of illumination from those after 60-90 min of illumination, show a doublet structure of the difference band with a major peak coinciding with the Anacystis emission maximum (685 mmu) and a minor peak located at about 693 mmu.  相似文献   

3.
Photodynamic Alteration of Sodium Currents in Lobster Axons   总被引:5,自引:2,他引:3       下载免费PDF全文
Photodynamic alteration of lobster giant axons drastically changed the magnitude and kinetics of sodium currents seen under voltage clamp using the sucrose gap technique. Illumination of axons following treatment with acridine orange or eosin Y decreased the maximum sodium conductance to a zero asymptote as an exponential function of illumination time. Normal sodium inactivation was slowed, with τh more than doubled depending on experimental conditions. A second slower inactivation rate developed occasionally. τh was altered little, if at all. Sodium current "tails" were not prolonged. At maximum light intensity and with eosin Y as sensitizer leakage current increased after 4–10 sec in light. These changes were irreversible. Decreases in maximum sodium conductance correlated highly with increases in time to peak sodium current. The magnitude of change varied linearly with light intensity. The action spectra for eosin Y and acridine orange peaked near 545 and 505 nm, respectively. The magnitude of change varied with preillumination dye exposure time in a quasi-exponential approach to a maximum effect. Sodium dithionite protected the axon from photodynamic change.  相似文献   

4.
Mating in the black soldier fly (BSF) is a visually mediated behaviour that under natural conditions occurs in full sunlight. Artificial light conditions promoting mating by BSF were designed based on the spectral characteristics of the compound eye retina. Electrophysiological measurements revealed that BSF ommatidia contained UV-, blue- and green-sensitive photoreceptor cells, allowing trichromatic vision. An illumination system for indoor breeding based on UV, blue and green LEDs was designed and its efficiency was compared with illumination by fluorescent tubes which have been successfully used to sustain a BSF colony for five years. Illumination by LEDs and the fluorescent tubes yielded equal numbers of egg clutches, however, the LED illumination resulted in significantly more larvae. The possibilities to optimize the current LED illumination system to better approximate the skylight illuminant and potentially optimize the larval yield are discussed.  相似文献   

5.
A mutant of Halobacterium halobium which contains halorhodopsin was isolated from strain S9. An absorbance change at 380 nm caused by steady orange light illumination (λ ?530 nm) was observed. This change depended upon the intensity of the actinic light. The bleached envelope vesicles and vesicles derived from nicotine-grown cells showed a small or no absorbance change at 380 nm, suggesting that the change stemmed from the photochemical intermediate of halorhodopsin (referred to as P-380). When blue light was superimposed on orange background illumination, the membrane potential (Δψ) of the envelope vesicles decreased. Δψ was determined from the tetraphenylphosphonium cation (TPP+) distribution by means of a TPP+ electrode. When blue light intensity was increased, both Δψ and the amount of P-380 were decreased. An equation was derived which showed that Δψ is proportional to the concentration of P-380 formed by illumination under the assumption that the ionic composition is not significantly changed upon illumination. This equation was checked experimentally from the following three points: The blue light effect, the relationship between Δψ and light intensity, and the effect of gramicidin. The data obtained accorded well with the theoretical relationship.  相似文献   

6.
The time courses of infrared light transmission changes and fluorescence induced by light in spinach leaf segments were measured. The illumination by red light exhibited a complex wave pattern. The transmission approached the baseline after repeating decreases and increases. Illumination by far-red light decreased the transmission. One of the differences between the two responses was the difference between the two amplitudes of the first increasing component. The component in the red light response was larger than the component in the far-red light response. The transmission decrease by far-red light is supposed to correspond to "red drop." The transmission decrease by far-red light was suppressed by red light. This is due to an activation of a transmission-increasing component. This probably corresponds to "enhancement." A proportional correlation existed between the intensity of far-red light and the minimum intensity of red light that suppressed the transmission decrease induced by far-red light. The component which made Peak D in the time course of fluorescence yield and the first increasing component in the transmission changes were suppressed by intense light.  相似文献   

7.
Kobak J 《Biofouling》2006,22(3-4):153-162
The effects of several factors (shell length, exposure time, substratum orientation in space, illumination, temperature, conspecifics) upon the attachment strength (measured with a digital dynamometer) of the freshwater, gregarious bivalve Dreissena polymorpha were studied under laboratory conditions. A rapid increase in attachment strength was observed on resocart (a thermosetting polymer based on phenol-formaldehyde resin, with paper as filler) substrata during the first 4-d exposure, after which it stabilised at ca 1 N. The attachment strength increased also with mussel size. Mussel adhesion on variously oriented surfaces (vertical, upper horizontal and lower horizontal) was similar. Illumination inhibited attachment strength, as expected for a photophobic species, but only after a 2-d exposure. After 6 d, no effects of light were detected. Thus, illumination seemed to influence the attachment rate, rather than the final strength. The optimum temperature for mussel attachment was 20- 25 degrees C. At lower and higher temperatures (5-15 degrees C and 30 degrees C), their adhesion strength decreased. The presence of conspecifics stimulated mussel attachment strength.  相似文献   

8.
This article gives evidence that NAD kinase activity is controlled by the action of phytochrome. The NADP level rapidly increased in the cotyledons of seedlings of Pharbitis nil strain Violet (a short day plant), when the inductive dark for flowering was interrupted with a 5-minute illumination of red light. Illumination with far red light immediately after illumination with red light counteracted partly the effect of the latter.  相似文献   

9.
Isolation and properties of the native chromoprotein halorhodopsin   总被引:5,自引:6,他引:5       下载免费PDF全文
The native chromoprotein of the light-driven chloride pump halorhodopsin (HR) was isolated from Halobacterium halobium strain L-33 which lacks bacteriorhodopsin but contains 'slow cycling rhodopsin-like pigment' (SR). A membrane fraction was prepared in low salt and dissolved in a high salt medium by the detergents Lubrol PX or octylglucoside. These conditions destroyed the chromophore of SR but not the HR pigment. Chromatography on phenyl-Sepharose and hydroxylapatite produced, in 60% yield, a 230-fold enriched monomeric chromoprotein with an apparent mol. wt. of 20,000. The chromoprotein was stable in 1 M NaCl and 1% octylglucoside and remained stable upon removal of detergent. It reacted with borohydride in the dark and with hydroxylamine in the light. The absorption maximum of the light-adapted state is at 580 + 2 nm and its molar extinction approximately 50,000/M/cm. Upon illumination in the presence of detergent it was converted into a 410 nm absorbing species with concomitant release of protons. A thermal reconversion to the 580 nm species occurred with a half time of 76 s at -6 degrees C. Blue light absorbed by the photoproduct accelerated the re-conversion as well as the re-uptake of protons. Removal of the detergent prevented the light-induced formation of the 410 nm species. Under these conditions a photochemical behaviour similar to that in intact cells and cell vesicles, i.e., a photocycle in the 10-20 ms range was observed. These findings form the basis for functional reconstitution of HR.  相似文献   

10.
Chlorophyll b was first detectable after 10 minutes of illumination of etiolated pea seedlings (Pisum sativum L. var Greenfeast) with continuous white light. The chlorophyll a/b ratio decreased from 300 at 10 minutes to 15 after 1 hour. There was little change in the chlorophyll a/b ratio between 1 and 2 hours, and it declined to 3 between 2 and 5 hours of illumination. In red light, the time courses of total chlorophyll synthesis and chlorophyll a/b ratio were similar to those in white light for the first 5 hours of illumination. But with increasing time of illumination with red light, there was an increase in the chlorophyll a/b ratio to 7 after 30 hours. Illumination with white light of very low intensity also gave high chlorophyll a/b ratios. Seedlings which had been illuminated for varying periods and then returned to darkness always showed an increase in chlorophyll a/b ratio during the dark period. It is concluded that the synthesis of chlorophyll b is controlled by light.  相似文献   

11.
Blebbistatin was recently identified as a selective, cell-permeant inhibitor of myosin II. Because blebbistatin is likely to be used extensively with fluorescence imaging in studies of cytoskeletal dynamics, its compatibility with common excitation wavelengths was examined. Illumination of blebbistatin-treated bovine aortic endothelial cells at 365 and 450-490 nm, but not 510-560 or 590-650 nm, caused dose-dependent cell death. Illumination of blebbistatin alone at 365 and 450-490 nm changed its absorption and emission spectra, but the resultant compounds were not toxic. In addition, photoreacted blebbistatin no longer disrupted myosin distribution in cells, indicating loss of pharmacological activity. Fluorescence microscopy showed that upon illumination, blebbistatin became bound to cells and to protein-coated glass, suggesting that toxicity may arise from light-induced reaction of blebbistatin with cell proteins. Blebbistatin should be used only with careful consideration of these photochemical effects.  相似文献   

12.
The application of a cell immobilization technique to a biofilm-based photobioreactor was developed to enhance its photo-hydrogen production rate and light conversion efficiency. Rhodopseudomonas palustris CQK 01 was initially attached to the surface of packed glass beads to form a biofilm in this experiment. Then, the biofilm photobioreactor (BPBR) was illuminated by light-emitting diodes with light wavelengths of 470, 590 and 630 nm and hydrogen was evolved with glucose being the sole carbon source. Under the illumination condition of 5000 lux illumination intensity and 590 nm wavelength, the BPBR showed good hydrogen production performance: the hydrogen production rate was 38.9 ml/l/h and light conversion efficiency was 56%, while the hydrogen yield was 0.2 mol H2/mol glucose. Furthermore, results show that the highest hydrogen production rate and glucose removal rate were obtained when the glucose concentration is 0.12 M, the optimal pH 7 and optimal temperature of influent liquid 25 °C.  相似文献   

13.
Halobacterium halobium contains at least three retinal-containing pigments: bacteriorhodopsin, halorhodopsin, and a third rhodopsin-like pigment (tR) absorbing at approximately 590 nm, tR590. Illumination of tR590 gives rise to a very long-lived blue absorbing photoproduct, tR370. Using high-performance liquid chromatography we show that the chromophore of tR590 is primarily all-trans retinal and its conversion by light to tR370 causes the chromophore to isomerize primarily to the 13-cis conformation. Irradiation of the tR370 gives rise to a transient photoproduct absorbing at approximately 520 nm that decays back to the initial pigment tR590. In addition to all-trans retinal, the apomembrane of tR can also combine with 13-cis retinal but not with the 9- or 11-cis isomers.  相似文献   

14.
Why the leaves of many woody species accumulate anthocyanins prior to being shed has long puzzled biologists because it is unclear what effects anthocyanins may have on leaf function. Here, we provide evidence for red-osier dogwood (Cornus stolonifera) that anthocyanins form a pigment layer in the palisade mesophyll layer that decreases light capture by chloroplasts. Measurements of leaf absorbance demonstrated that red-senescing leaves absorbed more light of blue-green to orange wavelengths (495-644 nm) compared with yellow-senescing leaves. Using chlorophyll a fluorescence measurements, we observed that maximum photosystem II (PSII) photon yield of red-senescing leaves recovered from a high-light stress treatment, whereas yellow-senescing leaves failed to recover after 6 h of dark adaptation, which suggests photo-oxidative damage. Because no differences were observed in light response curves of effective PSII photon yield for red- and yellow-senescing leaves, differences between red- and yellow-senescing cannot be explained by differences in the capacities for photochemical and non-photochemical light energy dissipation. A role of anthocyanins as screening pigments was explored further by measuring the responses PSII photon yield to blue light, which is preferentially absorbed by anthocyanins, versus red light, which is poorly absorbed. We found that dark-adapted PSII photon yield of red-senescing leaves recovered rapidly following illumination with blue light. However, red light induced a similar, prolonged decrease in PSII photon yield in both red- and yellow-senescing leaves. We suggest that optical masking of chlorophyll by anthocyanins reduces risk of photo-oxidative damage to leaf cells as they senesce, which otherwise may lower the efficiency of nutrient retrieval from senescing autumn leaves.  相似文献   

15.
Light and dark adaptation of halorhodopsin   总被引:1,自引:0,他引:1  
Dark incubation of envelope vesicles derived from a strain of Halobacterium halobium that lacks bacteriorhodopsin but contains halorhodopsin and a third rhodopsin-like pigment caused a decrease in the flash yield [the amplitude of a transient absorbance change of flash reactive component(s) by flash] of halorhodopsin but not the rhodopsin-like pigment. The flash yield decreased to reach a low steady level after incubation for about 4 days in the dark. The flash yield of halorhodopsin at any stage of dark incubation was increased by actinic illumination of the vesicles. The flash yield at 490 nm (absorbance increase) was found to be approximately proportional to that at 590 nm (absorbance decrease). These results indicate that halorhodopsin in the envelope vesicles has two forms, dark and light adapted, and that the halorhodopsin phototransient absorbing at 490 nm is originated from the light-adapted form. A difference spectrum between these two forms of halorhodopsin shows that the light-adapted halorhodopsin was red-shifted from the dark-adapted form. The light-induced membrane potential was measured by tetraphenylphosphonium uptake. The uptake by the dark-adapted vesicles was slower than that by the light-adapted vesicles, suggesting that only the light-adapted halorhodopsin has ion-transporting activity.  相似文献   

16.
The ciliate Tetrahymena vorax is normally insensitive to light. However, after uptake of acridine orange, blue light evokes instant backward swimming. The dye accumulates mainly in posterior vacuoles, with half-maximal uptake after 1 min. Illumination for 10 s induced a depolarisation of approximately 15 mV lasting less than 2 s, followed by a sustained hyperpolarisation of approximately 20 mV. Deciliated cells displayed a similar response. The hyperpolarisation was linked to reduced membrane resistance, showed a reversal potential of approximately -55 mV and was blocked by 1 mmol l(-1) TEA. The rate of rise of electrically evoked Ca(2+)-spikes was reduced during the hyperpolarisation, which is compatible with elevated cytosolic Ca(2+) concentration. This suggests that the hyperpolarisation may be caused by activation of Ca(2+)-sensitive K(+) channels. The depolarisation was abolished in Ca(2+)-free medium, whereas the hyperpolarisation was unaffected. Illumination for 2 s, or prolonged stimulation restricted to the anterior part of the cell, induced depolarisation only. Illumination of the posterior part caused delayed hyperpolarisation with no preceding depolarisation. We conclude that the induced backward swimming is associated with Ca(2+) influx through anterior channels, while Ca(2+) released from intracellular stores activates K(+) channels responsible for the delayed hyperpolarisation.  相似文献   

17.
ABSTRACT. Illumination either from one side or alternating between the two sides induced aphids to turn towards the light and also delayed their take-off as compared with illumination from the front. Illumination from in front or from both sides simultaneously delayed take-off as compared with dorsal illumination and also increased the rate of walking. Take-off was frequently induced by a change from frontal to dorsal illumination but not from lateral or ventral to dorsal. Ventral illumination delayed take-off as compared with dorsal, but appeared to inhibit walking.
In frontal illumination, rate of walking and time to take-off were positively correlated when aphids walked on a cat-walk, but negatively correlated on a smooth surface. Thus the two locomotory acts, walking and flight, could interact either as 'allies' or as 'antagonists', either one hastening or deferring the other in different conditions. Take-off from a plant is discussed in terms of the interaction between these two locomotory responses, and 'settling' responses.  相似文献   

18.
Jarosław Kobak 《Biofouling》2013,29(3):141-150
Abstract

The effects of several factors (shell length, exposure time, substratum orientation in space, illumination, temperature, conspecifics) upon the attachment strength (measured with a digital dynamometer) of the freshwater, gregarious bivalve Dreissena polymorpha were studied under laboratory conditions. A rapid increase in attachment strength was observed on resocart (a thermosetting polymer based on phenol-formaldehyde resin, with paper as filler) substrata during the first 4-d exposure, after which it stabilised at ca 1 N. The attachment strength increased also with mussel size. Mussel adhesion on variously oriented surfaces (vertical, upper horizontal and lower horizontal) was similar. Illumination inhibited attachment strength, as expected for a photophobic species, but only after a 2-d exposure. After 6 d, no effects of light were detected. Thus, illumination seemed to influence the attachment rate, rather than the final strength. The optimum temperature for mussel attachment was 20 – 25°C. At lower and higher temperatures (5 – 15°C and 30°C), their adhesion strength decreased. The presence of conspecifics stimulated mussel attachment strength.  相似文献   

19.
Within 8 to 10 minutes of illumination, chloroplast thylakoids of pea (Pisum sativum) became enriched 30 to 100% in ribosomes bound by nascent chains. Following (or, in some experiments, coincident with) this apprarent redistribution was a 25 to 65% increase in the total bound ribosome population, which was then maintained at this higher level during the normal light period. On transfer of plants to darkness, the bound ribosome population decreased to the lower dark level. White, blue (400 to 520 nanometers), and orange (545 to 690 nanometers) light were all effective in producing an increase in the bound ribosome population. The level of bound ribosomes in the oldest leaves of 16-day-old plants was 15-fold less than in the still-maturing leaf but was still increased by illumination.  相似文献   

20.
Bright light treatment has become an important method of treating depression and circadian rhythm sleep disorders. The efficacy of bright light treatment may be dependent upon the position of the light-source, as it determines the relative illumination in each portion of the visual field. This study compared illumination of upper and middle visual fields to determine whether melatonin suppression is different or equivalent. Thirteen older volunteers received three illumination conditions in counterbalanced orders: 1000 lux in the upper visual field, 1000 lux in the middle visual field, or dim diffuse illumination < 5 lux. A four-choice reaction time task was performed during tests to ensure eye direction and illumination of the intended portion of the visual field. Illumination in the upper and middle visual fields significantly suppressed melatonin compared to < 5 lux (p < 0.001). Melatonin suppression was not significantly different with upper or middle field illumination. These results indicate that bright light treatments placed above the eye level might be as effective as those requiring patients to look directly at the light source. Clinical comparative testing would be valuable. In addition, this study demonstrates that significant suppression of melatonin may be achieved through the use of bright light in healthy older volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号